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Abstract— Over the last decade, there has been a signif-
icant increase in interest for techniques that can infer the
connectivity structure of a network of dynamic systems. This
article examines a flexible class of network systems and reviews
various methods for reconstructing their underlying graph.
However, these techniques typically only guarantee consistent
reconstruction if additional assumptions on the model are
made, such as the network topology being a tree, the dynamics
being strictly causal, or the absence of directed loops in the
network. The central theme of the article is to reinterpret these
methodologies under a unified framework where a graphical
notion of separation between nodes of the underlying graph
corresponds to a probabilistic notion of separation among
associated stochastic processes.

I. Introduction
Over the past decade, there has been a growing interest

in methodologies that can learn the unknown structure of a
network of dynamic systems from observed time series [1],
[2], [3], [4], [5], [6], [7]. These techniques cover a range
of scenarios, including the use of appropriately designed
inputs to recover the network topology, the knocking-out
of nodes, and assuming that the network is forced by
unknown, non-manipulable inputs. This article focuses on the
last scenario, known as network reconstruction under non-
invasive or passive observations. In this case, it is assumed
that the network is operating under standard conditions,
being excited by unknown forcing inputs, and only the
outputs corresponding to the network nodes are observable.
The article revisits previously known results for the non-
invasive identification of Linear Dynamic Influence Models
(LDIMs) and reinterprets these techniques under a unifying
framework.

Specifically, it shows that the techniques rely on a duality
between a probabilistic notion of separation defined on the
observed time series and a graphical notion of separation
based on the graph representing the network connectivity.
Once this duality is established, appropriate algorithms can
be created to obtain a consistent reconstruction. The article
also attempts to draw connections with other models, such
as Dynamic Structure Functions [8], dynamic Bayesian net-
works [9] and other input output description [10], [11], that
are semantically close or equivalent to LDIMs.

Notation
We use the following notation:
• e1, ..., en: unobserved wide-sense stationary signals;
• y1, ..., yn: observed wide-sense stationary signals;
• H(z): transfer matrix
• Φx: Power Spectral Density of a signal x;
• Φxw: Cross-Power Spectral Density of x and w.

Also, we use the following notation for subvectors. Index
subset notation for vectors
Let vT := (vT

1 |...|v
T
n ) be a vector defined by n subvectors,

v1, ..., vn, and let I := (i1, ..., inI ) be an ordered set of integers
in {1, ..., n}. We denote by vT

I := (vT
i1
|...|vT

inI
), the vector

obtained by considering the subvectors in v indexed by
(i1, ..., inI ).

II. Preliminary notions and problem formulation
In this section we introduce some preliminary notions for

the definition of a class of networks referred to as Linear
Dynamic Influence Models (LDIMs).

A. Basic notions of graph theory
Directed and undirected graphs are defined as follows.
Definition 1 (Directed and Undirected Graphs): A

directed graph G is a pair (V, E⃗) where V is a set of vertices
(or nodes) and E⃗ is a set of edges (or arcs) which are
ordered pairs of elements of V . An undirected graph G is
a pair (V, Ē) where V is a set of vertices (or nodes) and
Ē is a set of edges (or arcs) which are unordered pairs of
elements of V . □

y1

y2 y3

y4

y5

y6

y7

y1

y2 y3

y4

y5

y6

y7

(a) (b)
Fig. 1. A directed graph. (a) and its skeleton (b).

On directed graphs we also define “chains” and “paths”.
Definition 2 (Paths, Chains): Consider a directed graph

G = (V, E⃗) with vertices y1, ..., yn. A chain starting from yi
and ending in y j is an ordered sequence of distinct edges in E⃗
given by ( (yπ1 , yπ2 ), (yπ2 , yπ3 ), ... , (yπℓ−1 , yπℓ ) ) where yi = yπ1 ,
y j = yπℓ , and (yπp , yπp+1 ) ∈ E⃗ for all p = 1, ..., ℓ − 1. A path
between two vertices yi and y j is an ordered sequence of
distinct ordered pairs of nodes

( (yπ1 , yπ2 ), (yπ2 , yπ3 ), ... , (yπℓ−1 , yπℓ ) )

where yi = yπ1 , y j = yπℓ , and either (yπp , yπp+1 ) ∈ E⃗ or
(yπp+1 , yπp ) ∈ E⃗ for all p = 1, ..., ℓ − 1. □
As it follows from the definition, chains are a special case
of paths. All paths (and consequently also all chains) can be
suggestively denoted by separating the nodes in the sequence
{yπp }

ℓ
p=1 with the arrow symbol → if (yπp−1 , yπp ) ∈ E⃗ or the

symbol ← if (yπp , yπp−1 ) ∈ E⃗. For example, in Fig. 1(a), the
path y1 → y2 → y4 → y6 is also a chain, while y1 → y5 ←

y4 ← y3 is a path, but not a chain. Here we also say that,
there is a chain from vertex y1 to vertex y6 in the graph.
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From the concept of chain, we can derive the notions of
ancestry and descendance.

Definition 3 (Parents, children, ancestors, descendants):
Consider a directed graph G = (V, E⃗). A vertex yi is a parent
of a vertex y j if there is a directed edge from yi to y j. In
such a case y j is a child of yi. Also yi is an ancestor of y j
if yi = y j or if there is a chain from yi to y j. In such a case
y j is a descendant of yi. Given a set yI ⊆ V , we define the
following sets:

paG (yI) :=
{
w ∈ V | ∃ y ∈ yI : w is a parent of y

}
,

chG (yI) := {w ∈ V | ∃ y ∈ yI : w is a child of y} ,
anG (yI) := {w ∈ V | ∃ y ∈ yI : w is an ancestor of y} , and
deG (yI) := {w ∈ V | ∃ y ∈ yI : w is a descendant of y} .
We also define forks and colliders that ware certain

substructures of three consecutive nodes in a path.
Definition 4 (Forks and colliders): A path involving the

nodes yπ1 , ..., yπℓ has a fork at yπp , for 1 < p < ℓ, if yπp−1 and
yπp+1 are both children of yπp (that is yπp−1 ← yπp → yπp+1

appears in the path). A path has an inverted fork (or a
collider) at yπp if yπp−1 and yπp+1 are both parents of yπp (that
is yπp−1 → yπp ← yπp+1 appears in the path).

B. Wiener Filtering

The theory of Wiener filtering [12] provides a convenient
way to represent, in the limit of infinite data, the outcome
of linear regressions for the least square estimation of a
stochastic process using a set of other stochastic processes.
In this article we limit ourselves to causal Wiener filtering.

Definition 5 (Stable & Causal Transfer Functions): We
define F + as the space of causal transfer functions that are
real-rational with domain of convergence that includes the
complex unit circle. Namely, H(z) ∈ F + if there exists a
sequence {hk}

+∞
k=0

H(z) =
+∞∑
k=0

hkz−k for all |z| = 1.

Transfer functions can operate on stochastic processes to
definine linear spaces.

Definition 6 (Causal Transfer Function Space (ctfspan)):
Consider a vector of jointly wide-sense stationary signals
y = (y1, ..., yn) with rational power spectral density Φy. The
causal transfer function span (ctfspan) is defined as

ctfspan{y1, ..., yn} :=

q = n∑
i=1

Qi(z)yi | Qi(z) ∈ F +
 .

We provide a specific formulation of the causal Wiener filter.
Proposition 2.1: (Causal Wiener Filter for processes with

rational Power Spectral Density) Let x and y1, ..., yn be vector
processes that are jointly stationary with rational power
cross-spectral densities and rational auto-spectral densities.
Define y := (yT

1 |...|y
T
n )T and

X := ctfspan{y1, ..., yn}.

Consider the optimization problem

inf
q∈X

E[(x − q)T (x − q)] (1)

where, E[·], is the expectation operator. If Φy(eiω) ≻ 0,
for ω ∈ [−π, π], then the solution x̂y for (1) exists and is

unique and there is a unique rational transfer function Wx|y(z),
referred to as causal Wiener Filter, such that

x̂y = Wx|y(z)y.

Moreover, x̂y is the only element in X such that, for any
q ∈ X, E[(x − x̂y)q] = 0.

Proof: This is a result from standard Wiener filtering
theory. See [13].
Wiener filter Wx|y estimating the scalar signal x from y is
a row vector of transfer functions. In order to indicate the
component of Wx|y operating on some elements yI of y, we
introduce the following notation.

Definition 7: (Component notation for Wiener filter) Let
y = (y1, ..., yn) and I ⊆ {1, ..., n}. We denote with yI the
subvector of y with elements indexed by I. We use the
notation Wx,[yI ]|y to denote the vector of components of the
Wiener filter associated with the vector of signals yI in the
estimation of x. According to this notation, we have

Wx|y =
(
Wx,[y1]|y ,Wx,[y2]|y , ... ,Wx,[yn]|y

)
C. Linear Dynamic Influence Models

We now introduce a specific class of dynamic networks
defined by input-output relations among wide-sense station-
ary stochastic processes.

Definition 8 (Linear Dynamic Influence Models): A Lin-
ear Dynamic Influence Model (LDIM) is defined as a pair
(H(z), e) where
• e = (eT

1 |...|e
T
n )T is a vector of n wide-sense stationary

stochastic vector processes such that the cross-spectral
density matrix, Φeie j = 0, for i , j, and the auto-spectral
density matrix, Φe j (z), is rational and has full rank for
all |z| = 1 for j = 1, ..., n. Thus, the power spectral
density, Φe, is block diagonal and has full rank for all
|z| = 1.

• H(z) is a n×n-block matrix of rational and stable transfer
functions with H ji(z) being the ( j, i) block-entry of H(z)
where stability is given by the absence of poles on the
unit-circle.

The output processes, y j, for j = 1, .., n of the LDIM are
defined as

y j = e j +

n∑
i=1

H ji(z)yi, (2)

or in a more compact way y = e + H(z)y, where y =
(yT

1 |...|y
T
n )T . We say that the LDIM is well-posed if (I −

HII(z)) is invertible for all I ⊆ {1, ..., n}. The well-posedness
of a LDIM guarantees that y is wide-sense stationary.
In a more informal way, a LDIM is a network of stochastic
vector processes y1, ..., yn interconnected with each other via
input-output relations defined by the transfer functions pop-
ulating the transfer matrix H(z), where the vector processes
are also excited by independent stochastic process.

Definition 9: (Graphical representations of a LDIM and
its associated perfect directed graph (PDG)) Given a LDIM,
(H(z), e), with output processes y = (yT

1 |...|y
T
n )T and a directed

graph G = (V, E⃗) where V = {y1, ..., yn} we say that G is a
graphical representation of G if (yi, y j) < E⃗ implies H ji(z) =
0. If it also holds that H ji(z) = 0 implies (yi, y j) < E⃗, then
we say that G is the (unique) Perfect Directed Graph (PDG)
associated with the LDIM.
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Abusing the nomenclature we will sometimes refer to nodes,
edges, paths and chains of a LDIM even though, formally,
we should refer to them as nodes, edges, paths and chains
of its graphical representation or its PDG.

D. Connections with other models in the literature

The representation of the structure of a set of mathematical
relations via graphs has been used in several areas of science.
In particular it has been pioneered by Sewall Wright to
represent Structural Equation Models (SEMs) in statistics
[14], [15], [16] and since then has found widespread use
in the social sciences [17], [18], [19]. More recently SEMs
have been reinterpreted in terms of factorization of proba-
bility distributions and generalized in the form of “graphical
models” [20], [21]. However, SEMs and graphical models
only involve scalar static variables, so no time variable
is considered and there is no notion of dynamics. As a
consequence loops are not admitted in the resulting graph
representations.

LDIMs and their graphical representations (introduced
under the name of Linear Dynamic Graphs [22]) can be seen
as a linear extension of SEMs to include dynamics. Thus,
LDIMs are semantically equivalent to gaussian dynamic
Bayesian networks [9]. At the same LDIMs are very similar
to Signal Flow Graphs (SFGs) popularized by Mason [11],
[23] even though SFGs specifically deal with deterministic
signals and do not consider implicitely noise on each node.
The Dynamic Function Structure representation [8] defined
on the state-space to visualize the dynamic relation between
the subset of observed components of the state is another
very similar class of models with the only fundamental dif-
ference that considers only strictly causal transfer functions.
The network model introduced in [10] is again semanti-
cally equivalent to LDIMs and gaussian dynamic Bayesian
networks as well, but explicitly takes into account both
manipulable inputs and noise components. The results in
[10] are mostly about the identification of individual transfer
function and already assume the knowledge of the network
structure.

E. Problem Formulation

Assume that the output y = (y1, ..., yn) of a LDIM is ob-
served (equivalently the PSD Φy is known or estimated).
Find the graphical representation of the LDIM.

III. LDIMs with polytrees structure

Polytrees, often referred to as “directed trees”, are a
class of directed graphs which can be formally described
as follows.

Definition 10 (Polytrees): A polytree is a directed graph
such that there exists a unique path connecting each pair of
its nodes.
Figure 2 shows an instance of a polytree.

Fig. 2. An example of polytree.

The focus of this section is on techniques allowing for the
reconstruction of Linear Dynamic Polytrees.

Definition 11 (Linear Dynamic Polytree): We say that a
LDIM is a Linear Dynamic Polytree (LDP) if its graphical
representation is a polytree.

A technique for the consistent reconstruction of a LDP
from observed time series data obtained from its nodes is
described in [24]. The main result is based on the definition
of the following distance between stochastic processes

Definition 12 (Coherence Metric): Given two jointly
wide-sense stationary processes yi and y j we define the
distance

d(yi, y j) =
1

2π

∫ π
−π

1 −
∣∣∣Φyiy j (e

iω)
∣∣∣2

Φyi (eiω)Φy j (eiω)

 dω. (3)

The introduction of a distance on a set of stochastic
processes makes such a set a metric space where a notion of
separation can be defined as follows.

Definition 13 (Neighbor-separation): Given a metric
space with a distance d(·, ·), two elements yi and y j in the
metric space are neighbor-separated by a point yk if

d(yi, yk) < d(yi, y j) and
d(y j, yk) < d(yi, y j).

We denote this relation as nsep(yi|yk |y j).
In other words, two elements yi and y j are separated by yk
if the distance of yk from both yi and yi is smaller than the
distance between yi and y j themselves.

At the same time a path-based notion of separation be-
tween two nodes in a graph is the following.

Definition 14 (Path separation): Consider a graph G =

(V, E⃗). We say that yi and y j are path separated by yk if
yk is on every path from yi to y j.
It is quite straightforward to find examples where neighbor-
separation defined by the distance (3) and path-separation do
not match for the output processes y1, ..., yn of a LDP.

Example 1: Consider the LDP

y1 = e1

y2 = e2

y3 = y1 + y2 + e3

y4 = y3 + e4

where Φe1 (z) = Φe2 (z) = Φe3 (z) = Φe4 (z) = 1. The graphical
representation of this LDP is represented in Figure 3 along
with the distances between each pair of nodes. As shown in

y1 y2y3

y4

d(y1, y3) =
1
2 d(y2, y3) =

1
2

d(y1, y4) =
2
3 d(y2, y4) =

2
3

d(y1, y2) = 1

d(y3, y4) =
1
3

Fig. 3. A LDP where the notions of neighbor-separation and path-
separation do not match.

Figure 3, we have nsep(y1|y4|y2), but y4 is not on the path
from y1 to y2.

However, a connection between the notion of neighbor-
separation and path-separation can still be established.
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Proposition 3.1: Consider a Linear Dynamic Influence
Polytree T = (H(z), e) with outputs (y1, ..., yn). We have that
• ∃!yk such that nsep(yi|yk |y j) implies yk is the only

element on the path from yi and y j
• d(yi, yk) ≤ d(yℓ, yk) for all ℓ , i, k and yk is the

only element on the path from yi and y j implies that
nsep(yi|yk |y j).
Proof: From Theorem 8 in [25], the minimum spanning

tree defined on the nodes according to distance (3) gives the
graphical representation of the LDIM. Then the proof follows
from the properties of minimum spanning trees: if yi and y j
are not directly connected in the minimum spanning tree, if
and only if the path connecting them contains at least a third
node yk. Since paths in minimum spanning trees are shortest
paths, such a third node yk is closer to both yi and y j more
than yi and y j are close to each other. If yk is unique, then
it is the only node on the path from yi to y j.
Under certain conditions Proposition 3.1 provides an equiv-
alence between neighbor-separation and path-separation in
a LDP: if yi is the closest element to yk, then yk is the
only element such that nsep(yi|yk |y j) if and only if yk is
the only element that path-separates yi and y j. Thus, the
results of Proposition 3.1 suggest an algorithm for the
reconstruction of the skeleton of LDP from data: compute
the coherence distance among the observed time series; test
if there is exactly one node yk such that nsep(yi|yk |y j) and
in such a case conclude that {yi, yk} and {y j, yk} are in the
skeleton of the LDP; apply this to all node pairs yi,y j.

Neighbor Reconstruction Algorithm:

1. Input: (V, d)
where V = {y1, ..., yn} is the ordered set of nodes and
d(yi, y j) is a distance between yi and y j.

2. Initialize E = ∅
3. For each pair yi, y j ∈ V

– if ∃!yk such that nsep(yi|yk |y j)
add {yi, yk} and {y j, yk} to E

4. Output (V, E)

Proposition 3.2: Consider a Linear Dynamic Influence
Polytree T = (H(z), e) with nodes (y1, ..., yn) and define the
coherence distance (3) on such nodes. Neighbor Reconstruc-
tion Algorithm outputs the skeleton of T . Furthermore, the
Neighbor Reconstruction Algorithm output is the Minimum
Spanning Tree of the complete graph defined on the nodes
(y1, ..., yn) with weights given by (3).

Proof: The proof follows from Proposition 3.1. When
yk is the only node nsep-arating yi and y j according to
the distance (3), then the edges yi-yk and y j-yk are in the
undirected structure of the polytree. Once Step 3. is run on
all pairs yi and y j, the algorithm outputs the full skeleton.

IV. Strictly causal networks

We can obtain strong results for the reconstruction of a
LDIM when it is known that the dynamics on each edge is
strictly causal.

Definition 15 (Strictly Causal LDIM): A LDIM G =
(H(z), e) is strictly causal if each entry of H(z) is strictly
causal.

On a generic graph we define the notion of ancestor-
separation. The following notion of separation is quite in-
tuitive.

Definition 16 (ancestor-separation): Given a directed
graph G = (V, E⃗), we say that the node yi is ancestor-
separated from the node y j by a set yZ if every path with
no inverted forks from yi to y j has at least one element in
Z. We denote this relation as ancsep(yi → yZ → y j).
Figure 4 illustrates ancestor-separation through few exam-
ples. Observe that, contrary to path-separation, ancestor-

y1 y2

y3
y4

y5
y6

y7
y8

y9

Fig. 4. Observe that ancsep(y1 → {y3, y7} → y9) and ancsep(y6 → y9 →
y2). Also, we have that y3 does not ancestor-separate y8 from y1 because
of the chain y1 → y2 → y4 → y5 → y6 → y7 → y8.

separation is not symmetric since ancsep(yi → yZ → y j)
does not necessarily imply ancsep(y j → yZ → yi).

ancestor-separation is a relation defined on the nodes of
a graph. Also observe that there is no edge from yi to y j
if and only if ancsep(yi → yZ → y j) for Z = {y1, ..., yn} \

{yi, y j}, namely y j is ancestor-separated from yi by all the
other nodes.

In order to proceed according to the same approach
followed in the previous section we need to define a proba-
bilistic notion of separation among stochastic processes and
obtain conditions under which the graphical notion and the
probabilistic notions are equivalent.

The probabilistic notion that we introduce now is based
on Granger-causality [26]. Granger causality is a widespread
tool to infer the connectivity structure of a network of
dynamic systems. Granger causality and derived methods test
if past observations of a process yi are useful in predicting
the present observation of a process y j, given full information
about the past of all other processes. If such a test is positive,
a causal relation from yi to y j is then identified, otherwise it
is concluded that yi does not cause y j. Using the formalism
provided by causal Wiener filters, a notion of separation
that we refer to as Granger-separation, can be expressed as
follows.

Definition 17 (Granger-separation): Given a vector of n
wide sense stationary processes y = (y1, ..., yn), we say that
y j is Granger-separated from yi by yZ , for Z ⊆ {1, ..., n}\{i, j},
if the past of yi, namely 1

z yi, is not useful to estimate y j

when the past of yZ , namely 1
z yZ , and the past of y j, namely

1
z y j are available. Using the Wiener filter formalism, this is
equivalent to

Wy j

[
1
z yi

]
| 1z (yi,y j,yZ ) = 0,

and we denote this with gsep(yi → yZ → y j)
In other words, Granger-separation means that, in order to
make a one-step ahead prediction for y j using the past of
the signals yZ , y j and yi, the information from the past of
yi is not needed. When considering yZ = {y1, ..., yn} \ {yi, y j},
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we immediately have that testing gsep(yi → yZ → y j) is
equivalent to the standard Granger causality test.

Proposition 4.1: (Equivalence between Granger causality
and ancestor-separation) Consider a strictly causal LDIM
G = (H(z), e) with perfect representation G = (V, E⃗). We
have that

ancsepG(yi → yZ → y j) ⇔ gsep(yi → yZ → y j).
Proof: The proof makes use of the Wiener filter for-

malism for extending Granger causality in [27]. Specifically,
the extension of Granger-causality of Theorem III.3 in [27]
can be combined with Theorem III.2 in [28] after observing
that if the set Z ancestor-separates yi and y j, then the Z
is also meeting Definition 6 in [28]. The application of
Theorem III.2 in [28] then gives the results.
Proposition 4.1 provides an immediate way to infer the
graph underlying a strictly causal LDIM: compute the linear
regression of y j on the past of all signals, 1

z y; and, if the
coefficients associates with yi are significantly different from
zero, draw an edge from yi to y j. A similar result, that
can provide also the spectral factor of the forcing input, is
known in the literature of DSF [29]. However, the basic
results is that Granger-causality tests return the graph of
strictly causal LDIM suggesting the following algorithm.

Granger-causality Reconstruction Algorithm:

1. Input V where V = {y1, ..., yn} is the ordered set of
signals

2. Initialize E⃗ = ∅.
3. For each pair yi, y j ∈ V

– if Wy j

[
1
z yi

]
| 1z y = 0 then add (yi, y j) to E⃗

5. Output (V, E⃗)

This algorithm is substantially equivalent to the reconstruc-
tion algorithm for DSF networks described in [29], where
linear regressions in the time domain are used instead of
Wiener filters.

V. Directed acyclic graphs
The results from the previous section consider very generic

structures which can contain feedback loops as well. At the
same time, they rely on relatively strong assumptions on the
dynamics of the systems since each transfer function in the
LDIM needs to be strictly causal. In this section we focus on
results where, contrary to Section IV, the dynamics of the
network is not required to be strictly causal and, contrary
to Section III, the structure of the network is not as simple
as a tree. Specifically, we consider LDIMs with graphical
representations given by Directed Acyclic Graphs (DAGs),
a widely adopted class of graphs in the theory of graphical
models.

Definition 18 (Directed Acyclic Graphs): A directed
graph (V, E⃗) is a Directed Acyclic Graph (DAG) if it has no
directed loops.
The definition of a Directed Acyclic LDIM is straightfor-
ward.

Definition 19 (Directed Acyclic LDIM): A LDIM G =
(H(z), e) is directed and acyclic if its graph representation
is a DAG.

Following again the same approach considered in the two
previous sections we will define a notion of separation on

the graphical representation of the LDIM and a probabilistic
notion of separation on the stochastic processes associated
with the LDIM nodes. The graphical notion of separation
in this case is slightly more complicated and requires the
definition of forks and colliders on a path. The following
definition introduces a notion of separation on subsets of
vertices in a directed graph [20].

Definition 20 (d-separation and d-connection): Consider
a directed graph G = (V, E⃗) and three mutually disjoint sets
of vertices yI , yZ , yJ ⊆ V . The set yZ is said to d-separate yI
and yJ if for every yi ∈ yI and y j ∈ yJ all paths between yi
and y j meet at least one of the following conditions:

1) the path contains a node yz ∈ yZ that is not a collider
2) the path contains a collider yk such that neither yk nor

its descendants belong to yZ .
If yZ d-separates yI and yJ in the graph G, we write
dsepG(yI , yZ , yJ). Otherwise we write ¬dsepG(yI , yZ , yJ) and
say that yZ d-connects yI and yJ .
The notion of d-separation is one of the most fundamental
concepts in graphical models. In Figure 5 we have used a
simple graph to illustrate d-separation via few examples re-
ported in the caption. An interesting property of d-separation

y1 y2

y3

y4 y5

y6

y7

Fig. 5. Illustration of d-separation. The node x2 is a fork on the path from
x1 to x5 thus it blocks the path between x1 and x5, namely x2 d-separates
x1 and x5. The node x4 is a chain link on the path from x2 to x6, thus it
d-separates x2 and x6. The node x5 is a collider on the path between x3
and x7. Since x6 is a descendant of the collider x5, we have that neither x5
nor x6 d-separate x3 and x7. However, the empty set d-separates x3 and x7
because of the collider x5.

is that, in a DAG, two nodes are not directly connected by
an edge if and only if there is a set yZ that d-separates them.

Proposition 5.1: Let G⃗ = (V, E⃗) be a DAG and let G =
(V, E) be its skeleton. We have that {yi, y j} < E if and only
if ∃yZ : dsep(yi, yZ , y j).

Proof: The necessity is obtained by inspection by
choosing Z as the union of set of parents of yi and the set of
parents of y j. conversely we get the sufficiency by observing
that, if there is an edge between yi and y j, the path associated
with that edge cannot be d-separated by any set Z.
In the case of LDIMs with DAG structure, as a probabilistic
notion of separation, we define Wiener-Hopf-separation.

Definition 21: (Wiener-separation) Given a vector of n
wide sense stationary processes y = (y1, ..., yn), we say that
yi and y j are Wiener-Hopf-separated from yi by yZ , for
Z ⊆ {1, ..., n} \ {i, j}, if yi is not useful to estimate y j when
yZ is available. Using the Wiener filter formalism, this is
equivalent to

Wy j[yi]|(yi,yZ ) = 0,

and we denote this with whsep(yi → yZ → y j).
We recall a result from [30] stating that d-separation in
the DAG G underlying the LDIM implies Wiener-Hopf-
separation.

Theorem 5.2 (Theorem 24 in [30]): Consider a LDIM
G = (H(z), e) with graphical representation given by a
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DAG G = (V, E⃗). We have that dsepG(yi, yZ , y j) implies
wsep(yi, yZ , y j).

Proof: See [30].
The inverse implication (Wiener-Hopf-separation implies d-
separation in a DAG) is not always true. When such impli-
cation holds we say that the DAG G is faithful to the LDIM.

Definition 22 (Faithfulness): We say that a LDIM is faith-
ful to its graphical representation G if wsep(yi, yZ , y j) implies
dsepG(yi, yZ , y j).
As discussed in [31] and [32], faithfulness is a very
mild assumption verified in virtually all practical
applications. Indeed, consider a class of LDIMs with
the same graphical representation where the transfer matrix
H(z) has each entry is parameterized according to the
coefficients of of the polynomial at its numerator and
its denominator, a basic results of [31] (see Theorem
V.1 therein) is that a Lebesgue measure zero set of
parameters give an unfaithful network. Thus, under the
mild assumption of faithfulness, Wiener-Hopf-separation
and d-separation are equivalent and the standard algorithm
that exploits the equivalence between d-separation and
a probabilistic notion of separation to reconstruct the
skeleton of a graph is the Peter-Clark Algorithm invented
by Peter Spirtes and Clark Glymour [33]. We report
a variation of the Peter-Clark Algorithm for LDIMs.

Peter-Clark Reconstruction Algorithm for
LDIMs:

1. Input V where V = {y1, ..., yn} is the ordered set of
signals

2. Initialize E = V × V .
3. For each pair yi, y j ∈ V , with yi , y j

– search for yZ ⊆ V \ {yi, y j} such that dsep(yi|yZ |y j)
– if yZ exists, remove (yi, y j) from E

4. Output (V, E)

Conclusions
Various methods have been proposed in the literature to

recover the network structure of Linear Dynamic Influence
Models or similar mathematical descriptions, using addi-
tional a-priori knowledge about the network model, such
as the topology being a tree or the dynamics being strictly
causal. By considering a probabilistic notion of separation
and a graphical notion of separation, the methods reviewed
in this article have been reinterpreted in terms of a duality
property. This duality property allows for the development
of algorithms that can reconstruct the topology of particular
network classes.
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[8] J. Gonçalves and S. Warnick, “Necessary and sufficient conditions for
dynamical structure reconstruction of lti networks,” Automatic Control,
IEEE Transactions on, vol. 53, no. 7, pp. 1670–1674, 2008.

[9] K. P. Murphy, “Dynamic bayesian networks,” Probabilistic Graphical
Models, M. Jordan, vol. 7, 2002.

[10] P. M. Van den Hof, A. Dankers, P. S. Heuberger, and X. Bombois,
“Identification of dynamic models in complex networks with predic-
tion error methods—basic methods for consistent module estimates,”
Automatica, vol. 49, no. 10, pp. 2994–3006, 2013.

[11] S. J. Mason, “Feedback theory-some properties of signal flow graphs,”
Proceedings of the IRE, vol. 41, no. 9, pp. 1144–1156, 1953.

[12] N. Wiener, Extrapolation, interpolation, and smoothing of stationary
time series. MIT press Cambridge, MA, 1949, vol. 2.

[13] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice
Hall, 2000, no. EPFL-BOOK-233814.

[14] S. Wright, “Correlation and causation,” Journal of agricultural re-
search, vol. 20, no. 7, pp. 557–585, 1921.

[15] ——, “The method of path coefficients,” The Annals of Mathematical
Statistics, vol. 5, no. 3, pp. 161–215, 1934.

[16] ——, “Path coefficients and path regressions: alternative or comple-
mentary concepts?” Biometrics, vol. 16, no. 2, pp. 189–202, 1960.

[17] A. S. Goldberger, “Structural equation methods in the social sciences,”
Econometrica: Journal of the Econometric Society, pp. 979–1001,
1972.

[18] K. A. Bollen and J. S. Long, Testing structural equation models. Sage,
1993, vol. 154.

[19] R. H. Hoyle, Structural equation modeling: Concepts, issues, and
applications. Sage Publications, 1995.

[20] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[21] ——, Causality. Cambridge university press, 2009.
[22] D. Materassi and M. Salapaka, “On the problem of reconstructing

an unknown topology via locality properties of the wiener filter,”
Automatic Control, IEEE Transactions on, vol. 57, no. 7, pp. 1765–
1777, 2012.

[23] S. J. Mason, “Feedback theory: Further properties of signal flow
graphs,” 1956.

[24] D. Materassi, “Reconstruction of topologies for acyclic networks of
dynamical systems,” in American Control Conference (ACC), 2011.
IEEE, 2011, pp. 37–41.

[25] F. Sepehr and D. Materassi, “Noninvasive approximation of linear
dynamic system networks using polytrees,” IEEE Transactions on
Control of Network Systems, vol. 8, no. 3, pp. 1314–1323, 2021.

[26] C. Granger, “Investigating causal relations by econometric models and
cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, 1969.

[27] M. Dimovska and D. Materassi, “A control theoretic look at granger
causality: extending topology reconstruction to networks with direct
feedthroughs,” IEEE Transactions on Automatic Control, vol. 66, no. 2,
pp. 699–713, 2020.

[28] S. Jahandari and D. Materassi, “Sufficient and necessary graphical
conditions for miso identification in networks with observational data,”
IEEE Transactions on Automatic Control, vol. 67, no. 11, pp. 5932–
5947, 2021.

[29] Z. Yue, J. Thunberg, W. Pan, L. Ljung, and J. Gonçalves, “Linear
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