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Abstract— Multi-Energy Network (MEN) is a promising
approach to improve the overall efficiency of energy utilization.
Yet, balancing its electrical and thermal power in real-time
is challenging due to variable demands. In this paper, we
formulate a distributed Time Varying Optimization Problem
(TVOP) and solve it in continuous-time to track the unknown
time-varying optimal trajectories. First, we apply the principles
of output regulation theory to reverse engineer the feedforward
laws in the presence of projection. These laws are responsi-
ble for proactively canceling the effects of temporal demand
variations. Then, a projection-based distributed optimization
algorithm, alongside a distributed auxiliary protocol based on
weighted-sum consensus, result in a novel scheme we term
distributed feedforward optimization. One of the key features
of our scheme is its data-driven nature, where temporal
variations are captured from Ultra-Short-Term Forecasting
(USTF) profiles using an exosystem. Under mild assumptions,
the proposed scheme provides a guarantee for asymptotic
convergence. Simulation results demonstrate the effectiveness
of our scheme under an non-ideal case.

I. INTRODUCTION

As the world moves towards a Net Zero future, reconciling
the growing demand for energy with the need to reduce
carbon emissions has become an imperative [1]. The Multi-
Energy Network (MEN) plays a crucial role as it enables
the integration of different power sectors, such as electrical
and thermal, to improve energy efficiency [2]. Recently,
the Fifth-Generation District Heating and Cooling (5GDHC)
networks have received significant interest [3]. Compared
with traditional heating networks, 5GDHC network operates
at a low temperature range of 10–25◦C, resulting in lower
heat losses. It also offers bidirectional operation to meet both
heating and cooling demands simultaneously.

Given the coupling between different energy sectors, MEN
control is a complex task. The authors in [4] proposed
an agent-based control for a low-temperature network. In
[5], the authors offer an integrated approach for optimal
operation of MEN and thermal comfort management in
buildings. These studies did not feature dynamics and exhibit
deficiency in the predictive capability, which is a necessity
for optimal operation. Among several optimization-based
methods, Model Predictive Control (MPC) is known to
be promising for power and energy applications and have
satisfying performance when the system dynamics are well
captured and the model is accurate. A centralized MPC
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scheme was proposed in [6] for energy management of a
5GDHC-based MEN. However, the difficulty in modeling is
compounded by MENs, which may have numerous intercon-
nected subsystems with nonlinear dynamics. Furthermore,
centralized approaches are computationally prohibitive for
such complex and large systems.

Optimal Resource Allocation (ORA) involves optimizing
the allocation of a limited set of resources to minimize some
convex cost function. By formulating the control problem as
an optimization problem, it serves as an alternative to achieve
the control goal while being model-free. Effective methods to
solve it employ a dynamical system to approach the optimal
solution in continuous time [7]. These methods demonstrate
their limitations when dealing with more complex Time-
Varying Optimization Problems (TVOPs). Such limitations
may lead to the emergence of an optimality gap, the extent
of which depends temporal variations including time-varying
cost functions and constraints. As the optimality gap persists,
the dynamical system may struggle to adapt to changing
conditions and maintain efficient resource utilization. While
distributed algorithms for time-invariant problems have been
well established, there are few works targeting TVOPs, and
even fewer distributed TVOPs. Some preliminary results
for unconstrained and constrained TVOPs can be found in
[8]–[10]. However, achieving vanishing tracking errors in a
distributed manner is not trivial. Schemes without predictive
capability would render a uniformly ultimately bounded
optimality gap [9]. For centralized TVOPs, the tracking
error can be accurately eliminated by using a prediction-
correction scheme [10], [11], but it is no longer true for
distributed TVOPs [12]. The Hessian matrix needs to be
aggregated via a finite-time or fixed-time consensus protocol
[13]–[15]; otherwise access to this global information is
needed. Similarly, a distributed estimator based on fixed-time
consensus is developed in [16] to predict the time derivative
of the optimal trajectory.

None of these works have explored the feasibility of
canceling the effects of temporal variations via a feed-
forward design. Recently, in [17], the author applies the
principles of output regulation theory to transform distributed
TVOPs into time-invariant ones, simplifying the derivations
considerably. Thus, this paper builds upon the findings in
[7], [17] to develop a more effective scheme for solving
distributed TVOPs, along with extensions suitable for use
in MENs. With a feedforward design, the use of finite-time
or fixed-time consensus is no longer a prerequisite to solving
distributed TVOPs. The resulting control scheme, named
as distributed feedforward optimization, is fully distributed
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and allows for predictive capability to cancel the impacts
of temporal variations. The main contribution of this paper
lies in a better handling of local feasibility constraints,
for which the reverse engineering methodology, distributed
auxiliary protocol, and distributed optimization algorithm are
re-established based on projection. It is worth noting that
local feasibility constraints are disregarded by [13]–[17],
despite their significant relevance in practical applications.
Furthermore, we extend the feedforward design to a more
general form to accommodate time-varying affine equality
constraints related to MENs. However, the explicit wave
format of those constraints is not a reasonable assumption
for MENs. As advanced forecasting tools [18] have become
available, we propose to capture the temporal variations from
Ultra-Short-Term Forecasting (USTF) profiles, which yield a
time window of a few minutes to up to 1 hour ahead and a
time resolution ranging from seconds to minutes [19]. Thus,
the proposed scheme holds a data-driven feature.

II. PRELIMINARIES

A representative MEN consists of a central plant, a circu-
lation pump, nodes, electrical lines, and water pipes [20].
In this paper, the electrical network under consideration
is an islanded low-voltage sub-network that represents an
urban district. As this has been extensively modeled in the
literature, e.g., [21], in the following we will concentrate on
the thermal aspects.

The concept of 5GDHC network is necessarily linked to
the use of Water-Source Heat Pumps (WSHPs) for climati-
zation. The central plant is only responsible for maintaining
the temperature at return/supply pipes within a certain range.
The circulation pump provides pressure to ensure necessary
mass flows inside. It is assumed that the central plant and
circulation pump, and WHPs are controlled separately.

A. Pipe

In water pipelines, the mass flow goes slowly from the
inlet to the outlet. During this process, there is heat exchange
with the surroundings. Thus, a frequency domain represen-
tation for real-time water temperature at the outlet of a pipe
is given by [22]

Tout(s) =
[
(Tin − Ta) e

− λpL

cwṁ + Ta

]
e−τs, (1)

where Tin represents the inlet temperature, Ta denotes the
ambient temperature, ṁ is the mass flow rate through the
pipe, cw represents the specific heat capacity of water, L is
the length of the pipe, and λp is the heat transfer coefficient
determined by the material and manufacture. By linearizing
the fluid mechanical equations, we can simplify the transport
phenomena into a time delay denoted by τ between the inlet
and outlet [23]

τ = ρwπD
2L/ (4ṁ) , (2)

where D represents the diameter of the pipe and ρw is the
density of water.
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Fig. 1. Schematic illustration of pipes and nodes in 5GDHC network.

B. Node

Thermally, a load bus node can be subdivided into a supply
branch node, a return branch node, and a WSHP. Here, water
mass flow in the supply branch is diverted here, and a portion
of the water is exported to the WSHP and finally the return
branch, while the other remains along the trunk pipe. A
schematic illustration is provided in Fig. 1.

The mass flow rates at the supply/return branch nodes for
i ∈ L satisfy [24]

ṁI
i,s = ṁX

i,s + ṁO
i,s, (3)

ṁO
i,r = ṁX

i,r + ṁI
i,r, (4)

where the subscripts s and r correspond to the supply
and return branches while the superscripts I , O, and X
correspond to the input, output, export ports, respectively.

For supply branch node, we have

T I
i,s = TX

i,s = TO
i,s, (5)

whereas the mass flows into the return branch node are
mixed, resulting in a temperature that can be calculated by

TO
i,r =

(
ṁI

i,rT
I
i,r + ṁX

i,rT
X
i,r

)
/ṁO

i,r. (6)

C. WSHP

Through a small amount of high electrical energy input,
WSHP achieves the transfer of heat between water sources.
Coefficient of Performance (COP) and Energy Efficiency
Ratio (EER) evaluate the heating and cooling performance.
Their relation to TX

i,s and Ti,u can be described using a
performance map [20]

COPi or EERi = F(TX
i,s, Ti,u), (7)

where Ti,u is a temperature set by user.
This paper considers winter scenarios where only heating

is required. The electrical power Pi,HP and heat exchange
Q̇i,ex of WSHP can be expressed by

Pi,HP = Q̇i,HP /COPi, (8)

Q̇i,ex = Q̇i,HP − Pi,HP , (9)
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where Q̇i,HP is the thermal power injected by WSHP. The
mass flow rate through the WSHP is adjusted according to

ṁX
i,s/r = Q̇i,ex/ (cw∆T ) , (10)

where ∆T is the temperature drop between TX
i,s and TX

i,r that
has a default setting of 5 ◦C [20].

Due to slight fluctuations in supply water temperature at
the central plant, as well as factors like heat exchange for
climatization and heat loss during water transport, the COPs
of all WSHPs will exhibit fluctuations throughout network
operation. It is necessary to account for the dynamics in (1)–
(10) in the optimization problem. This will be elaborated in
Section III.

III. PROBLEM FORMULATION

Because of the presence of droop controllers and damping
components, any electrical power imbalance will induce a
scaled deviation in the synchronous frequency [21]. Thus,
along the operation, the power set points for DG inverters and
WSHPs, expressed in xi,∀i, should adhere to the following
constraint to restore frequency:∑

i∈G
xi −

∑
i∈L

xi =
∑
i∈L

Pi,L(t), (11)

where we introduce G as the set of Distributed Generation
(DG) nodes and L the set of load bus nodes; for i ∈ L, each
node is equipped with a WSHP; Pi,L(t) is the time-varying
electrical power demand for node i.

A MEN can be partitioned into multiple thermal zones
according to building clustering and storage infrastructure
[25], with each zone served by at least one WSHP. For
thermal comfort of the occupants, WSHPs are asked to pro-
vide thermal power as requested, which yields an additional
equality constraint for each thermal zone:∑

i∈Zk

F(TX
i,s, Ti,u) · xi = Q̇k,L(t), (12)

where Zk represents the set of thermal zones and Q̇k,L(t) is
the time-varying thermal power demand for thermal zone k.

Consider n nodes and z zones. Minimizing the overall
operational costs

∑n
i=1 fi(·) over xi ∈ Xi,∀i with respect

to (11)–(12) will lead to

Minimize
xi∈Xi,∀i

n∑
i=1

fi(xi), (13a)

Subject to Ax = Bd(t) and (1)–(10), (13b)

where A ∈ R(1+z)×n, B ∈ R(1+z)×(n+z), x ∈ Rn, and
d(t) ∈ Rn+z is a vector of PL(t) and Q̇L(t). Usually, d(t)
is measurable or can be estimated in real-time [26].

Remark 1: Problem (13) is a distributed TVOP in which
the equality constraint varies with time, setting it apart from
time-invariant problems as considered in the literature. There
are of course cases where the cost functions are also time-
varying, such as real-time electricity price. However, this is
not pertinent to the ultra-short-term time window under con-
sideration, and any variation in price is likely to be negligible.

Actually our proposed scheme can easily be modified to deal
with time-varying cost functions. Furthermore, we would
like to emphasize that matrix A in equation (13b) can be
unequivocally regarded as time-invariant, as the dependence
of COPi for all i on the time-domain is only indirect, via
the dynamics outlined in (1)–(10).

IV. MAIN RESULTS

As relying solely on measurements would result in a
passive situation, we propose to incorporate prior information
to allow for predictive capability that is key for tracking.

A. Capturing Temporal Variations

In output regulation theory, an exogenous signal is an
external input that affects the operation of the system but
is not manipulated by the system. This is analogous to the
temporal variation discussed in this paper. It was proved that
an internal model of the exogenous signals can be effectively
used in the design of output regulators [27], where the
concept of exosystem plays a key role.

A neutrally stable linear exosystem of the sinusoidal form
is as follows:

v̇(t) = Sv(t), (14)

with v(t) ∈ R2N being a function of time

v(t) =
[
cos(ω0t), sin(ω0t), · · · , cos(Nω0t), sin(Nω0t)

]⊤
,

where S ∈ R2N×2N , N is the number of sines (or cosines),
and ω0 is the fundamental frequency to select.

In the context of MEN, it is more realistic to think that
we do not exactly know the temporal variations, which need
to be captured from USTF profiles. Here a combination of
N sines and N cosines is employed for fitting:

ri(t) =

N∑
k=1

aik cos(kω0t) +

N∑
k=1

bik sin(kω0t), (15)

where ri(t) is the temporal demand variation, and aik and bik
are fitting coefficients. As such, the temporal variation can be
replicated as an affine mapping of the exosystem output, as
illustrated in Fig. 2. Considering the real-world error between
what we captured and measured, di(t) in (13b) becomes

di(t) = ri(v) + ei, (16)

where ei can arise from both forecasting and fitting.
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Fig. 2. Temporal variations within a USTF profile, captured by exosystems
of different orders and provided 5-min ahead of time.
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B. Reverse Engineering

Next, we are going to reverse engineer how the optimal
trajectories look like when the local feasibility constraints
are handled by projection. Denote the optimal trajectory of
node i for Problem (13) by πi(v) ∈ Xi. According to KKT
conditions, we have

0 ∈ fix(πi(v)) +A⊤
i λ(v) + CXi

(πi(v)), (17)
n∑

i=1

Aiπi(v) =

n∑
i=1

Bi (ri(v) + ei) . (18)

where CXi
(πi(v)) denotes the feasible direction cone.

While there is no analytical solution for time derivative
of (17), we can view the projection operator as a quadratic
activation function pi(xi) with an infinitely large magnitude
to penalize constraint violations. As a result, Problem (13)
is equivalent to

min
xi∈R,∀i

max
λ∈R2

n∑
i=1

fi(xi) +

n∑
i=1

pi(xi)

+

n∑
i=1

λ⊤ [Aixi −Bi (ri(v) + ei)] .

(19)

Consider a binary function to signify whether the projec-
tion operator is activated or not

δi(z) =

{
0, if PXi

(z + ϵ) = z,∀ϵ ∈ R++,

1, else,
(20)

where PXi(z) represents the projection of a scalar z into a
definition domain Xi. By virtue of (19), the time derivatives
of (17)–(18), except for the case where πi is on the boundary
and moving inward, can be equivalently expressed as

(fixx + pixx)πivSv +A⊤
i λvSv = 0, (21)

n∑
i=1

AiπivSv =

n∑
i=1

Bi

(
rivSv +

∂ei
∂t

)
, (22)

where the subgradient of δi is chosen to be 0, fixx =
∂f2

i

∂2xi
∈

R++, pixx =
∂p2

i

∂2xi
∈ R+, λv = ∂λ

∂v ∈ R(1+z)×2N , πiv =
∂πi

∂v ∈ R1×2N , and riv = ∂ri
∂v ∈ R(1+z)×2N , which remains

constant if the USTF profile is not updated.
Note that for the feedforward design, adopting (21) also

for the special case, which lasts only for an infinitesimal
neighborhood of that specific moment, will not affect the
results since πi will instantly move away from the boundary.
As lim pixx → ∞ for xi ̸∈ Xi and pixx = 0 otherwise, it
can be readily inferred from (21) that

πiv = −δi(πi)f
−1
ixxA

⊤
i λv. (23)

To explicitly obtain πiv , we need to obtain λv first. However,
ei in (22) manifests as a stochastic signal which cannot be
exactly described nor predicted. Thus, it is not a kind of prior
information we can utilize for the feedforward design. This
underscores the importance of USTF profiles being able to
reasonably depict the drift of demand, which is equivalent to

assuming that ei is time-invariant. In fact, for the notation of
(16) we have implicitly introduced the following assumption:

Assumption 1: There is no direct dependence of ei on
time, i.e., its gradient or subgradient ∂ei

∂t = 0, ∀i.
This holds true when N is sufficiently large under the

premise of the integrity of USTF profiles. Under Assumption
1, substituting (23) into (22) returns

n∑
i=1

Aiπiv = −
n∑

i=1

δi(πi)f
−1
ixxAiA

⊤
i λv =

n∑
i=1

Biriv. (24)

As a result, we can obtain the following criterion:

λv = −

(
n∑

i=1

δi(πi)f
−1
ixxAiA

⊤
i

)† n∑
i=1

Biriv. (25)

Remark 2: This representation benefits from a coordinate
transformation through the exosystem, where the drifts (with
respect to the exosystem) of the time-varying optimal trajec-
tories become time-invariant. This characteristic simplifies
the analysis of the TVOP, as time-invariant problems are
relatively well-understood. However, the validity of (23)
and (25) is subject to the integrity of USTF profiles. In
extreme cases, feedforward laws based on them may yield
counterproductive control effects. Step load changes are
inconsequential because they are time-invariant.

C. Distributed Auxiliary Protocol

It is worth noting that (25) involves a significant amount
of global information that is not accessible in a distributed
implementation. Regarding this, a distributed auxiliary pro-
tocol is developed, which involves each node communicating
with its neighbors and updating its own estimate of λv based
on the information it receives:

ξ̇i = −
n∑

j=1

lijξj −
n∑

j=1

lijηj − wiξi +Biriv, (26)

η̇i =

n∑
j=1

lijξj , (27)

where ξi ∈ Rn(1+z)×2N , ηi ∈ Rn(1+z)×2N , lij is the ijth
entry of the Laplacian matrix, and wi ∈ R(1+z)×(1+z) is a
weighting matrix to be designed now.

By letting η̇i = 0, from (27) we know that the auxiliary
protocol converges at: ξi = ξj = ξ0 for all i, j, where
ξ0 is temporarily introduced to ease our derivations. Let
ξ̇i = 0 and left-multiply (26) by 1⊤. We have

∑n
i=1 wiξi =∑n

i=1 wiξ0 =
∑n

i=1 Biriv , which implies

ξ0 =

(
n∑

i=1

wi

)† n∑
i=1

Biriv. (28)

Referring back to (25), ξi provides an estimate of −λv if

wi = δi(xi)f
−1
ixxAiA

⊤
i , (29)

and ultimately we will have

λv = −ξi, (30)

πiv = δi(πi)f
−1
ixxA

⊤
i ξi, (31)
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if both xi and ξi converge to their desired values. However,
the following assumptions are needed.

Assumption 2: 1) The Slater’s condition holds; 2) the
communication network is connected and undirected; 3)
fi(xi),∀i are quadratic convex functions; 4) xi can always
converge to Ωi = {xi ∈ R : δi(xi) = δi(πi(v))} for all i.

D. Distributed Optimization Algorithm

The idea of feedforward optimization is about including
some extra terms to provide desired variations to xi and λi,
so that xi and λi are enforced to track πi(v) and λ(v) [17].
The desired variations for the primal and dual are

π̇i(v) = πivSv, (32)

λ̇(v) = λvSv. (33)

By combining (30)–(33), we propose a projection-based
distributed optimization algorithm as follows:

ẋi = PXi

(
xi − fix −A⊤

i λi + αi

)
− xi, (34)

λ̇i = Aixi −Bidi(t)−
n∑

j=1

lijλj −
n∑

j=1

lijzj + βi, (35)

+ f−1
ixxAi

(
−A⊤

i λi − fix(0)
)
−Biriv,

żi =

n∑
j=1

lijλj , (36)

where αi and βi are feedforward laws given by

αi = δi(xi)f
−1
ixxA

⊤
i ξiSv, (37)

βi = −ξiSv. (38)

Theorem 1: For the dynamical system described by (26)–
(27) and (34)–(36), under Assumptions 1 and 2, if the initial
conditions are set as ηi(0) = 0 and zi(0) = 0, ∀i, then its
state xi, ∀i, can asymptotically converge to the time-varying
optimal trajectory for problem (13).

Proof: Due to limited space, we do not provide a
detailed proof in this paper; instead, we present an outline
to show the convergence and optimality. Denote ξ̃i and
η̃i as the equilibrium points for (26)–(27), x̃i, λ̃i, and z̃i
as the equilibrium points for (34)–(36). Construct a Lya-
punov candidate V = 1

2

∑n
i=1

(
∥x̄i∥2 + ∥λ̄i∥2 + ∥z̄i∥2

)
+

k
2

∑n
i=1

(
∥ξ̄i∥2 + ∥η̄i∥2

)
, where x̄i = xi − x̃i, λ̄i = λi − λ̃i,

z̄i = zi − z̃i, ξ̄i = ξi − ξ̃i, and η̄i = ηi − η̃i, and k ∈ R++.
The terms in the second row of (35) contribute to making V̇
negative-definite. Invoking the properties of projection and
quadratic convex functions, and from the boundness of v,
one can ultimately derive V̇ ≤ 0 provided a sufficiently
big k. Proof on asymptotic convergence is complete by
LaSalle’s invariance principle. Then one can easily prove
the equivalence of equilibrium points and optimal solution.

V. CASE STUDIES

This section aims to demonstrate the effectiveness of the
proposed scheme through a simulation study on a 5-node
MEN. We configure a single thermal zone, with all three

Node 1

Node 2 Node 3 Node 4

Node 5

Thermal Zone

Node 1

Node 2 Node 3 Node 4

Node 5

Physical Network Communication Network

Fig. 3. Test MEN with 5 nodes and 1 thermal zone.

load buses (Node 2, Node 3, and Node 4) enclosed and
consider their collective responsibility in meeting Q̇1,L(t).
The responses of central plant and WSHPs are modeled by
single-integrator or double-integrator dynamics. We consider
constant mass flow rate at the central plant, with the supply
water temperature fluctuating around 20 ◦C. On the user
side, it is set that Ti,u = 40 ◦C. The layout of the test
network is shown in Fig. 3, including both physical network
and communication network. The communication network
topology can be rather flexible as long as a direct spanning
tree is ensured. The modeling parameters are selected from
[22], and the profiles are obtained from the Pecan Street
dataset [28]. The least square method is adopted for pro-
cessing the USTF profiles with a time resolution of 10 s,
and we use N = 5. Therefore, v ∈ R10 and S ∈ R10×10.
For practical implementation, (26)–(27) and (34)–(36) have
been discretized with a control interval of 0.1 s.
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Fig. 4. Simulation results under the presence of real-world errors: (a) actual
demands; (b) optimized power set points; (c) real-time power imbalances
with the proposed scheme; (d) real-time power imbalances with [7].

Simulation is carried out under the presence of real-world
errors, which are emulated by introducing uncertainties to
riv as well as some noisy signals, as depicted in Fig. 4(a).
In addition, an 100 kW step increase in electrical power
demand is introduced to Node 4 at 150 s. Concerning
network stability, the initial states are reasonably configured
and the simulation results are given in Figs. 4(b)–(c), where
sub-figure (b) shows the optimized power set points and
sub-figure (c) gives the real-time power imbalances. The
dispatchable units exhibit different responses due to their
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inherent heterogeneity in cost functions. Overall, although
some slight violations of equality constraint, reflected as
real-time power imbalance, may occur, our proposed scheme
provides satisfactory tracking performance in such a non-
ideal case.

The performance of the proposed scheme is compared
with a distributed ORA algorithm modified from [7], which
is purely feedback-based and lacks of feedforward laws to
cancel the effects of temporal variations. By comparing Figs.
4(c)–(d), it can be concluded that feedforward optimization
possesses superior performance especially in a highly vari-
able environment, as [7] always exhibits significant power
imbalances. At 150 s, when an unforeseen load increase
occurs, significant power deficiencies can be observed for
both electrical and thermal, indicating a coupling effect be-
tween the two. The deficiencies are more pronounced in Fig.
4(d) due to the lack of a feedforward design. A quantitative
comparison between Figs. 4(c)–(d) is also provided to show
the significantly improved performance. For the time window
starting at 200 s and ending at 300 s, the Root Mean Square
Errors (RMSEs) for our scheme and [7] are respectively
5.80/2.33 and 31.89/9.40 kW (electrical/thermal). We would
like to highlight that the performance of the proposed scheme
is subject to the integrity of USTF profiles, and under ideal
case, it can attain zero tracking error, fully canceling out the
effects of temporal variations.

VI. CONCLUSION

This paper has studied a distributed TVOP for control
of MEN. By revisiting some previous findings, we have
developed a fully distributed optimization scheme that in-
corporates a feedforward design and a data-driven feature.
Local feasibility constraints have been strictly handled using
projection, different from the existing results. Analyses and
simulation results have demonstrated the effectiveness of
the proposed scheme under realistic conditions. Ideally, it
can follow the optimal trajectory with tracking error asymp-
totically converging to zero. As future work, the proposed
scheme needs to be validated on MENs with a realistic size.
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