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Abstract— This paper presents a novel distributed source
seeking algorithm, called Bi-Level Distributed Model Predictive
Control (BLMPC), to locate the source using a group of agents.
During the process, the source emits a signal that the agents
use to guide their movements, and the agents utilize the signal
collaboratively with BLMPC to generate continuous estimation
of the source location and move accordingly. BLMPC employs
a bi-level structure involving an upper distributed optimization
level to estimate the source location and a lower MPC level
to control the agents with time-varying goals. This structure
ensures that the formation center of agents converges to a small
neighborhood around the signal source’s location theoretically.
The effectiveness of the proposed approach is illustrated by
simulations.

I. INTRODUCTION

The source seeking problem aims to detect the location
of a signal source that can continuously emit different types
of signals in a given field, such as electromagnetic waves,
chemical substances, toxic gas, and others. Typically, this
task is accomplished by a group of searching agents in what
is known as distributed source seeking. Through communi-
cation and collaboration among agents, this search strategy
yields better results than the single-agent approach [1].

In [2], researchers designed a source seeking algorithm
by imitating the movement of fish for the first time. This
method involves two motion modes: firstly, the agents move
forward to approach the signal source, and then they switch
to a circular motion around the source. The same two-
motion structure, called speeding-up-slowing-down (SUSD),
was also used in [3], where the Input-to-State Stability
was analyzed. SUSD was further generalized to the source
seeking problem in a 3-D space in [4], and in a gradient
estimation-free environment in [5]. Despite the existence
of various control methods for addressing source seeking
problems, the agent models considered in the above papers
are quite simple, which is also a limitation in [6], [7] and
[8]. Moreover, maintaining the formation of agent groups
becomes increasingly difficult as the group size grows [3],
and the same situation happens when measurement noise
exists [9].

The source-seeking problem can also be solved using
extremum seeking [10]. The application of this approach in
noisy environments was studied in [11]. Some other variants
of this approach can be found in [12], and [13]. Although a
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gradient-free method is able to guide the movement of agent
group towards the signal source [13], its trajectory becomes
tortuous when obstacles are present in the environment. On
the other hand, some researchers treats source seeking as
an optimization problem. For example, in [14], researchers
used Bayesian learning to estimate the location of the signal
source, and modeled source seeking as a multi-objective
optimization problem. The same method was used in [15].
However, a common drawback of these two studies is that
the actions that a search agent can choose are limited to
deciding its moving direction (e.g., up, down, left, right,
etc.), and general control laws cannot be optimized with these
approaches.

Model Predictive Control (MPC) is becoming increasingly
popular due to its ability to handle various constraints [16].
Distributed MPC has been used to achieve goal tracking and
formation keeping while satisfying multiple constraints for
a group of agents [17]. In fact, the methods used in [14]
and [15] can be viewed as variants of MPC algorithms.
However, using distributed MPC alone does not provide
explicit information about signal sources. On the other hand,
distributed optimization algorithms can be used to search for
the maximum or minimum value of a function using gradient
information, as shown in [18]. One drawback of distributed
optimization is that it does not take into account the dynamics
of the agents.

It is clear that the distributed source seeking problem
is still a challenging and active area of research. Despite
numerous studies, there is no universal solution that can
perfectly solve the problem. Due to the unknown environ-
ment, maintaining a formation, keeping smooth trajectories,
and accurately tracking the signal source are all critical but
difficult requirements. Therefore, there is a need for new
approaches to tackle distributed source seeking problem.

In this paper, a Bi-Level Distributed Model Predictive
Control (BLMPC) algorithm is proposed to handle dis-
tributed source seeking problem more effectively. BLMPC
consists of two levels of optimization: the upper level, by
using a consensus-based algorithm, solves the distributed
optimization problem to estimate the location of the signal
source, while the lower level is a distributed MPC algorithm
that generates control inputs for each agent based on the
estimated source location. A significant difference between
BLMPC and conventional MPC is that, the control goal of
BLMPC is time-varying. We consider this property as our
major contribution in this paper. The BLMPC algorithm
is distributed in the sense that each agent only needs to
communicate with its neighbors to update its estimate of
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the source location and to compute its control input. In this
procedure, no global information or coordination is required,
making it suitable for large-scale multi-agent systems.

The remainder of the paper is organized as follows: In
Section II, we provide an overview of the distributed source
seeking problem, the model of the source signal, and of the
multi-agent system. In Section III, we present the detail of
the proposed BLMPC algorithm, followed by the proof of its
convergence in Section IV. Simulation results are presented
in Section V, and finally, we conclude this paper in Section
VI.

Notation : In this paper, we use bold font to denote vectors.
For a vector xxx, we use ∥xxx∥ to denote its 2-norm. We use ∇ f (·)
to represent the gradient of the function f (·), and ∇2 f (·) to
represent its second-order derivative. For a set N , |N | is
the cardinality of N . For a matrix A, we use A† to denote
its pseudo-inverse.

II. PROBLEM FORMULATION

A. Models of Signal Source and Agents

Consider a signal source located at an unknown fixed point
ppps = [px py]

T ∈ R2, which is capable of emitting signals
within a field X ⊆ R2. This source can be modeled as a
function σ(ppp) : X 7→R, where ppp∈X represents an arbitrary
point in the signal field. Generally, σ(ppp)> 0 for all ppp ∈ X
[14].

Assumption 1: The signal field is concave with respect to
ppp and has a unique maximum located at ppps. Specifically, the
maximum value of the field is σmax = σ(ppps).

To detect the position of the signal source, Na searching
agents are deployed, capable of moving within X . Each
agent is equipped with a sensor that measures the signal
strength at its current location. These measurements are then
used by a controller to guide the group of agents towards
the signal source. However, in a distributed system, each
agent has no access to the global information and can only
communicate with its neighbors.

The communication among agents is described by a graph
G = (V ,E ). Here, V = {1, . . . ,Na} stands for the set of
nodes and E ⊂ V × V represents the edges between the
nodes in V . The neighbors of agent i are defined by the set
Ni = { j ∈ V : (i, j)∈ E }, where (i, j)∈ E denotes that agent
i can receive information from agent j. Set ¯Ni =Ni ∪{i} is
also defined in this paper. The interconnection of the graph
is specified by the adjacency matrix H = [hi j] ∈ RNa×Na ,
where hi j = 1 indicates that (i, j) ∈ E , and vice versa. We
assume there is no communication delay inside G .

The state of agent i at time step k is described by zzzi(k) =
[pppi(k)T vvvi(k)T ]T ∈ R4, where pppi(k) = [pix(k) piy(k)]T ∈
R2 represents the position of agent i and vvvi(k) =
[vix(k) viy(k)]T ∈ R2 represents its velocity. Suppose that
the dynamics of agent i can be described by the following
different equation

zzzi(k+1) = Azzzi(k)+Buuui(k), (1)

where A ∈R4×4, B ∈R4×2, and uuui(k) = [uix(k) uiy(k)]T ∈R2

is the control input of agent i to be determined.
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Fig. 1. Structure of BLMPC

B. Distributed Source Seeking Problem

The control objectives for the agent group mentioned
earlier are to locate the signal source and drive the agents
to surround it. Hence, it is required that the agents form
a specific formation with the center of the formation, de-
noted as pppc(k) = 1

Na
∑

Na
i=1 pppi(k) ∈ R2, remaining in a small

neighborhood around ppps. To provide a clearer description of
this formation, we define pppic(k)≜ pppc(k)− pppi(k) ∈ R2 as the
relative position between agent i and the formation center.

Based on the parameters defined above, control goal for
the distributed source seeking problem is to design a set of
distributed controllers {uuui(k),∀i ∈ V } such that

lim
k→∞

∥pppc(k)− ppps∥ ≤ ε, (2a)

lim
k→∞

pppc(k)− pppi(k) = pppd
ic, (2b)

where pppd
ic ∈ R2 is the prescribed relative distance between

agent i and the formation center, and ε is a positive constant
small enough.

III. BI-LEVEL DISTRIBUTED MODEL PREDICTIVE
CONTROL

A. Structure of BLMPC

As mentioned in Section I, previous studies have not
considered the distributed source seeking problem as a com-
bination of distributed MPC and distributed optimization, as
is done in BLMPC. While MPC has been used in some
studies, such as [14], it only provides the moving direction
for the searching agent rather than a specific control signal.
On the other hand, in [3], a multi-agent system is employed,
but the formation of the group cannot be maintained well.
Furthermore, in most distributed optimization researches, the
states of the agents are updated directly without taking the
dynamics of agents and the effects of control signals into
account. In contrast, BLMPC overcomes these limitations
and takes advantage of both distributed MPC algorithms and
distributed optimization algorithms. An overview of BLMPC
is given in Fig. 1.

It is evident that two levels of the BLMPC algorithm
serve different functions. The upper level employs a modified
distributed optimization algorithm that provides, zzzd

i (k), the
control goal for agent i at every time step and achieves con-
sensus on the formation center of the agent group. This level
overcomes the challenge of the agent group not having access
to the exact location of the signal source. The lower level
utilizes a distributed MPC algorithm to provide a control
signal for each agent, driving it towards the signal source.
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As a result, agent i is able to obtain a new measurement of
the signal value, leading to a better estimation about ppps.

B. Upper Level-Distributed Optimization

In this study, the distributed optimization algorithm is
modified to ensure that the searching agent group can reach a
consensus on ppps. It can also be viewed as an estimation of ppps
for the agent group, which corresponds to zzzd

i (k) in Fig. 1. In
graph G , its corresponding weighting matrix is represented
by W = [wi j] ∈ RNa×Na . To ensure that consensus can be
achieved, W is assumed to be a doubly stochastic matrix.

Conventional distributed optimization typically follows
two major steps [18]

• yyyi(k) = ∑
Na
j=1 wi jxxx j(k),

• xxxi(k+1) = yyyi(k)−αkgggi(k),
where yyyi(k) is an intermediate parameter, αk is the step
size, and gggi(k) represents the gradient of σ(·) at yyyi(k). This
structure is modified in the upper level of BLMPC.

After communication with its neighbors at time step k,
signal strengths grasped by agent i can be represented by
set Σi(k) = {σ(ppp j(k)), ∀ j ∈ ¯Ni}, and the formation center
thought by agent i is derived first

pppc
i (k) = ∑

j∈ ¯Ni

wi j(ppp j(k)+ pppd
jc). (3)

To obtain the gradient information at pppc
i (k), its estimated

signal value σ̂(pppc
i (k)) is used as

σ̂(pppc
i (k)) = ∑

j∈ ¯Ni

wi jσ(ppp j(k)).

Based on calculations mentioned above, two matrices are
defined below to derive ĝggc

i (k)∈R2, the estimated gradient at
pppc

i (k)

Ii(k) =
[

ppp j(k)− pppc
i (k)

· · ·

]
∈ R| ¯Ni|×2,∀ j ∈ ¯Ni, (4a)

Fi(k) =
[

σ(ppp j(k))− σ̂(pppc
i (k))

· · ·

]
∈ R| ¯Ni|,∀ j ∈ ¯Ni. (4b)

Then ĝggc
i (k) is obtained using least square estimation

ĝggc
i (k) = Ii(k)†Fi(k).

This method was also used in [7] and [8] to estimate the
gradient information of the signal field.

Assumption 2 (Revised from Assumption 2 in [6]): The
difference between ĝggc

i (k) and gggc
i (k) is bounded by a constant,

that is, ∥ĝggce
i (k)∥= ∥gggc

i (k)− ĝggc
i (k)∥ ≤Ce.

Using ĝggc
i (k), agent i calculates an assumed formation

center at the next time step, given by

p̂ppc
i (k+1) = pppc

i (k)+αkĝggc
i (k), (5)

where αk is a descreasing step size and satisfies ∑
∞
k=1 αk = ∞

and ∑
∞
k=1 α2

k < ∞. Since the true value of pppc
i (k+1) must be

determined at the next iteration, an estimated value p̂ppc
i (k+1)

is used here.
Remark 1: In conventional distributed optimization, the

minimal value of a convex function is typically calculated.

However, in the context of source seeking, it is necessary to
find the maximal value of the concave signal field function
σ(·). As a result, in this study, we obtain p̂ppc

i (k+1) using the
formula p̂ppc

i (k+1) = pppc
i (k)+αkĝggc

i (k), instead of p̂ppc
i (k+1) =

pppc
i (k)−αkĝggc

i (k) as used in [18].
Desired state of agent i at current time step is finally given

by

pppd
i (k) = pppc

i (k)+αkĝggc
i (k)− pppd

ic, (6a)

zzzd
i (k) = [pppd

i (k)
T 0 0]T . (6b)

Once zzzd
i (k) is obtained, it is transmitted to the distributed

MPC in the lower level, where it is treated as the desired
state for agent i at the current time step. The lower level
then calculates uuu∗i (k) based on this desired state.

C. Lower Level-Distributed MPC

The lower level of BLMPC employs distributed MPC
algorithm to yield control law for agent i, with zzzd

i (k) being its
time-varying desired state. Cost function of agent i is given
as

Ji(k,zzzi(k),zzz−i(k),zzzd
i (k),uuui(k)) =

∑
N−1
l=0 Li(k+ l|k,zzzi(k),zzz−i(k),zzzd

i (k),uuui(k))+
Li f (zzzi(k+N|k),zzzd

i (k)), l ∈ {0,1,2, . . . ,N −1}.

In the definition of Ji(·) provided earlier, zzz−i(k) represents
the state of agent i’s neighbors, zzzi(k+ l|k) is the predicted
state of agent i at time k + l, predicted at time k, and N
denotes the length of the prediction horizon. Let zzzi j(k+ l|k)=
zzz j(k + l|k)− zzzi(k + l|k) denote the relative state between
agent i and its neighbor j, and zzzd

i j = zzzd
jc − zzzd

ic represents
the desired relative state between these two agents. Here,
zzzd

ic = [pppd
ic

T 0 0]T ∈ R4 is an auxiliary state. Based on these
definitions, Li(·) can be expressed as follows

Li(k+ l|k,zzzi(k),zzz−i(k),zzzd
i (k),uuui(k)) =

ρi∥zzzd
i (k)−zzzi(k+ l|k)∥2 +βi ∑

|Ni|
j=1 ∥zzzi j(k+ l|k)−zzzd

i j∥2,
(7)

where ρi ∈ R and βi ∈ R are positive weighting constants.
Terminal cost Li f (·) is

Li f (zzzi(k+N|k),zzzd
i (k)) = Pi∥zzzd

i (k)−zzzi(k+N|k)∥2.

Terminal controller κi(·) is defined as

κi(zzzi(k)) = Ki1zzzi(k)+Ki2zzzd
i (k), (8)

where Ki1 ∈R2×4 and Ki2 ∈R2×4 are chosen to stabilize the
system, and Pi is defined as the solution to Riccati equation
in distributed fashion.

The design procedure for terminal term has been well
established and discussed in [17]. Hence, the reasons behind
this procedure are not essential for this work and will not be
discussed further.

To summarize, lower level problem of BLMPC solved by
agent i can be formulated as

J∗i (k,zzz
∗
i , ẑzz−i,zzzd

i (k),uuu
∗
i ) =

minuuui(k+l|k),l=0,1,...,N−1 Ji(k,zzzi(k), ẑzz−i(k),zzzd
i (k),uuui(k)),

(9)
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subject to, ∀l ∈ {0,1, . . . ,N −1}

zzzi(k|k) = zzzi(k), (10a)
zzzi(k+ l +1) = Azzzi(k+ l|k)+Buuui(k+ l|k), (10b)
zzzi(k+ l|k) ∈ Zi, (10c)
uuui(k+ l|k) ∈ Ui, (10d)
∥ẑzz−i(k+ l|k)−zzz−i(k+ l|k)∥ ≤ τ

z
i (k+ l|k), (10e)

zzzi(k+N|k) ∈ Zi f (k), (10f)

where (10a)-(10c) represent state constraints for agent i,
(10d) represents controller constraint for every agent, which
is given as umin ≤ uix(k+ l|k),uiy(k+ l|k)≤ umax.

Equation (10e) is the compatibility constraint of dis-
tributed MPC, which bounds the states assumed by agent i
for its neighbors and their true values. The assumed control
law is defined as

ûuui(k+1+ l|k+1) = uuu∗i (k+1+ l|k), l = 0,1, . . . ,N −2,
(11a)

ûuui(k+N|k+1) = κi(ẑzzi(k+N|k+1)). (11b)

Corresponding assumed state of agent i, ẑzz(·), can be calcu-
lated by assumed control law given above.

Equation (10f) represents the terminal constraint, which
ensures the closed-loop stability of the system, with the
equilibrium point being zzzd

i (k).
Assumption 3 (Assumption 2 from [17]): Terminal set

Zi f (k) is designed to satisfy Zi f (k) ⊆ Zi, and terminal
controller κi(·) satisfies κi(·) ∈ Ui.

At time step k, upon receiving zzzd
i (k), agent i proceeds to

solve the optimization problem (9) to obtain its optimal con-
trol law sequence {uuu∗i (k|k),uuu∗i (k+1|k), . . . ,uuu∗i (k+N −1|k)}.
Consequently, the optimal control law for agent i at time step
k is uuu∗i (k) = uuu∗i (k|k).

D. BLMPC Design

Based on methods utilized in different levels, detail of the
proposed BLMPC algorithm is given in Alg.1.

Algorithm 1: Bi-Level Distributed Model Predictive
Control

Input: Initial states of system
Output: States of system at every time step k

1 (At time step k)
2 for agent i do
3 Measure its signal value σ(pppi(k))
4 Send below information to its neighbors:
5 σ(pppi(k)), zzzi(k), {ẑzzi(k+ l|k), l = 1, . . . ,N −1}
6 end
7 for agent i do
8 U pper level −distributed optimization: generate

control goal zzzd
i (k) using (3) - (6b)

9 Lower level −distributed MPC: generate control
signal uuu∗i (k) by solving (9)

10 Apply uuu∗i (k)
11 end

At the beginning of each time step, agent i measures the
current signal strength σ(pppi(k)) first. It then sends σ(pppi(k)),
zzzi(k), and {ẑzzi(k + l|k), l = 1, . . . ,N − 1} to its neighbors.
It also receives the same types of information from them.
BLMPC utilizes the information mentioned above to de-
rive the sequence {uuu∗i (k|k),uuu∗i (k+1|k), . . . ,uuu∗i (k+N −1|k)}.
uuu∗i (k) =uuu∗i (k|k) is applied to agent i, and the left control laws
are stored by it. As a result, its state is updated by

zzzi(k+1) = Azzzi(k)+Buuu∗i (k). (12)

At zzzi(k+ 1), agent i is able to measure a new signal value
σ(pppi(k + 1)), triggering a new iteration of the loop in
BLMPC. By iteratively excecuting this bi-level optimization
structure, distributed source seeking problem is ultimately
solved via BLMPC.

IV. CONVERGENCE ANALYSIS

This section will show that by using BLMPC, control
goals defined in (2a)-(2b) can be achieved. Firstly, recursive
feasibility is proven.

Theorem 1 (Recursive Feasibility of BLMPC): If the op-
timization problem (9) is feasible at the initial time step
k = 1 for the agent group, then it will also be feasible at
subsequent time steps.

Proof: At time step k, we assume that BLMPC is able
to yield an optimal control sequence for agent i, denoted as
{uuu∗i (k|k),uuu∗i (k+1|k), . . . ,uuu∗i (k+N−1|k)}. The corresponding
optimal state sequence is {zzz∗i (k+1|k),zzz∗i (k+2|k), . . . ,zzz∗i (k+
N|k)}, and the terminal control law is κi(zzz∗i (k + N|k)).
After applying uuu∗i (k|k), the state of agent i at time step
k + 1 becomes zzz∗i (k + 1|k), and its associated desired state
switches to zzzd

i (k+1). We add a modified terminal controller
κ̃i(zzz∗i (k+N|k)) = Ki1zzz∗i (k+N|k)+Ki2zzzd

i (k+1).
We will show that {uuu∗i (k+1|k),uuu∗i (k+2|k), . . . ,uuu∗i (k+N−

1|k), κ̃i(zzz∗i (k + N|k))} is a feasible controller sequence at
time k+1. According to definition (11a) and Assumption 3,
{uuu∗i (k+ l|k), l = 1,2, . . . ,N −1} and κ̃i(zzz∗i (k+N|k)) already
satisfy input constraint (10d). Hence, this new controller
sequence is able to drive agent i towards zzzd

i (k+ 1) at time
step k+1. In conclusion, problem (9) is feasible at all future
time steps.

As BLMPC employs a bi-level structure with two levels
that work independently, proving the stability of BLMPC
directly is nearly impossible. However, we can still provide
a weaker version of convergence for BLMPC based on
theories from the fields of distributed MPC and distributed
optimization. The following two theorems provide stabilities
of the algorithms used in the two layers.

Theorem 2 (Stability of Distributed MPC): The closed-
loop system with the designed MPC has the following
property

ρi||zzzd
i (k)−zzzi(k+1)||2+

βi ∑
|Ni|
j=1 ||zzz j(k+1)−zzzi(k+1)−zzzd

i j||2 ≤
ρi||zzzd

i (k)−zzzi(k)||2 +βi ∑
|Ni|
j=1 ||zzz j(k)−zzzi(k)−zzzd

i j||2.
(13)

Proof: Actually, to show that inequality (13) is satisfied,
we only need to prove that the Lyapunov function for the
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multi-agent system, the desired state of which is zzzd
i (k),

at time step k is decreasing. This can be derived directly
from [17].

Theorem 3 (Convergence of Distributed Optimization):
The designed upper-level distributed optimization
algorithm guarantees that the formation center of the
agent group, pppc(k), converges to a small neighborhood
around ppps. This neighborhood can be represented as
P∗ = {ppp∗s | ∥ppp∗s − ppps∥ ≤ ε}, where ε is defined as ε = − 2Ce

µ1
and µ1 is the largest eigenvalue of ∇2σ(ppps).

Proof: Define p̂ppc(k) as p̂ppc(k) =
1

Na
∑

Na
i=1 pppc

i (k), and C f as
the upper bound for ∥ĝggc

i (k)∥. An intermediate variable sk is

defined as sk = 2αk(C f +Ce)
√

Na

√
∑

Na
i=1 ∥pppc

i (k)− p̂ppc(k)∥2 +

Naα2
k C2

f . By Proposition 1 from [18], one has

∑
Na
i=1 ∥pppc

i (k+1)− ppps∥2 ≤ ∑
Na
i=1 ∥pppc

i (k)− ppps∥2

+2αk(σ(p̂ppc(k))−σ(ppps))+ sk,
(14)

and sk satisfies ∑
∞
k=0 sk < ∞.

From Assumption 2, it is clear that gggc
i (k) = ĝggc

i (k)+ĝggce
i (k).

By using the triangular inequality, we can conclude that
∥gggc

i (k)∥ ≤C f +Ce.
To determine the expression of P∗ in Theorem 3, a second-

order expansion for the function σ(·) around ppps is σ̂(ppp) =
σ(ppps)+(ppp− ppps)

T ∇σ(ppps)+
1
2 (ppp− ppps)

T ∇2σ(ppps)(ppp− ppps).
Denote the largest and smallest eigenvalues of ∇2σ(ppps) as

µ1 and µ2, respectively. Note that ppps is the maximum point
of the function σ(·), so we have µ1 < 0 and µ2 < 0 [6].
Then, we can obtain the following inequality

0 ≤ σ̂(ppp)−σ(ppps)≤ ∥(ppp− ppps)
T

∇σ(ppps)∥+
1
2

µ1∥ppp− ppps∥2.

Using the property of the norm, we can further obtain
0 ≤ ∥ppp− ppps∥ · ∥∇σ(ppps)∥+ 1

2 µ1∥ppp− ppps∥2.
Notice that near the signal source, ∇σ(ppps) satisfies

∥∇σ(ppps)∥ ≤Ce. Finally, P∗ can be expressed as

∥ppp∗s − ppps∥ ≤ −2Ce

µ1
, ∀ppp∗s ∈ P∗. (15)

On the basis of (14) and (15), we can show that pppc
i (k) will

eventually enter P∗ using results from [18]. Substituting ppps
for ppp∗s in (14), we have

∑
Na
i=1 ∥pppc

i (k+1)− ppp∗s∥2 ≤ ∑
Na
i=1 ∥pppc

i (k)− ppp∗s∥2

+2αk(σ(p̂ppc(k))−σ(ppps))+ sk.

Summing the above inequality over k = K,K + 1, . . . ,T ,
we obtain that for all ppp∗s ∈ P∗ and T ≥ K ≥ 0, one has

∑
Na
i=1 ∥pppc

i (T +1)− ppp∗s∥2 −2∑
T
k=K αk(σ(p̂ppc(k))−σ(ppps))

≤ ∑
Na
i=1 ∥pppc

i (K)− ppp∗s∥2 +∑
T
k=K sk.

When T goes infinity, above inequality becomes

limT→∞ ∑
Na
i=1 ∥pppc

i (T +1)− ppp∗s∥2−
limT→∞ 2∑

T
k=K αk(σ(p̂ppc(k))−σ(ppps))

≤ ∑
Na
i=1 ∥pppc

i (K)− ppp∗s∥2 + limT→∞ ∑
T
k=K sk.

(16)

Since the right-hand side of (16) is finite and
−(σ(p̂ppc(k))−σ(ppps)) is positive, it implies that ∑

Na
i=1 ∥pppc

i (T +
1) − ppp∗s∥2 and ∑

T
k=K αk(σ(p̂ppc(k)) − σ(ppps)) are bounded.

Thus, we can conclude that limk→∞ σ(p̂ppc(k)) = σ∗, and that
limk→∞ pppc

i (k) ∈ P∗.
Hence the proof.
In summary, Theorem 1 guarantees the recursive feasibil-

ity of BLMPC, while Theorem 3 ensures that limk→∞ pppc
i (k)∈

P∗. When combined with the fact that P∗ is a convex set, it is
possible to achieve (2a) with an acceptable error. Moreover,
Theorem 2 guarantees that the distributed MPC in the lower
level can achieve (2a)-(2b). Therefore, the proposed BLMPC
algorithm is capable of solving the distributed source seeking
problem.

Remark 2: Our method is not dependent on the specific
dimensions of the agent and source. This paper merely uses
a two-dimensional space for illustration. BLMPC can solve
the source seeking problem in any dimension.

V. SIMULATION EXPERIMENT

In the simulation, the state matrices of every agent are

given as A =

[
I2 I2
0 I2

]
, B =

[
0.5I2

I2

]
. There are a total

of 6 agents in the group, i.e., Na = 6. The initial states
of these agents are zzz1(0) = [−15 5 −0.5 0.5]T , zzz2(0) =
[0 −15 0.5 0.5]T , zzz3(0) = [−10 −20 0 0.5]T , zzz4(0) =
[−20 −17 −0.5 0.5]T , zzz5(0) = [−25 −4 −0.5 −0.5]T ,
and zzz6(0) = [−22 3 0 0]T . The desired formation for the
agent group is a regular hexagon with a side length of
∥pppd

ic∥= 5. The weighting matrix during the communication
of the system is

W =


1/2 1/4 0 0 0 1/4
1/4 1/2 1/4 0 0 0
0 1/4 1/2 1/4 0 0
0 0 1/4 1/2 1/4 0
0 0 0 1/4 1/2 1/4

1/4 0 0 0 1/4 1/2

.

In the upper level of distributed optimization for the
BLMPC proposed in this paper, step size is chosen as αk =

1√
0.001k+1

, while the lower level of distributed MPC utilizes
the parameters: ρi = 1, βi = 0.35, umax = 2, umin =−2, and
N = 10. Signal source is located at ppps = [50 50]T , and its
signal function setup is the same as that in [6].

Trajectories of the agent group are shown in Fig.2. It is
easily shown that distributed source seeking can be achieved
using proposed BLMPC algorithm. At first, the consensus on
the formation center is reached by the group, then agents are
driven near to ppps. Values of ∥pppc

i (k)− ppps∥ are shown in Fig.
3. It illustrates the effectiveness of distributed optimization
in the upper level. Then we add a noise while measuring
σ(pppi(k)). The noise signal follows a Gaussian distribution
with w(k)∼N (0,1). Two different trajectories of formation
center, one with noise and one without noise, are shown in
Fig.4. The figure suggests that BLMPC is robust to noise
signals.

Compared to existing results on source seeking algorithms,
this paper demonstrates several advantages of BLMPC:

• The inclusion of a formation keeping term in the MPC
cost function enables the agents to maintain a regu-
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lar hexagonal formation while approaching the signal
source.

• Agent model used in this study is more general than
commonly used first-order model.

• BLMPC is able to output a specific control signal, rather
than giving moving directions of searching agents.

VI. CONCLUSIONS

In this paper, we have proposed a Bi-Level Distributed
Model Predictive Control algorithm for solving the dis-
tributed source seeking problem. BLMPC provides a new

perspective to solve the problem by utilizing distributed
optimization to determine the signal source location and dis-
tributed MPC to generate control inputs for each agent in the
system. It does not require every agent to have access to the
entire system, thus making it more practical. Furthermore,
the proposed algorithm effectively maintains the formation
of the agent group, and provides high accuracy in estimating
the location of the signal source. Recursive feasibility and
stability of BLMPC have been proven by combining the
theories of distributed optimization and distributed MPC.
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