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Abstract— Projection operations are a typical computa-
tion bottleneck in online learning. In this paper, we enable
projection-free online learning within the framework of Online
Convex Optimization with Memory (OCO-M) —OCO-M cap-
tures how the history of decisions affects the current outcome
by allowing the online learning loss functions to depend on
both current and past decisions. Particularly, we introduce a
projection-free meta-base learning algorithm with memory that
minimizes dynamic regret, i.e., that minimizes the suboptimality
against any sequence of time-varying decisions. We are moti-
vated by applications where autonomous agents need to adapt
to time-varying environments in real-time, accounting for how
past decisions affect the present. Examples of such applications
are: online control of dynamical systems; statistical arbitrage;
and time series prediction. The algorithm builds on the Online
Frank-Wolfe (OFW) and Hedge algorithms. We demonstrate
how our algorithm can be applied to the online control of
linear time-varying systems in the presence of unpredictable
process noise. To this end, we develop a projection-free OCO-
M controller with bounded dynamic regret against any optimal
time-varying linear feedback control policy. We validate our
algorithm in simulated scenarios of online control of linear
time-invariant systems.

I. INTRODUCTION

Online Convex Optimization (OCO) [1], [2] has found
widespread application in statistics, information theory, and
operation research [3]. OCO can be interpreted as a se-
quential game between an optimizer and an adversary over
T time steps: at each time step t = 1, . . . , T , first the
optimizer chooses a decision xt from a convex set X ; then,
the adversary reveals a convex loss function ft and the
optimizer suffers the loss ft(xt). The optimizer aims to
minimize cumulative loss, despite knowing ft only after xt
has been decided.

Static regret is the standard approach to measure the
suboptimality of the optimizer’s decisions x1, . . . ,xT . Par-
ticularly, given a decision x ∈ X to compare x1, . . . ,xT
with, the static regret of x1, . . . ,xT with respect to v is
defined as follows [2]:

S-RegT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(v). (1)

That is, when v minimizes
∑T
t=1 ft(v), then S-RegT cap-

tures the suboptimality of x1, . . . ,xT against the optimal
static decision that would have been made in hindsight.

Algorithms that guarantee static no-regret have been
widely adopted in applications pertained to recommendation
systems and communication-channel allocation [3].1

But the application of such algorithms to complex artificial
intelligence tasks such as online control under unpredictable
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1An algorithm has static no-regret when S-RegT /T tends to 0 when T
tends to +∞, implying ft(xt) tends to ft(v) for t large.

disturbances [4] and collaborative multi-robot motion plan-
ning [5] is hindered by three main technological challenges:
• Challenge I: Dynamic Environments. Complex tasks

such as the above require decisions that adapt to changing
environments. For example, target tracking with multiple
robots requires the robots to continuously change their
position to track moving targets [5]. Therefore, measuring
performance against a static (optimal) decision per eq. (1)
is insufficient. Instead, we need to measure performance
against time-varying (optimal) decisions.

• Challenge II: Past Decisions Affect the Present. In com-
plex tasks, past decisions often affect the present outcome.
Therefore, the OCO framework we discussed above, where
each loss function ft depends on the most recent decision
xt only, fails to capture the effect of earlier decisions to
the present. Instead, we need an OCO framework with
memory, where each loss function ft depends on xt as
well as on the past xt−m, . . . ,xt−1, for some m ≥ 0.

• Challenge III: Fast Decision-Making. Complex control
tasks often require decisions to be made fast. For exam-
ple, such is the case for the effective online control of
quadrotors against wind disturbances [6]. But the current
OCO algorithms typically rely on projection operations
which can be computationally expensive since they require
solving quadratic programs [7]. Instead, we need fast OCO
algorithms that are inevitably projection-free.
The above challenges give rise to the need for online learn-

ing algorithms for OCO with Memory (OCO-M) that are
projection-free and near-optimal in dynamic environments.
The decisions’ near-optimality may be captured by bounding
their suboptimality with respect to optimal decisions that
adapt to the changing environment knowing its future evo-
lution, i.e., by bounding dynamic regret.

Dynamic regret for the classical OCO without memory
is defined as follows [8]: given a time-varying comparator
sequence v1, . . . ,vT , then2

D-RegT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(vt). (2)

Dynamic regret contrasts static regret: static regret com-
pares (x1, . . . ,xT ) against a merely static v. Thus, when
v1, . . . ,vT minimize

∑T
t=1 ft(vt), then D-RegT captures

the suboptimality of x1, . . . ,xT against the optimal time-
varying decisions that would have been made in hindsight.
Hence, dynamic regret bounds are typically larger than static
regret bounds, depending on terms that capture the change of
the environment. Such terms are loss variation VT , gradient

2A related measure to dynamic regret is adaptive regret [9]. Adaptive
regret captures the worst-case static regret on any contiguous time interval.
[10] studies the relation of dynamic regret to adaptive regret.
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variation DT , and path length CT :3

VT ≜
T∑
t=1

sup
x∈X

|ft(x)− ft−1(x)| , (3)

DT ≜
T∑
t=1

∥∇ft (xt)−∇ft−1 (xt−1)∥22 , (4)

CT ≜
T∑
t=1

∥vt − vt−1∥2 . (5)

Dynamic regret for OCO-M with memory m, where the loss
function at each time step t takes the form ft(xt−m, . . . ,xt) :
Xm+1 7→ R, is defined as follows:

RegretDT =

T∑
t=1

ft(xt−m, . . . ,xt)−
T∑
t=1

ft(vt−m, . . . ,vt),

(6)
where it is assumed that xt−m = 0 for t ≤ m.

Contributions. We introduce a projection-free algorithm
for OCO-M with bounded dynamic regret (Sections IV
and V) —the regret bound is presented in Table I. The
algorithm builds on the projection-free algorithms Hedge
[17] and OFW [7], [18]. We apply our algorithm to the
online control of linear time-varying systems in the presence
of unpredictable noise (Section VI). We thus introduce a
projection-free OCO-M controller with bounded dynamic
regret against any optimal time-varying linear feedback
control gains. Particularly, our comparator class of optimal
time-varying linear feedback control gains does not require
the a priori knowledge of stabilizing control gains. Instead,
the state-of-the-art OCO-M controller by [16] requires a
comparator class of optimal time-varying policies with an
a priori knowledge of stabilizing control gains.

To enable the aforementioned algorithmic and regret-
bound contributions: (i) We analyze dynamic regret of the
OFW algorithm (Section IV). The analysis enables the state-
of-the-art bound in [7, Theorem 1] to hold true for any con-
vex loss functions (see Table I). Instead, [7, Theorem 1] holds
true for smooth convex functions only. (ii) We prove that
the Disturbance-Action Control (DAC) policy [19] —widely
used in online non-stochastic control to reduce the online
control problem to OCO-M [19]–[21]— is able to approxi-
mate time-varying linear feedback controllers (Proposition 2
in [22, Appendix D.5]). Previous results have established that
a DAC policy can approximate time-invariant linear feedback
controllers only [19], instead of a time-varying controllers.

Numerical Evaluations. We validate our algorithm in
simulated scenarios of online control of linear time-invariant
systems (Section VI-D with additional experiments available
in [22, Appendix E]). We compare our algorithm with OGD
[8], Ader [15], and Scream [16] algorithms. Our algorithm
is observed 3 times faster than the state-of-the-art OCO-
M algorithm Scream [16] as system dimension increases,
and achieves comparable or better loss performance over all
compared algorithms [22, Appendix E].

3Obtaining a no-regret algorithm hence requires the growth of the metrics
in eqs. (3) to (5) to be sublinear [7], [11], [12]. VT and DT are small when
the loss function and decisions change slowly.

Organization. Section II reviews the related work. Sec-
tion III introduces the problem of OCO-M. Section IV
presents a projection-free meta-base algorithm (i.e., Meta-
OFW algorithm) to the problem of OCO-M. Section V
develops performance guarantee for Meta-OFW algorithm.
Section VI presents applications of Meta-OFW algorithm
with numerical experiments to the online non-stochastic
control problem. All proofs are in the Appendix of [22].

II. RELATED WORK

We review the literature by first reviewing OCO without
Memory and OCO with Memory; then, we review Online
Learning for Control via OCO with Memory.

OCO without Memory. The OCO without Memory liter-
ature is vast [2]. We here focus on algorithms that guarantee
bounded dynamic regret; a representative subset is in Table I.

[15] prove that the optimal dynamic regret for OCO
without Memory is Ω

(√
T (1 + CT )

)
, and provide an al-

gorithm matching this bound. The algorithm is based on
Online Gradient Descent (OGD), which is a projection-
based algorithm: at each time step t, OGD chooses a de-
cision xt by first computing an intermediate decision x′

t =
xt−1 − η∇ft−1(xt−1) —given the previous decision xt−1,
the gradient of the previously revealed loss ft−1(xt−1), and
a step size η > 0— and then projects x′

t back to the feasible
convex set X to output the final decision xt. This projection
operation is often computationally expensive since it requires
solving a quadratic program [23]. When the projection
operation is indeed computationally expensive, the Online
Frank-Wolfe (OFW) algorithm is employed as a projection-
free alternative [18], [24]: OFW seeks a feasible descent
direction by solving x′

t−1 = argminx∈X ⟨∇ft−1(xt−1),x⟩
and then updating xt = (1− η)xt−1+ ηx

′
t−1. [7] generalize

the OFW method to OCO without Memory to achieve a
bounded dynamic regret and OFW has been observed 20
times faster than OGD [7].4

OCO with Memory. [16] prove that the optimal dynamic
regret for OCO-M is Ω(

√
T (1 + CT )), and provide an

algorithm matches this bound based on OGD. Earlier works
have provided static regret bounds for OCO-M, such as the
bound O(T 2/3) by [32], and the bound O(

√
T ) by [33]. We

provide the first projection-free algorithm for OCO-M that
also guarantees bounded dynamic regret.

Online Learning for Control via OCO-M. OCO-M has
been recently applied to the control of linear dynamical
systems in the presence of adversarial (non-stochastic) noise
[1], [19], [34]. The noise is adversarial in the sense that it
may adapt to the system’s evolution. Generally, the noise
can evolve arbitrarily, subject to a given upper bound on its
magnitude —the upper bound ensures problem feasibility.
Thus, no stochastic model is assumed regarding the noise’s
evolution, in contrast to classical control that typically as-
sumes Gaussian noise [35].

The current OCO-M algorithms for control prescribe con-
trol policies by optimizing linear feedback control gains.
The algorithms rely on projection-based methods such as

4Additional examples of works utilizing OFW for OCO without Memory
are: [7], [18], [25]–[30]. Examples of works utilizing OGD for OCO without
Memory are: [8], [12]–[15], [31].
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TABLE I: Comparison of related work and our work on contributed algorithms with bounded dynamic regret bounds
for Online Convex Optimization. GO denotes the number of gradient oracle calls per iteration of the respective algorithm.

Reference Loss function Projection-free Memory GO Regret Rate

[8] Convex No No O(1) O(
√
T (1 + CT ))

[13] Convex smooth No No O(1) O
(√

(1 +DT ) + min

{√
(1 +DT )CT , (1 +DT )

1
3 T

1
3 V

1
3

T

})
[12] Strongly convex No No O(1) O(1 + CT )
[14] Convex smooth No No O(1) O(CT )

[15] Convex No No O(1) O(
√

T (1 + CT ))

[7] Convex smooth Yes No O(1) O
(√

T (1 + VT +
√
DT

)
Ours (Theorem 1) Convex Yes No O(1) O

(√
T (1 + VT +

√
DT

)
, O

(√
T (VT +DT )

)
[16] Convex No Yes O(1) O(

√
T (1 + CT ))

Ours (Theorem 2) Convex Yes Yes O(1) O(
√

T (1 + VT + D̄T + CT ))

OGD, and guarantee bounded static regret [19], [21], [34],
[36], adaptive regret [20], [37], or dynamic regret [16].
Specifically, the said OCO-M regret bounds are against
optimal static feedback control gains with the exception of
the bound by [16] which is against a class of optimal time-
varying policies; however, the definition of this class requires
an a priori knowledge of linear feedback control gains that
ensure stability. We provide a projection-free controller with
memory and bounded dynamic regret against any optimal
time-varying linear feedback control policy, where the op-
timal time-varying linear feedback control policy does not
depend on pre-specified stabilizing feedback control gains,
in contrast to [16].

III. PROBLEM FORMULATION

We define the problem of Online Convex Optimization
with Memory (OCO-M), along with standard assumptions.
Problem 1 (Online Convex Optimization with Memory
(OCO-M) [32]). There exist 2 players, an online optimizer
and an adversary, who choose decisions sequentially over a
time horizon T . At each time step t = 1, . . . , T , the online
optimizer chooses a decision xt from a convex set X ; then,
the adversary chooses a loss ft : Xm+1 7→ R to penalize
the optimizer’s most recent m + 1 decisions. Particularly,
the adversary reveals ft to the optimizer and the optimizer
computes its loss ft(xt−m, . . . ,xt), where xt−m is 0 for t ≤
m. The optimizer aims to minimize

∑T
t=1 ft(xt−m, . . . ,xt).

The challenge in solving OCO-M optimally, i.e., in mini-
mizing

∑T
t=1 ft(xt−m, . . . ,xt), is that the optimizer gets to

know ft only after xt has been chosen, instead of before.
Despite the above challenge, our objective is to develop an

efficient (projection-free) online algorithm for OCO-M that
despite its efficiency still enjoys sublinear dynamic regret.

To achieve our objective, we adopt standard assumptions
in online convex optimization [2], [15], [16], [19], [20], [33]:
Assumption 1 (Convex and Compact Bounded Domain,
Containing the Origin). The domain set X is convex and
compact, contains the zero point, and has diameter D,
where D is a given non-negative number; i.e., 0 ∈ X , and
∥x− y∥2 ≤ D for all x ∈ X ,y ∈ X .

Definition 1 (Unary Loss Function). Given ft : Xm+1 7→ R,
the unary loss function is the f̃t(x) ≜ ft(x, . . . ,x).

Assumption 2 (Convex Loss). The loss function ft :
Xm+1 7→ R is convex, i.e., the unary loss function f̃t(x)
is convex in x, where m is the memory length, and x ∈ X .

Assumption 3 (Bounded Loss). The loss function ft takes
values in [a, a + c], where a and c are known non-negative
numbers; i.e., 0 ≤ a ≤ ft (x0, . . . ,xm) ≤ a + c, for all
(x0, . . . ,xm) ∈ Xm+1 and t ∈ {1, . . . , T}.

Assumption 4 (Coordinate-Wise Lipschitz). The
loss function ft is coordinate-wise L-Lipschitz,
where L is a given non-negative number; i.e.,
|ft (x0, . . . ,xm)− ft (y0, . . . ,ym)| ≤ L

∑m
i=0 ∥xi − yi∥2,

for all (x0, . . . ,xm) ∈ Xm+1, and (y0, . . . ,ym) ∈ Xm+1,
and for all t ∈ {1, . . . , T}.

Assumption 5 (Bounded Gradient). The gradient norm of
f̃t is at most G, where G is a given non-negative number;
i.e.,

∥∥∥∇f̃t(x)∥∥∥
2
≤ G for all x ∈ X and t ∈ {1, . . . , T}.

Remark 1 (Handling Unknown a and c). We show how to
derive an upper bound for D in Lemma 8 in [22, Appendix
D.7]. Then, we are able to also derive bounds for a and c
in Assumption 3.

IV. Meta-OFW ALGORITHM FOR OCO-M

We present Meta-OFW, a projection-free algorithm with
bounded dynamic regret for OCO-M. Meta-OFW leverages
as subroutine the Online Frank-Wolfe (OFW) algorithm,
introduced by [7] for the OCO problem without memory.
We next first present the OFW algorithm (Section IV-A), and
then present the Meta-OFW algorithm (Section IV-B).
A. Online Frank-Wolfe Algorithm for OCO without Memory

We present the OFW algorithm (Algorithm 1) along with
its dynamic regret analysis (Theorem 1). Particularly, our
analysis results in the same regret bound as OFW’s state of
the art bound in [7, Theorem 1] but under Assumption 1 and
Assumption 2 only. Instead, OFW’s bound in [7] holds true
under the additional assumption of smooth loss functions.

Theorem 1 (Dynamic Regret Bound of OFW for OCO
with no memory). Consider the OCO problem with no
memory, i.e., Problem 1 with m = 0. Under Assumption 1
and Assumption 2, OFW achieves against any sequence of
comparators (v1, . . . ,vT ) ∈ X T the dynamic regret

RegretDT ≤ O
(
1 + VT
η

+
√
TDT

)
. (7)

Particularly, when η is chosen such that η = O
(
1/

√
T
)

,

then RegretDT ≤ O
(√

T
(
1 + VT +

√
DT

))
. Further, if we
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Algorithm 1: Online Frank-Wolfe Algorithm (OFW) [7].
Input: Time horizon T ; step size η.
Output: Decision xt at each time step t = 1, . . . , T .

1: Initialize x1 ∈ X ;
2: for each time step t = 1, . . . , T do
3: Suffer a loss ft(xt);
4: Obtain gradient ∇ft(xt);
5: Compute x′

t = argminx∈X ⟨∇ft(xt),x⟩;
6: Update xt+1 = (1− η)xt + ηx′

t;
7: end for

select η =
√

c
b , where b is a tuning parameter satisfying

c < b, then RegretDT ≤ O
(√

T (VT +DT )
)
.

The OFW algorithm achieves Theorem 1 by executing
the following projection-free steps (Algorithm 1): OFW first
takes as input the time horizon T and a constant step size
η. Then, at each iteration t = 1, . . . , T , OFW chooses an xt,
after which the learner suffers a loss ft(xt) and evaluates
the gradient ∇ft(xt) (lines 3-4). Afterwards, OFW seeks a
direction x′

t that is parallel to the gradient within the feasible
set X by solving argminx∈X ⟨∇ft(xt),x⟩ only once per
iteration (line 5). Finally, the decision for next iteration is
then updated by xt+1 = (1− η)xt + ηx′

t (line 6).

Remark 2 (Efficiency due to only Projection-Free Oper-
ations). OFW in Algorithm 1 is projection-free: it finds a
descent direction within the feasible set via solving a convex
optimization problem with linear objective function once
per iteration (line 5). Instead, e.g., OGD requires solving a
convex optimization problem with quadratic objective func-
tion [8]. Thus, OFW is more efficient when projections are
costly. For example, [7] demonstrates that OFW is 20 times
faster than OGD in matrix completion scenarios. In the nu-
merical evaluations with applications to online control ( [22,
Appendix E]), over online non-stochastic control scenarios,
we observe that the proposed OFW-based algorithm is about
3 times faster than the OGD-based algorithm (achieving
comparable or superior loss performance).

B. Meta-OFW Algorithm for OCO-M
We present Meta-OFW (Algorithm 2). To this end, we

start with the intuition on how Algorithm 2’s steps achieve
a bounded dynamic regret (the rigorous dynamic regret
analysis of Meta-OFW is given in Section V).

Algorithm 2 utilizes multiple copies of the OFW algorithm
as base-learners —each one with a different step size η— and
the Hedge algorithm [17] as a meta-learner. The multiple
copies of OFW aim to cope with the a priori unknown
loss variation VT via a trick reminiscent of the “doubling
trick” [1], i.e., via covering the spectrum of step sizes such
that there exist a step size that approximately minimizes
eq. (7) as if VT was known; and Hedge fuses the decisions
provided by the base-learners to output a final decision xt.

We discuss in more detail the role of the base- and meta-
learners in Remark 3 and Remark 4 below, respectively. To
this end, we use the following notation and definitions:

• λ ≜ m2L is a regularizing constant;
• N is the total number of the base-learners;
• Bi is the i-th base-learner running OFW with step size ηi

and output xt,i at each iteration t, where i ∈ {1, . . . , N};

Algorithm 2: Meta OFW Algorithm (Meta-OFW).
Input: Time horizon T ; number of base-learners N per

eq. (10); step-size pool H per eq. (11); initial weight of
base-learners p1 per eq. (12); learning rate ϵ for meta-
algorithm per eq. (13).

Output: Decision xt at each time step t = 1, . . . , T .
1: Set xτ = 0, ∀τ ≤ 0;
2: Initialize x1,i ∈ X , ∀i ∈ {1, . . . , N};
3: for each time step t = 1, . . . , T do
4: Receive xt,i from base-learner Bi for all i;
5: Output the Decision xt =

∑N
i=1 pt,ixt,i;

6: Suffer loss ft(xt−m, . . . ,xt);
7: Observe the loss function ft : Xm+1 7→ R;
8: Construct linearized loss

gt(x) =
〈
∇f̃t (xt) ,x

〉
;

9: Construct the switching-cost-regularized surrogate loss
ℓt ∈ RN with

ℓt,i = gt(xt,i) + λ ∥xt,i − xt−1,i∥2 ;
10: Update the weight of base-learners pt+1 ∈ ∆N by

pt+1,i =
pt,ie

−ϵℓt,i∑N
j=1 pt,je

−ϵℓt,j
;

11: Base-learner Bi updates xt+1,i with step size ηi
for all i and gradient ∇f̃t (xt), per Algorithm 1;

12: end for

• gt(x) ≜
〈
∇f̃t (xt) ,x

〉
is the linearized loss of f̃t(xt)

over which each base-learner optimizes via the OFW;
• ℓt,i ≜ gt(xt,i) + λ ∥xt,i − xt−1,i∥2 is a surrogate

loss associated with the i-th base-learner Bi —the meta-
learner collects ℓt,i for all base-learners, i.e., for all i ∈
{1, . . . , N}, and optimizes xt via Hedge;

• pt,i is the assigned weight to the i-th base-learner Bi by
Hedge —each pt,i, i ∈ {1, . . . , N}, is used to output
Meta-OFW’s final decision xt as the weighted sum of base-
learners’ decisions xt,i; i.e., xt =

∑N
i=1 pt,ixt,i;

• ℓt ∈ RN is the vector whose i-th entry is ℓt,i;
• pt is the vector with i-th entry as pt,i;
• α ≜ 2(a + c) is a constant introduced for notational

simplicity (a and c are per Assumption 3).

Remark 3 (Unknown Loss Variation VT Requires Multiple
OFW Base-Learners). The multiple OFW base-learners aim
to overcome the challenge of the a priori unknown loss
variation VT . To illustrate this, we first consider that VT
is known a priori, and show that a single OFW suffices
to achieve bounded dynamic regret for OCO-M. Then, we
consider that VT is unknown a priori, and show how multiple
base-learners with appropriate step sizes η can approximate
the case where VT is known a priori. To these ends, we
leverage the following dynamic regret bound for OCO-M [33,
Proof of Theorem 3.1]:

RegretDT ≤
T∑

t=1

f̃t (xt)−
T∑

t=1

f̃t (vt)︸ ︷︷ ︸
unary cost

+ λ

T∑
t=2

∥xt − xt−1∥2︸ ︷︷ ︸
switching cost

+λ

T∑
t=2

∥vt − vt−1∥2︸ ︷︷ ︸
path length

,

(8)

which we can simplify to

RegretDT ≤ O
(√

T (1 + VT +DT + CT )
)
, (9)
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when VT is known a priori. Assume that xt is updated by an
OFW algorithm applied to f̃1, . . . , f̃T with the VT -dependent
step size η∗ = O

(√
(1 + VT )/T

)
. Then, eq. (9) results from

eq. (8) since the three terms in eq. (8) can be bounded as
follows: (i) the unary cost can be bounded by eq. (7) where
η = η∗; (ii) the switching cost can be bounded by η∗TD due
to OFW’s line 6 and due to Assumption 1; and (iii) the path
length is by definition equal to CT . Then, an application of
the Cauchy-Schwarz inequality completes the proof of eq. (9).
All in all, when VT is known a priori, a single OFW suffices
to achieve bounded dynamic regret for OCO-M.

But VT is unknown a priori since it depends on the loss
functions, which are unknown a priori. Instead, an upper
bound to VT is known, i.e., it holds true that VT ≤ Tc under
Assumption 3. Leveraging this, we can approximate the case
where VT is known a priori by employing an appropriate
number of OFW base-learners, each with a different step
size, per eq. (10) and eq. (11) below. Intuitively, we can
guarantee that way that there exists a base-learner i with step
size ηi close to the unknown step size η∗ (the full justification
of eq. (10) and eq. (11) is given in Theorem 2’s proof in [22,
Appendix C.2]. The challenge now is to fuse the decisions
of the multiple OFW to a final decision xt.

Remark 4 (The Multiple OFW Require a Hedge Meta-
Learner). The Hedge meta-learner in Meta-OFW aims to
fuse the decisions of the multiple OFW base-learners to a
final decision xt. Specifically, the OFW base-learners provide
multiple decisions at each iteration, the xt,i, i ∈ {1, . . . , N}
(line 4 in Algorithm 2). Then, Meta-OFW utilizes the Hedge
steps in lines 5, 9, and 10 to fuse those decisions to a single
decision, aiming to “track” the best base-learner.

We next formally describe Meta-OFW. First, the algorithm
specifies the number of base learners, their corresponding
step sizes, and their initial weights as follows, respectively:

N =

⌈
1

2
log2(1 +

Tc

α
)

⌉
+ 1 = O(log T ), (10)

H =

{
ηi | ηi = 2i−1

√
α

λTD
≤ 1, i ∈ {1, . . . , N}

}
, (11)

p1,i =
1

i(i+ 1)
· N + 1

N
, for any i ∈ {1, . . . , N}. (12)

Also, Meta-OFW sets the meta-learner’s learning rate as

ϵ =
√
2/((2λ+G)(λ+G)D2T ). (13)

The dependence on T can be removed by a “doubling trick”
[38], similarly to how Meta-OFW copes with unknown VT .

At each iteration t = 1, . . . , T , Meta-OFW receives the
intermediate decisions xt,i from all the base-learners Bi,
i ∈ {1, . . . , N} (line 4) to fuse them into a final deci-
sion xt =

∑N
i=1 pt,ixt,i (line 5). Then, Meta-OFW suffers

a loss of ft(xt−m, . . . ,xt) (lines 6-7). Afterwards, Meta-
OFW constructs the linearized loss gt(x) and switching-cost-
regularized loss ℓt (lines 8-9). To this end, Meta-OFW needs
to evaluate only once the gradient ∇f̃t(xt). Finally, the meta-
learner and base-learners update the weights pt+1 and xt+1,i

for the next iteration (lines 10-11).

V. DYNAMIC REGRET GUARANTEES OF Meta-OFW

To present Meta-OFW’s dynamic regret bound, we define:
• DT,i ≜

∑T
t=1 ∥∇ft (xt,i)−∇ft−1 (xt−1,i)∥22 is the gra-

dient variation associated with the base-learner i;
• D̄T ≜ maxi∈{1,...,N}DT,i is the upper bound for DT,i.

We present Meta-OFW’s dynamic regret bound against any
comparator sequence (Theorem 2). Particularly, the bound
below holds true, even if the loss variation VT , gradient va-
riation D̄T , and path length CT are unknown to Meta-OFW.

Theorem 2 (Dynamic Regret Bound of Meta-OFW). For
any comparator sequence (v1, . . . ,vT ) ∈ X T , Meta-OFW
achieves a dynamic regret RegretDT that enjoys the bound:

RegretDT ≤ O
(√

T
(
1 + VT + D̄T + CT

))
. (14)

The dependency on VT and D̄T results from OFW being
a base-learner in Meta-OFW; similar dependencies, due to
projection-free subroutines in online algorithms, have been
observed in the literature: see, e.g., [7] and the references
in Table I. The dependency on D̄T , instead of DT in
Theorem 1, is to upper bound the gradient variation DT,i

such that the base-learner i with step size close to the
unknown step size η⋆ (Remark 3) satisfies DT,i ≤ D̄T .

The dependency on CT is due to the time-varying se-
quence of comparators. [15] proved that any optimal dynamic
regret bound for OCO is Ω

(√
T (1 + CT )

)
, and thus the

bound necessarily depends on CT in the worst case.

Remark 5 (Trade-Off of Projection-Free Efficiency with Re-
gret Optimality). [16] prove that the optimal dynamic regret
for OCO-M is Ω(

√
T (1 + CT )), and provide a projection-

based algorithm using OGD that matches this bound. In
contrast, Meta-OFW’s regret bound in Theorem 2 cannot
match the bound Ω(

√
T (1 + CT )) due to the presence of

VT and DT in eq. (14). But Meta-OFW is projection-free
and thus is more efficient than the OGD-based algorithm in
[16] [18]. All in all, the dependence of eq. (14) on VT and
D̄T is the regret suboptimality cost we pay in this paper to
solve OCO-M efficiently via the projection-free OFW.

VI. APPLICATION TO NON-STOCHASTIC CONTROL

We apply Meta-OFW to the online non-stochastic control
problem [19], and present a projection-free controller with
memory (Algorithm 3), and with bounded dynamic regret
against any linear time-varying feedback control policy (The-
orem 3). The results of the numerical evaluations are present
in Section VI-D and [22, Appendix E].

A. The Non-Stochastic Control Problem

We consider Linear Time-Varying systems of the form

xt+1 = Atxt +Btut + wt, t = 0, . . . , T, (15)

where xt ∈ Rdx is the state of the system, ut ∈ Rdu is the
control input, and wt ∈ Rdx is the process noise. The system
and input matrices, At and Bt, respectively, are known.

At each time step t, the controller chooses a control action
ut and then suffers a loss ct(xt, ut). The loss function ct is
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revealed to the controller only after the controller has chosen
the control action ut, similarly to the OCO setting.

Assumption 6 (Convex and Bounded Loss Function with
Bounded Gradient). The cost function ct(xt, ut) : Rdx ×
Rdu 7→ R is convex in xt and ut. Further, when ∥x∥2 ≤ D,
∥u∥2 ≤ D for some D > 0, then |ct(x, u)| ≤ βD2 and
∥∇xct(x, u)∥2 ≤ GcD, ∥∇uct(x, u)∥2 ≤ GcD, for given
positive numbers β and Gc.

Assumption 7 (Bounded System Matrices and Noise). The
system matrices and noise are bounded, i.e., ∥At∥op ≤ κA,
∥Bt∥op ≤ κB , and ∥wt∥2 ≤ W for given positive numbers
κA, κB , and W , where ∥·∥op is the operator norm.

Per Assumption 7, we assume no stochastic model for the
process noise wt: the noise may even be adversarial, subject
to the bounds prescribed by W .

Problem 2 (Non-Stochastic Control (NSC) Problem). At
each time step t = 0, . . . , T , first a control action ut is
chosen; then, a loss function ct : Rdx × Rdu 7→ R is
revealed and the system suffers a loss ct(xt, ut). The goal is
to minimize the dynamic policy regret defined below.

Definition 2 (Dynamic Policy Regret). We define the dy-
namic policy regret as

Regret-NSCDT =

T∑
t=0

ct (xt, ut)−
T∑
t=0

ct (x
∗
t , u

∗
t ) , (16)

where (i) both sums in eq. (16) are evaluated with the
same noise {w0, . . . , wT }, which is the noise experienced
by the system during its evolution per the control input
{u0, . . . , uT }, (ii) u∗t = −K∗

t x
∗
t is the optimal linear

feedback control input in hindsight, i.e., the optimal input
given a priori knowledge of ct and of the realized wt, and
(iii) x∗t is the state reached by applying the optimal control
inputs {u∗0, . . . , u∗t−1}.

Reduction to OCO-M. We present the reduction of the
non-stochastic control problem to OCO-M, following [19].

Per eq. (15), xt depends on the control actions chosen
in the past, i.e., {u0, . . . , ut−1}, and similarly, the control
action ut depends on xt−1, i.e., {u0, . . . , ut−2}. To reduce
the non-stochastic control problem to OCO-M, there are thus
2 challenges: (i) we need a control parameterization such that
the cost function ct(xt, ut) is convex in the parameters of the
control actions{u0, . . . , ut−1}, since ct(xt, ut) is implicitly a
function of {u0, . . . , ut−1} via ut; and, similarly, (ii) we need
the memory length of ct(xt, ut), i.e., its implicit dependence
on the past control inputs {u0, . . . , ut−1}, to stop growing
as t increases; that is, we need ct(xt, ut) to instead depend
on the most recent control inputs only, in particular, on
{ut−m, . . . , ut} for memory length m. To address these
challenges, [19] propose the Disturbance-Action Control
policy and the notion of truncated loss.

Definition 3 (Disturbance-Action Control Policy). A
Disturbance-Action Control (DAC) policy πt(Kt,Mt)
chooses the control action ut at state xt as ut = −Ktxt +

∑H
i=1M

[i−1]
t wt−i,5 where we use the notation: H is the

chosen memory length of the DAC policy (H ≥ 1); Kt is se-
quentially stabilizing [20]; Mt = (M

[0]
t , . . . ,M

[H−1]
t ), with

M
[i]
t ∈ Rdu×dx being a control gain such that

∥∥∥M [i]
t

∥∥∥
op

≤
κBκ

3(1− γ)i; and wτ = 0, ∀τ < 0.

Per [20], xt and ut are linear in {M0, . . . ,Mt}; therefore,
the cost function ct(xt, ut) is convex in {M0, . . . ,Mt}.

To present the notion of truncated loss, we use:
• xt (M0:t−1) is the state reached by applying the DAC

policy {πτ (Kτ ,Mτ )}τ=0,...,t−1;
• ut (M0:t) is the control action at state xt (M0:t−1) per the

DAC policy πt(Kt,Mt);
• yt (Mt−1−H:t−1) is the state reached from xt−1−H = 0 by

applying {πτ (Kτ ,Mτ )}τ=t−H−1,...,t−1 and experiencing
the noise sequence {wτ}τ=t−H−1,...,t−1;

• vt (Mt−1−H:t) is the control input that would have been
executed if the state at time t was the yt (Mt−1−H:t−1).

Definition 4 (Truncated Loss). Given DAC policies
{πτ (Kτ ,Mτ )}τ=0,...,t with memory length H , the in-
duced truncated loss ft : MH+2 7→ R is defined as
ft (Mt−1−H:t) ≜ ct (yt (Mt−1−H:t−1) , vt (Mt−1−H:t)) .

Thereby, the truncated loss ft (Mt−1−H:t) depends only
on the last H + 2 time steps of the DAC policy. That is, ft
has a fixed memory length H + 2, for all t = 1, . . . , T .

All in all, Problem 2 can be reduced to OCO-M when the
decision variables are the Mt, and the loss functions are the
truncated losses ft (Mt−1−H:t), for all t = 1, . . . , T .

B. Meta-OFW for Online Non-Stochastic Control
We present Meta-OFW’s application to the online non-

stochastic control problem (Algorithm 3). Particularly, Al-
gorithm 3 initializes the number of base-learners, their
corresponding step sizes, and their initial weights, per the
following equations, similarly to Meta-OFW:

N =

⌈
1

2
log2(

2βD2T + ϕ

σ
)

⌉
+ 1 = O(log T ), (17)

H =

{
ηi | ηi = 2i−1

√
σ

ζTDf
≤ 1, i ∈ {1, . . . , N}

}
,

(18)

p0,i =
1

i(i+ 1)
· N + 1

N
, for any i ∈ {1, . . . , N}, (19)

where σ ≜ 4βD2, ϕ ≜ σ + 2βD2, ζ ≜ (H + 2)2Lf , and
Df , Lf , Gf defined as in Lemma 9 in [22, Appendix D.7].

The algorithm also sets the step size of meta-learner as

ϵ =

√
2/
(
(2ζ +Gf )(ζ +Gf )D2

fT
)
. (20)

At each iteration t, Algorithm 3 receives Mt,i from all
base-learners (line 4). Then, Algorithm 3 calculates Mt =∑N
i=1 pt,iMt,i and outputs the control actions ut = −Ktxt+∑H
i=1M

[i−1]
t wt−i (lines 5-6), after which the cost function

is revealed and the algorithm suffers a loss of ct(xt, ut)

5The DAC policy depends on the past noise, which can be obtained from
eq. (15) once the next state is observed; specifically, at time t+1, it holds
true that wt = xt+1 −Atxt −Btut.
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Algorithm 3: Meta-OFW for Non-Stochastic Control.
Input: Time horizon T ; number of base-learners N per eq. (17);

step size pool H per eq. (18); initial weight of base-learners
p0 per eq. (19); learning rate ϵ of meta-algorithm per eq. (20).

Output: Control ut at each time step t = 1, . . . , T .
1: Set Mτ = 0 and wτ = 0, ∀τ < 0;
2: Initialize M0,i ∈ M, ∀i ∈ {1, . . . , N};
3: for each time step t = 0, . . . , T do
4: Receive Mt,i from base-learner Bi for all i;
5: Calculate Mt =

∑N
i=1 pt,iMt,i;

6: Output ut = −Ktxt +
∑H

i=1 M
[i−1]
t wt−i;

7: Observe the loss function ct : Rdx × Rdu 7→ R and suffer
the loss ct(xt, ut);

8: Construct the truncated loss
ft(Mt−H−1, . . . ,Mt) : MH+2 7→ R ;

9: Construct the linearized loss

gt(M) =
〈
∇M f̃t (Mt) ,M

〉
F
;

10: Construct the switching-cost-regularized surrogate loss
ℓt ∈ RN with

ℓt,i = gt(Mt,i) + ζ ∥Mt,i −Mt−1,i∥F ;

11: Update the weight of base-learners pt+1 ∈ ∆N by

pt+1,i =
pt,ie

−ϵlt,i∑N
j=1 pt,je

−ϵlt,j
;

12: for each base-learner Bi do
13: Compute

M ′
t,i = arg min

M∈M

〈
∇M f̃t(Mt),M

〉
F
;

14: Update Mt+1,i = (1− ηi)Mt,i + ηiM
′
t,i;

15: end for
16: Observe the state xt+1 and calculate the noise

wt = xt+1 −Atxt −Btut;
17: end for

(line 7). Next, Algorithm 3 constructs the truncated loss
ft(Mt−H−1, . . . ,Mt), linearized loss gt(M), and switching-
cost-regularized loss ℓt (lines 8-10). The meta-learner and
base-learners update the weights pt+1 and Mt+1,i for the
next iteration (lines 11-15). Finally, the noise wt is calculated
when xt+1 is observed (line 16).

C. Dynamic Regret Guarantee of Algorithm 3

Theorem 3 (Dynamic Policy Regret Bound of Algorithm 3).
Algorithm 3 ensures that 6

Regret-NSCDT ≤ Õ
(√

T
(
1 + VT + D̄T + CT

))
. (21)

Remark 6 (Novelty of Theorem 3). Theorem 3 guar-
antees a dynamic regret bound against an optimal time-
varying linear feedback policy in hindsight, i.e., against
{πτ (K∗

τ , 0)}τ=0,...,t, per Definition 2. This is different than
competing against an optimal time-varying DAC policy
{πτ (Kτ ,M

∗
τ )}τ=0,...,t with pre-specified stabilizing control

gains Kτ as in [16], or an optimal time-invariant linear feed-
back policy {π(K∗, 0)} over the entire horizon or any time
interval as in [19], [20], [34], [36], [37]. To achieve this, we
show a DAC policy {πτ (Kτ ,Mτ )}τ=0,...,t can approximate
any time-varying linear feedback policy (Proposition 2 in
[22, Appendix D.5]), where the optimal time-varying linear
feedback control policy does not depend on pre-specified
stabilizing feedback control gains, in contrast to [16].

D. Numerical Evaluations

We evaluate Meta-OFW (Algorithm 3) in simulated sce-
narios of online control of linear time-invariant systems. Ad-
ditional experiments that demonstrate the computational effi-
ciency of Meta-OFW compared to the state-of-the-art OCO-
M algorithm [16] are available in [22, Appendix E]). Our
code is open-sourced at: https://github.com/UM-iRaL/Non-
Stochastic-Control.

Compared Algorithms. We compare Meta-OFW with the
OGD [8], Ader [15], and Scream [16] algorithms. All algo-
rithms rely on the DAC policy [19]. To run the algorithms,
we use the default step-sizes and parameters given in the
experiment of [16].

Simulation Setup. We follow the setup as [39] and
consider linear systems of the form

xt+1 = Axt +But + wt

= Axt +But + (∆t,Axt +∆t,But + w̃t),
(22)

where w̃t and the elements of ∆t,A and ∆t,B are sampled
from various distributions, specifically, Gaussian, Uniform,
Gamma, Beta, Exponential, and Weibull distributions. The
loss function has the form ct(xt, ut) = qtx

⊤
t xt + rtu

⊤
t ut,

where qt and rt are time-varying weights. Particularly, we
consider two cases:

1) Sinusoidal weights defined as

qt = sin(t/10π), rt = sin(t/20π). (23)

2) Step weights defined as

(qt, rt) =



(
log(2)

2 , 1
)
, t ≤ T/5,

(1, 1) , T/5 < t ≤ 2T/5,(
log(2)

2 , log(2)2

)
, 2T/5 < t ≤ 3T/5,(

1, log(2)2

)
, 3T/5 < t ≤ 4T/5,(

log(2)
2 , 1

)
, 4T/5 < t ≤ T.

(24)

Results. We first compare Meta-OFW with the OGD, Ader,
and Scream algorithms in terms of cumulative loss. The
results are summarized in Table III, showing that Meta-OFW
achieved the lowest cumulative loss across all tested cases,
except under gamma distribution with sinusoidal weights; in
the best-case —exponential distribution— Meta-OFW is 52
times better than Scream.

VII. CONCLUSION

We provided Meta-OFW (Algorithm 2), a projection-free
algorithm with bounded dynamic regret for OCO-M in time-
varying environments (Theorem 2). To develop Meta-OFW,
we employed the projection-free algorithm OFW and Hedge.
Further, we applied Meta-OFW to the online non-stochastic
control problem to control linear time-varying systems cor-
rupted with unknown and unpredictable noise (Algorithm 3).
We thus developed a (projection-free) OCO-M controller
with memory and bounded dynamic regret against any linear
time-varying control policy (Theorem 3), instead of against
only static linear control policies. To this end, we also

6The path length is defined as CT ≜
∑T

t=2

∥∥M∗
t−1 −M∗

t

∥∥
F

.
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TABLE II: Comparison of the OGD [8], Ader [15], Scream [16], and Meta-OFW algorithms in terms of cumulative loss
for 10000 time steps. The blue numbers correspond to the best performance and the red numbers correspond to the worse.

Noise Distribution Sinusoidal Weights (eq. (139)) Step Weights (eq. (140))

Meta-OFW Scream Ader OGD Meta-OFW Scream Ader OGD
Gaussian 15625 19725 21052 33574 9496 10704 11453 26790
Uniform 18299 93987 107096 30419 13395 39057 35313 39885
Gamma 16239 16138 18039 17484 9184 61989 75505 45398

Beta 21448 34146 30990 30253 15982 29301 30799 28859
Exponential 10621 254815 252227 28859 4366 227860 204844 53626

Weibull 14068 91474 94040 38549 5623 182887 993734 92341

proved that the DAC policy class [19] can approximate
linear time-varying feedback controllers (Proposition 2 in
[22, Appendix D.5]).
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