
Performance Bounds for Policy-Based Reinforcement Learning Methods
in Zero-Sum Markov Games With Linear Function Approximation

Anna Winnicki and R. Srikant

Abstract— Until recently, efficient policy iteration algorithms
for zero-sum Markov games that converge were unknown.
Therefore, model-based RL algorithms for such problems
could not use policy iteration in the planning modules of the
algorithms. In an earlier paper, we showed that a convergent
policy iteration algorithm can be obtained by using a commonly
used technique in RL called lookahead. However, the algorithm
could be applied to the function approximation setting only in
the special case of linear MDPs (Markov Decision Processes).
In this paper, we obtain performance bounds for policy-based
RL algorithms for general settings, including one where policy
evaluation is performed using noisy samples of (state, action,
reward) triplets from a single sample path of a given policy.

I. INTRODUCTION

Many modern machine learning paradigms can be viewed
as controlling multi-agent systems, including games [24],
[25], [15], traffic control [34], [22], and more [16], [36],
[35]. In many of these multi-agent systems, the problem
of interest is finding a Nash equilibrium strategy. In the
setting of Markov Games (also known as Stochastic Games
[23]), the problem of finding the Nash equilibrium is a
generalization of finding an optimal policy for a Markov
Decision process [21], [13], however many algorithms that
find optimal policies for MDPs cannot efficiently be extended
to the Markov Games setting, largely due to monotonicity
issues that arise from the competing objectives of the two
players as opposed to the single entity setting of MDPs.

This issue, coupled with the added layer of complexity
from incorporating function approximation in large scale
systems for which it is unrealistic to employ tabular methods
makes the problem of finding efficient Nash equilibrium
strategies for Markov Games with function approximation
a largely unsolved, yet practical, problem. We study the
problem of obtaining a Nash equilibrium for infinite horizon,
discounted, two-player zero-sum stochastic games with linear
value function approximation.

In the single-player setting, linear value function ap-
proximation has been successfully incorporated into several
approximate dynamic programming (ADP) algorithms in-
cluding approximate policy iteration, which has been studied
in [2], [29]. However, even in the absence of function
approximation, the policy iteration algorithm has not yet
been efficiently extended to the setting of Markov Games.

Unlike the widely studied analogous value iteration (VI)
algorithm for games in [23], the two main extensions of

1Anna Winnicki and R. Srikant are with Coordinated Science
Laboratory and the Department of Electrical and Computer
Engineering at University of Illinois at Urbana-Champaign.
Srikant is also with the C3.ai Digital Transformation Institute.
annaw5@illinois.edu,rsrikant@illinois.edu.

Howard’s Policy Iteration (PI) [21] for games are not very
computationally efficient or simply do not converge. The first
algorithm, the Hoffman and Karp algorithm [10] converges,
however, it requires solving an MDP at each iteration. It has
been shown in [9] that one has to solve Ω(1/(1−α)) MDPs
to implement the extension of PI for games.

The second algorithm, the algorithm of Pollatschek and
Avi-Itzhak also known as naive policy iteration, while com-
putationally efficient, has been shown in a counter-example
not to converge [28]. The work of [8] analyzes a modification
of the Pollatschek and Avi-Itzhak algorithm. However, the
work of [18] shows that their proof hinges on the assumption
that the L2-norm of the optimal bellman residual is smooth,
which is generally not true. A notable recent contribution
is the work of [1] which introduces the first modification
of naive policy iteration that converges. The algorithm of
[1] has been extended in the work of [3] which studies
stochastic and optimistic settings. It is unclear whether the
algorithm in [1] can be extended to incorporate function
approximation, which is the focus of the current work. The
work in [31] analyzes a variant of the algorithm of Pollatshek
and Avi-Itzhak where instead of greedy policies in the policy
improvement step, the algorithm uses lookahead polices in
the policy improvement step. Lookahead policies have been
used in many popular reinforcement learning algorithms
including AlphaZero [26], [27]. It is important to note that
while the lookahead can be computationally expensive, the
work of [31] shows that computing the lookahead can be
computationally expensive. However, in the setting of linear
Markov games, which are the natural extension of linear
MDPs to Markov games, the work of [31] shows that the
lookahead requires low computational complexity. For more
on lookahead see [6], [7], [29], [30], [32].

Beyond the algorithm of [1], the aforementioned algo-
rithms that extend policy iteration to Markov games have
all attempted to extend their work to the setting of function
approximation with limited success. The work of [19] ex-
tends the original policy iteration algorithm of [10], however,
it is limited in two respects. First, the algorithm in [19]
propagates an error bound in the policy evaluation and
policy improvement steps. However, their bounds do not
explicitly take into account the implementation details of
least-squares-based policy evaluation. Hence, analogously to
the counter-example in [29], it is unclear whether the bounds
in [19] can be accurately applied in the least squares policy
evaluation for games algorithm. Second, the algorithm in
[19] is inefficient for the same reasons that the Hoffman-
Karp algorithm is inefficient, i.e., it requires that each policy

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7138

corresponding to the minimizer be evaluated approximately
at each iteration. The work of [13] attempts to extend the
algorithm of Pollatschek and Avi-Itzhak to the linear value
function approximation setting, which, while efficient, does
not necessarily converge even in the exact case as shown by
the counter-example in [28]. Finally, the modification to the
algorithm of Pollatschek and Avi-Itzhak, the algorithm in the
work of [8], has been extended to the function approximation
setting in [18], however, for the same reasons that algorithm
also does not converge.

In this paper, we consider extensions of the algorithm in
[31] to the function approximation setting. Our contributions
are as follows:

• We provide performance bounds for a variant of policy
iteration for Markov games based on the algorithm of
Pollatschek and Avi-Itzhak with linear value function
approximation. Our bounds are interpretable and in the
special case where there is no function approximation,
the error of the algorithm is zero. In the algorithm it is
assumed that returns of the policy evaluation with the
lookahead for only several states are generated exactly,
and the returns for the rest of states are determined by
finding a best fitting parameter.

• We then consider the case where policy evaluation is
performed via simulations resulting in an unbiased error.
We employ a stochastic approximation algorithm that
ensures convergence guarantees that are independent of
the noise arising from simulations. These results are
consistent with the results in the case where stochas-
tic approximation is not used and error bounds are
dependent on a bound on the noise arising from the
simulations.

II. OTHER RELATED WORKS

Value iteration based multi-agent planning algorithms
Markov games were first formulated in [23] and since then,
other works have studied efficient methods for computing
the Nash equilibrium using value function based methods
including the works of [14], [17], [11].

Function approximation methods in multi-agent RL
Function approximation methods have been studied in the
setting of two-player zero-sum Markov games including
in the work of [13] which studies linear value function
approximation in games where knowledge of the model is
assumed. Other prior works include the works of [33] which
considered linear MDPs as well as the work of [12], which
studies a general function approximation setting.

Policy iteration for games Another class of algorithms
that has been proposed for computing the Nash equilibrium
includes extensions of policy iteration algorithms for MDPs
to Markov games. However, these algorithms have been
far less successfully studied than the value iteration based
methods, despite studies including [28] that have shown that
Shapley’s value iteration in games algorithm works slower in
practice than the naive policy iteration algorithm in [20]. The
works of [17], [19] have provided convergence guarantees
of a policy iteration algorithm for Markov games. However,

this algorithm has been shown to be rather computationally
inefficient; in fact, the work of [9] shows that one has
to solve Ω(1/(1 − α)) MDPs to implement the algorithm.
Furthermore, the work of [20] following the work of [10]
proposes an algorithm that is far more computationally
efficient but they only provide convergence guarantees for
specific problem instances. The works of [8], [4] analyze
variants of the algorithm in [20], however, these algorithms
too only converge in specific settings. Notably, the works of
[1], [3] provide convergence guarantees of a variant of the
algorithm in [20], yet is unclear whether the algorithm in [1]
can be extended to incorporate function approximation.

Policy gradient methods for two-player games A decen-
tralized algorithm for policy gradient methods that converges
to a min-max equilibrium when both players independently
perform policy gradient has been studied in [5]. In addition
to the work of [5], the work of [37] studies natural policy
gradient and obtains performance bounds of the natural
policy gradient algorithm extended to the two-player zero-
sum games setting.

III. MODEL AND PRELIMINARIES

We consider a two-player simultaneous-action
zero-sum discounted Markov game, characterized by
(S,A1,A2, P, g, α) where the state space is S , the action
space for the first player (maximizer) is A1 where A1(s

′)
is the action space at state s′, the action space for the
second player (the minimizer) is A2 where A2(s

′) is the
action space at state s′ for the second player, P is the
probability transition kernel, g is the reward function, and
α ∈ (0, 1) is the discount factor. At each instance i, the
state of the game is xi and the maximizer takes action ui

while the minimizer takes action vi. The maximizer incurs
a reward of g(xi, ui, vi) where g(xi, ui, vi) ∈ [0, 1] and the
minimizer incurs a cost of g(xi, ui, vi) (and, hence a reward
of −g(xi, ui, vi)). The maximizer seeks to take actions ui

to maximize
∑∞

i=0 α
ig(xi, ui, vi), the discounted sum of

rewards, while the minimizer correspondingly takes actions
vi to minimize the discounted sum of rewards. We assume
that at each instance i, the joint action taken is (ui, vi)
following (non-deterministic) policy (µ, ν) where where
µ(s) ∈ ∆(A1(s)) and ν(s) ∈ ∆(A2(s)). We say that (µ, ν)
is the policy of the game.

We denote the value function corresponding to policy
(µ, ν) component-wise as:

Jµ,ν(x) = Eui∼µ(·|xi),vi∼ν(·|xi)

[∞∑
i=0

αig(xi, ui, vi)|x0 = x
]
.

We call the Nash-equilibrium policy (µ∗, ν∗) or optimal
policy the policy satisfying:

Jµ,ν∗
≤ Jµ∗,ν∗

≤ Jµ∗,ν

for all policies (µ, ν). We have that

J∗ := Jµ∗,ν∗
.

7139

It is well known that a Nash equilibrium policy exists for
two-player discounted zero-sum Markov games. We can also
write the Nash equilibrium policy as follows:

(µ∗, ν∗) ∈ argmax
µ

argmin
ν

Jµ,ν .

The probability transition matrix for any policy (µ, ν) is
P (µ, ν) ∈ R|S|×|S| where

Pij(µ, ν) =
∑
x

∑
y

µ(x)ν(y)P (j|i, µ(x), ν(y)).

The corresponding reward function is r(µ, ν) where

ri(µ, ν) =
∑
x

∑
y

µ(x)ν(y)g(i, x, y).

The Bellman operator for policy (µ, ν), Tµ,ν : S → S is:

Tµ,νJ := r(µ, ν) + αP (µ, ν)J.

We have that

∥Tµ,νJ − Jµ,ν∥∞ ≤ α ∥J − Jµ,ν∥∞ .

The Bellman optimality operator or Bellman operator is
T : S → S as

TJ = max
µ

min
ν

(Tµ,νJ).

Note that T is a pseudo-contraction towards the optimal value
function J∗ where

∥TJ − J∗∥∞ ≤ α ∥J − J∗∥∞ .

It is well known that Tµ,ν is monotone, i.e.,

J ≤ J ′ =⇒ Tµ,νJ ≤ Tµ,νJ
′

and that

Tµ,ν(J + ce) = Tµ,νJ + αce∀c ∈ R

where e(i) = 1∀i ∈ 1, 2, . . . , |S|.

IV. LINEAR VALUE FUNCTION APPROXIMATION

The policy iteration algorithm for Markov games can be
easily extended to incorporate linear function approximation.
However, in this algorithm, at at every iteration k, all value
functions corresponding to policies ν must be evaluated,
which is computationally inefficient.

The work of [19] provides error bounds for the function
approximation setting of the policy iteration algorithm for
Markov games. However, even with function approximation,
all policies Jµ,νk+1 must be evaluated which is inefficient.

A more efficient policy iteration algorithm for Markov
games, sometimes called the algorithm of Pollatschek and
Avi-Itzhak, does not converge [28], and hence, its variants
and their extensions to function approximation, such as [18]
suffers from the same difficulty with convergence. The work
of [31] makes a small modification of the algorithm of
Pollatschek and Avi-Itzhak that ensures convergence of a
variant of the policy iteration for games algorithm. In the
improved algorithm, the policy improvement step is replaced

with a lookahead version of policy improvement. Lookahead
has been widely used in practice [27], [26].

We now wish to extend the variant of the algorithm of Pol-
latschek and Avi-Itzhak in [31] to the function approximation
setting, specifically, the linear value function approximation
setting. In order to extend the algorithm in [31] to the linear
value function approximation setting, we associate with each
state i ∈ S a feature vector ϕ(i) ∈ Rd where typically
d << |S|. The matrix comprised of all the feature vectors
as rows is denoted by Φ. We use those estimates to find the
best fitting θ ∈ Rd based on estimates of Jµk+1,νk+1(i) for
i ∈ D, where D is a set of states, at each iteration k where
|D| << |S|, i.e.,

min
θ

∑
i∈D

(
(Φθ)(i)− Ĵµk+1,νk+1(i)

)2

,

where

Ĵµk+1,νk+1(i) = Tm
µk+1,νk+1

TH−1(Φθk)(i)

for i ∈ D and Φθk is the estimate of the optimal value
function at iteration k. We note that we can estimate
Ĵµk+1,νk+1(i) using simulations since

Tm
µk+1,νk+1

TH−1(Φθk)(i)

= Eui∼µ(·|xi),vi∼ν(·|xi)

[m−1∑
i=0

αig(xi, ui, vi)

+ αmTH−1Φθk(xm)|x0 = i
]
.

This procedure is referred to as taking m-step returns starting
at state i. The policies (µk+1, νk+1) are the greedy policies
corresponding to TH−1Φθk, i.e.,

µk+1, νk+1, νk+1 ∈ argmax
µ

argmin
ν

Tµ,νT
H−1Φθk,

also known as lookahead policies. For more on lookahead
policies, see [29], [2]. While the computation of the looka-
head is difficult, techniques such as Monte Carlo Tree Search
have been shown to be successful in practice. Additionally,
under certain structures, such as linear MDPs, the lookahead
can be computed efficiently [31]. Our algorithm is outlined
in Algorithm 1.

We denote the matrix of feature vectors in D as rows ΦD
and we assume that the rank of ΦD is d, i.e., ΦD is full rank.
Thus, we can alternatively rewrite our Φθk as follows:

Φθk = Φ(Φ⊤
DΦD)

−1Φ⊤
DPk︸ ︷︷ ︸

=:M

Ĵµk+1,νk+1 ,

where Pk is a projection matrix of ones and zeros such that
PkĴ

µk+1,νk+1 is a vector whose elements are a subset of the
elements in Ĵµk+1,νk+1 corresponding to D.

We now present our first main result on the convergence
of Algorithm 1. To do so, we give our first assumption:

Assumption 1: We make the following assumption about
the amount of lookahead and the parameter m:

αH−1 + 2(1 + αm)
αH−1

1− α
< 1.

7140

Algorithm 1 Least-Squares Function Approximation Policy
Iteration For Markov Games With Lookahead
Input: θ0,m, H, feature vectors {ϕ(i)}i∈S , ϕ(i) ∈ Rd and
subset D ⊆ S. Here D is the set of states at which we
evaluate the current policy at iteration k.

1: Let k = 0.
2: Let µk+1, νk+1, νk+1 be such that

µk+1, νk+1, νk+1 ∈ argmax
µ

argmin
ν

Tµ,νT
H−1Φθk,

where the T operator is the Bellman operator.
3: Compute Ĵµk+1,νk+1(i) = Tm

µk+1,νk+1
TH−1(Φθk)(i) +

wk+1(i) for i ∈ D.
4: Choose θk+1 to solve

min
θ

∑
i∈D

(
(Φθ)(i)− Ĵµk+1,νk+1(i)

)2

, (1)

where Φ is a matrix whose rows are the feature vectors.
5: Set k ← k + 1. Go to 2.

Theorem 1: Almost surely, under Assumption 1 the fol-
lowing bound holds for iterates θk of Algorithm 1:

lim sup
k→∞

∥Φθk − J∗∥∞ ≤
δapp

1− 2αH−1 − δFV αm+H−1

where δapp is ability of the feature vectors to approximate
the policies:

δapp := sup
k
∥Jµk −MJµk∥∞

and

δFV := ∥M∥∞
is a parameter that depends on the feature vectors. ⋄
See the extended version of the paper [31] for the proof of
Theorem 1.

Interpretation of Theorem 1

Theorem 1 shows that the performance bounds are mostly
determined by the ability of the feature vectors to represent
value functions corresponding to policies. However, the
performance bounds can also be improved with judicious
choice of feature vectors, since the bounds are also dependent
on δFV . In the special case where there is no function
approximation error with the feature vectors, the algorithm
has no error.

V. STOCHASTIC APPROXIMATION

Note that in the previous section, we assume that exact
estimates of Ĵµk+1,νk+1(i) = Tm

µk+1,νk+1
TH−1(Φθk)(i) +

wk+1(i) for i ∈ D are available at each iteration. However,
in general, Tm

µk+1,νk+1
TH−1(Φθk)(i)+wk+1(i) can be deter-

mined using a single trajectory, which incorporates sources
of error. However, a single trajectory results in an unbiased
estimate of Tm

µk+1,νk+1
TH−1(Φθk)(i) + wk+1(i), hence we

wish to incorporate stochastic approximation techniques to

limit the effect of noise on the convergence of the algorithm.
We outline the stochastic approximation algorithm in Algo-
rithm 2. Defining

Algorithm 2 Least Squares Function Approximation For
Policy Iteration In Markov Games With Unbiased Noise and
Lookahead
Input: θ0,m,H feature vectors {ϕ(i)}i∈S , ϕ(i) ∈ Rd and
subsets Dk ⊆ S, k = 0, 1, Here Dk is the set of states
visited by a trajectory corresponding to the current policy
at iteration k.

1: Let k = 0.
2: Let µk+1, νk+1 be such that∥∥Tµk+1,νk+1

TH−1Φθk − THΦθk
∥∥
∞ ≤ εLA.

3: Compute

Ĵµk+1,νk+1(i) = Tm
µk+1,νk+1

TH−1Φθk(i) + wk(i)

for i ∈ Dk and set Ĵµk+1,νk+1(i) = 0 for i /∈ Dk.
4: Choose θk+1 to solve

min
θ

∥∥∥(P1,kΦ)θ − P2,kĴ
µk+1,νk+1

∥∥∥
2
, (2)

where Φ is a matrix whose rows are the feature vectors
(see below for definitions of P1,k and P2,k). To compute
θk+1, use the Moore-Penrose inverse of P1,kΦ.

5:

θk+1 = (1− γk)θk + γk(θk+1). (3)

6: Set k ← k + 1. Go to 2.

Vk := Φθk,

the iterates in Algorithm 2 can be written as follows:

Vk+1 = (1− γk)Vk + γk(Φθk+1)

= (1− γk)Vk + γk(Φ(P1,kΦ)
+Ĵµk+1,νk+1)

= (1− γk)Vk

+ γk(Φ(P1,kΦ)
+P2,k︸ ︷︷ ︸

=:Mk

(Tm
µk+1,νk+1

TH−1Vk + wk)),

(4)

where (P1,kΦ)
+ is the Moore-Penrose inverse of P1,kΦ and

P1,k is a matrix of zeros and ones such that rows of P1,kΦ
correspond to feature vectors associated with states in Dk and
P2,k(T

m
µk+1,νk+1

TH−1Vk + wk) is a vector whose elements
are a subset of the elements of Ĵµk+1,νk+1 corresponding
to Dk. We define the term δ′FV associated with our feature
vectors ϕ(i)∀i ∈ S as follows:

δ′FV := sup
k
∥Mk∥∞ .

Using δ′FV , we now give Assumption 2 which is similar to
Assumption 1, adapted to Algorithm 2:

7141

Assumption 2:

δ′FV α
m+H−1 1 + α

1− α
+

2αH−1

1− α
< 1.

⋄
Using Assumption 2, we provide our main performance

bounds for Algorithm 2:
Theorem 2: When

1) The starting state of the trajectory at each instance is
drawn from a fixed distribution, p, where p(i) > 0∀i ∈
S.

2)
∑∞

i=0 γi =∞. Also,
∑∞

i=0 γ
2
i <∞.

under Assumption 2, the iterates obtained in (4) almost surely
have the following property:

lim sup
k→∞

∥Vk − J∗∥∞

≤
δ′app

1− 2αH−1 − (2 + δ′FV)α
m+H−1

almost surely, where δ′app is ability of the feature vectors to
approximate the policies:

δ′app :=

sup
k

E[∥Mk(J
µk+1,νk+1 + wk)− (Jµk+1,νk+1 + wk)∥∞ |Fk].

(5)

⋄
See the extended version of the paper [31] for the proof

of Theorem 2.

Interpretation of Theorem 2

Analogously to Theorem 1, Theorem 2 shows that the
performance bound is largely based on the ability of the
feature vectors represent unbiased estimates of the value
functions. Without feature vectors (i.e., when feature vectors
are simply unit vectors) and trajectories from all states are
obtained (i.e., in the special case where the Markov chains
induced by all policies are irreducible and infinitely long
trajectories are obtained, the error becomes zero.

VI. FUTURE WORK

Some interesting directions for further work involve ex-
tending the results to incorporate TD-learning instead of
returns as well as investigating the the stochastic shortest
path games problem setting where there is no discount factor.
For more on stochastic shortest path games, see the [17].

VII. ACKNOWLEDGMENTS

This work was supported by NSF grants CCF 22-07547,
CNS 21-06801, CCF 1934986, and ONR grant N00014-19-
1-2566.

REFERENCES

[1] Dimitri Bertsekas. Distributed asynchronous policy iteration for
sequential zero-sum games and minimax control. arXiv preprint
arXiv:2107.10406, 2021.

[2] Dimitri P Bertsekas. Reinforcement learning and optimal control.
Athena Scientific Belmont, MA, 2019.

[3] Sarnaduti Brahma, Yitao Bai, Duy Anh Do, and Thinh T Doan.
Convergence rates of asynchronous policy iteration for zero-sum
markov games under stochastic and optimistic settings. In 2022 IEEE
61st Conference on Decision and Control (CDC), pages 3493–3498.
IEEE, 2022.

[4] Michèle Breton, Jerzy A Filar, Alain Haurle, and Todd A Schultz. On
the computation of equilibria in discounted stochastic dynamic games.
Springer, 1986.

[5] Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Inde-
pendent policy gradient methods for competitive reinforcement learn-
ing. Advances in neural information processing systems, 33:5527–
5540, 2020.

[6] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor.
Multiple-step greedy policies in online and approximate reinforcement
learning. arXiv preprint arXiv:1805.07956, 2018.

[7] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. How to
combine tree-search methods in reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 3494–3501, 2019.

[8] Jerzy A Filar and Boleslaw Tolwinski. On the Algorithm of Pollatschek
and Avi-ltzhak. Springer, 1991.

[9] Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strat-
egy iteration is strongly polynomial for 2-player turn-based stochastic
games with a constant discount factor. Journal of the ACM (JACM),
60(1):1–16, 2013.

[10] Alan J Hoffman and Richard M Karp. On nonterminating stochastic
games. Management Science, 12(5):359–370, 1966.

[11] Junling Hu and Michael P Wellman. Nash q-learning for general-sum
stochastic games. Journal of machine learning research, 4(Nov):1039–
1069, 2003.

[12] Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter:
Provable multi-agent rl in large state spaces. In International Confer-
ence on Machine Learning, pages 10251–10279. PMLR, 2022.

[13] Michail Lagoudakis and Ron Parr. Value function approximation in
zero-sum markov games. arXiv preprint arXiv:1301.0580, 2012.

[14] Michael L Littman. Markov games as a framework for multi-agent
reinforcement learning. In Machine learning proceedings 1994, pages
157–163. Elsevier, 1994.

[15] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783, 2016.

[16] Asuman Ozdaglar, Muhammed O Sayin, and Kaiqing Zhang. Indepen-
dent learning in stochastic games. arXiv preprint arXiv:2111.11743,
2021.

[17] Stephen David Patek. Stochastic and shortest path games: theory and
algorithms. PhD thesis, Massachusetts Institute of Technology, 1997.

[18] Julien Pérolat, Bilal Piot, Matthieu Geist, Bruno Scherrer, and Olivier
Pietquin. Softened approximate policy iteration for markov games.
In International Conference on Machine Learning, pages 1860–1868.
PMLR, 2016.

[19] Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Ap-
proximate dynamic programming for two-player zero-sum markov
games. In International Conference on Machine Learning, pages
1321–1329. PMLR, 2015.

[20] MA Pollatschek and B Avi-Itzhak. Algorithms for stochastic games
with geometrical interpretation. Management Science, 15(7):399–415,
1969.

[21] M. Puterman and M. C. Shin. Modified policy iteration algorithms for
discounted markov decision problems. Management Science, 24:1127–
1137, 1978.

[22] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv
preprint arXiv:1610.03295, 2016.

[23] L. S. Shapley. Stochastic games. Proceedings of the National Academy
of Sciences, 39(10):1095–1100, 1953.

7142

[24] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[25] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. CoRR,
abs/1712.01815, 2017.

[26] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[27] Gerald Tesauro and Gregory Galperin. On-line policy improvement
using monte-carlo search. Advances in Neural Information Processing
Systems, 9, 1996.

[28] J Van Der Wal. Discounted markov games: Generalized policy
iteration method. Journal of Optimization Theory and Applications,
25(1):125–138, 1978.

[29] Anna Winnicki, Joseph Lubars, Michael Livesay, and R. Srikant. The
role of lookahead and approximate policy evaluation in policy iteration
with linear value function approximation. CoRR, abs/2109.13419,
2021.

[30] Anna Winnicki and R. Srikant. Reinforcement learning with unbiased
policy evaluation and linear function approximation. In 2022 IEEE
61st Conference on Decision and Control (CDC), pages 801–806,
2022.

[31] Anna Winnicki and R. Srikant. A new policy iteration algorithm for
reinforcement learning in zero-sum markov games, 2023.

[32] Anna Winnicki and R Srikant. On the convergence of policy iteration-
based reinforcement learning with monte carlo policy evaluation.
Artificial Intelligence and Statistics, 2023.

[33] Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang.
Learning zero-sum simultaneous-move markov games using function
approximation and correlated equilibrium. In Conference on learning
theory, pages 3674–3682. PMLR, 2020.

[34] Yang Yang, Li Juntao, and Peng Lingling. Multi-robot path planning
based on a deep reinforcement learning dqn algorithm. CAAI Trans-
actions on Intelligence Technology, 5(3):177–183, 2020.

[35] Yaodong Yang and Jun Wang. An overview of multi-agent rein-
forcement learning from game theoretical perspective. arXiv preprint
arXiv:2011.00583, 2020.

[36] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent rein-
forcement learning: A selective overview of theories and algorithms.
Handbook of reinforcement learning and control, pages 321–384,
2021.

[37] Yulai Zhao, Yuandong Tian, Jason Lee, and Simon Du. Provably
efficient policy optimization for two-player zero-sum markov games.
In International Conference on Artificial Intelligence and Statistics,
pages 2736–2761. PMLR, 2022.

7143

