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Abstract— In this paper, we propose a comprehensive solution
for 3-D active target tracking with multiple robots in a fully
distributed setting. Here multiple robots cooperatively estimate
their own states and the target’s state and actively plan
their motions to achieve better estimation of the target. For
cooperative localization and target state estimation, each robot
maintains a state vector consisting of its own state, the target’s
state, and its own cloned history states. The challenge of
localizing moving robots in 3-D is addressed by using multi-
robot cooperative visual-inertial odometry algorithm, which
improves the estimation accuracy by using environmental com-
mon feature measurements. Each robot’s target measurement
(if available) and its neighbors’ target estimators are then
exploited for estimation updates. To preserve and update the
correlations between the target and robot states while limiting
the influence of bad target estimates on localization accuracy,
the Schmidt-Kalman Filter framework is adopted. For motion
planning, a gradient-based approach that uses differentiable
field-of-view and potential functions is employed to achieve
efficient and accurate active target tracking while avoiding
collisions and maintaining communication connectivity. Numer-
ous simulations show that our proposed algorithm provides an
accurate and efficient solution for cooperative localization and
active target tracking.

I. INTRODUCTION

Multi-robot systems that can cooperatively localize them-
selves and track targets have numerous applications in
surveillance, rescue, and autonomous driving. All the appli-
cations will benefit from the active motion planning of the
robots known as the active target tracking problem, where the
robots equipped with sensors actively plan their trajectories
to achieve better estimation of the target.

The literature provides significant attention to the active
target tracking problem. The multi-robot target tracking
studies in [1]–[5] design centralized control policies. Decen-
tralized control policies are designed in [6], [7] but require
multi-hop communication. On the other hand, [8] proposes a
flocking-based mobility control model based on the Kalman
consensus filter framework to minimize the uncertainty of
the target, but the estimation framework requires joint local
observability and is limited to 2-D scenarios. Additionally,
most of the aforementioned works assume that the robots’
states are perfectly known and the control model of the robot
is deterministic.

To actively estimate the target state in an efficient way,
fully distributed target state estimation is necessary (see [9]
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and references there). However, these algorithms assume
that the robot states are static and known. If the robots are
moving in the environment, it is crucial to localize them
accurately to achieve successful target tracking. Multi-robot
simultaneous localization and mapping (SLAM) algorithms,
such as those proposed by [10] and [11], can be used for
this purpose. However, such algorithms, especially the map-
ping part, are computationally intensive and not well-suited
for the efficient active target tracking problem. To localize
multiple robots using resource-limited platforms, cooperative
visual-inertial odometry (CVIO) algorithms can be utilized.
The CL-MSCKF algorithm proposed by [12] uses common
feature measurements to improve the localization accuracy
under the multi-state constrained Kalman filter (MSCKF)
framework but in a centralized formulation. More recently,
[13] proposes a new CVIO algorithm, which utilizes common
feature measurements in a distributed manner. However, all
of these localization algorithms do not plan the robots’
motions to actively track the target.

Several works have addressed the active joint localization
and target tracking (AJLATT) problem, which involves the
self-localization of robots and the active tracking of a target.
Refs. [14], [15] propose centralized methods while [16]
relies on all-to-all communications for solving the problem.
Ref. [17] proposes an algorithm that allows decentralized
implementation. However, multi-hop communication will be
required, rendering it not fully distributed. Our previous work
[18] proposes a distributed optimization-based active target
tracking algorithm. However, the use of grid search results
in heavy computational costs.

In this paper, we present a novel algorithm that inte-
grates cooperative estimation and active motion control. To
use environmental features for updating the state vector
containing each robot’s own localization state and the tar-
get state, we employ the CVIO algorithm, which allows
the robots to update their estimates based on IMU and
camera measurements. To use the target measurements or
the neighbors’ target estimators while ensuring that these
measurements do not negatively affect localization accuracy,
we use the Schmidt-Kalman Filter (SKF) framework, which
updates the correlations between the target and robot states
but does not update the localization part. For planning the
robots’ motions, we adopt a gradient-based approach that
is based on the current and predicted state estimates. We
utilize the differentiable field-of-view [19] for minimizing
the uncertainty, and potential functions for communication
maintenance and collision avoidance. Overall, we offer a
distributed solution that is both accurate and efficient for 3-D
multi-robot cooperative estimation and active target tracking.
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II. PRELIMINARIES

A. Problem Formulation

Consider a team of N robots, represented by the set
V . Each robot is equipped with a monocular camera and
an IMU. Each camera has a fixed field of view of a
pyramid shape, where the camera is located at the apex.
The communication range of each robot is given by ν̄. The
task of the robots is to cooperatively estimate their own
poses and the target pose, and in the meantime, actively
plan their trajectories to track the target, utilizing their own
measurements of the environmental features and the target
(if available) and information obtained through one-hop
communication neighbors.

B. Modeling of Motions and Measurements

For the purpose of localization, each robot is modeled by
the typical IMU dynamics given by

Ii
G
˙̄q =

1

2

[
−(IωIi)× (IωIi)×
−(IωIi)

⊤
× 0

]
Ii
G q̄,

GṗIi =
GvIi ,

Gv̇Ii =
Ii
GR⊤IaIi ,

ḃaIi
= nb,ai

, ḃωIi
= nb,ωi

,

(1)

where Ii
G q̄ is the quaternion in JPL format representing the

rotation from the global frame G to robot i’s IMU frame Ii,
Ii
GR is the rotation matrix formulation of the quaternion Ii

G q̄,
Gpi and Gvi are, respectively, the position and velocity of
IMU in the global frame, IωIi and IaIi denote, respectively,
the angular velocity and linear acceleration of the IMU
represented in its own IMU frame, baIi

and bωIi
denote the

biases of the IMU accelerometer and gyroscope, respectively,
and nb,ai

and nb,ωi
are white Gaussian noises.

In active target tracking, we need to plan the motion of
each robot. For simplicity, we adopt the kinematic model for
motion planning to plan the IMU frame angular velocity IωIi

and linear velocity IvIi to guide the robot’s movements. In
applications, low-level control commands can be involved to
implement IωIi and IvIi . The kinematic motion model based
on IωIi and IvIi can be represented as

Ii
G
˙̄q =

1

2

[
−(IωIi + nωi)×

IωIi + nωi

−(IωIi + nωi)
⊤ 0

]
Ii
G q̄,

GṗIi =
Ii
GR

⊤
(IvIi + nvi),

(2)

where nωi
and nvi

are white Gaussian noises representing the
fact that the velocity commands might not be implemented
accurately. Note that (1) is the model used for the state
estimation, and (2) is used for the motion planning.

Each robot’s camera can capture environmental features as
well as the target feature if they are inside its field of view.
Consider a feature with position Cipkf = [xi,k, yi,k, zi,k]

⊤ ob-
served in the camera frame of robot i at time tk. The camera
projection function is given by Hp(

Cipkf ) =
1

zi,k
[xi,k, yi,k]

⊤.
Robot i’s camera measurement of this feature is given by

zmi,k = Hp(
Ci

Ii
R Ii,k

G R(Gpf − GpIi,k) +
CipIi) + ni,k, (3)

where ni,k denotes the white Gaussian noise that corresponds
to the measurement.

III. PROPOSED ALGORITHM

In this section, we describe our algorithm for 3-D coop-
erative target state estimation and active target tracking.

A. Cooperative Localization and Target State Estimation

1) Propagation and Cloning for Localization and Target
State Estimation: Robot i’s state vector at timestep tk,
denoted as xi,k, is defined by

xi,k = [x⊤Ii,k, x
⊤
T,k, x

⊤
Ci,k]

⊤,

xIi,k = [Ii,kG q̄⊤, Gp⊤Ii,k,
Gv⊤Ii,k, bai,k, bωi,k]

⊤,

xT,k = [
IT,k

G q̄⊤, Gp⊤T,k,
Gv⊤T,k]

⊤,

xCi,k = [Ii,k−c
G q̄⊤, Gp⊤Ii,k−c · · ·

Ii,k−1
G q̄⊤, Gp⊤Ii,k−1].

where xIi,k is robot i’s IMU state, xT,k is the target state,
xCi,k

is the cloned history IMU poses when features are
observed by robot i’s camera.

Each robot estimates its own state and maintains an
estimate of the target. The error state Kalman filter will be
used. Throughout the remainder of the paper, we use x̂ to
denote the estimate of x, and x̃ to denote the estimation error.
For the orientation error, we use a minimum 3-dimensional
representation, denoted as θ̃, which satisfies Exp(θ̃Ii,k) =
Ii,k
G R̂

⊤Ii,k
G R, or θ̃Ii,k = Log(Ii,kG R̂

⊤Ii,k
G R), with Exp and

Log representing the exponential and logarithm map of
SO(3). For other variables, we use the standard additive error
definition (e.g. Gp̂Ii,k + Gp̃Ii,k = GpIi,k).

When robot i’s camera captures an image at timestep tk,
the IMU measurements received over time are collected and
utilized to propagate the state estimate x̂i,k−1|k−1 to x̂i,k|k−1

based on the IMU dynamics (1) from k − 1 to k. Robot i’s
target state estimate x̂Ti,k|k−1 is propagated from x̂Ti,k−1|k−1

analogously according to the target model analogous to (1).
The subscript k|k− 1 denotes the prediction of the estimate
at timestep tk given the measurement up to timestep tk−1.
we can also compute the state transition matrix for the error
state vector x̃i,k as Φi,k. The covariance propagation can be
calculated as Pi,k|k−1 = Φi,kPi,k|k−1Φ

⊤
i,k + Ui,k, where

Ui,k denotes the discrete-time noise covariance for the IMU
measurement from timestep tk−1 to tk.

After the propagation step, the clone state vector xCi,k

is augmented by appending a copy of the current estimated
robot’s IMU pose.

2) Environmental Features Measurements Update: At
timestep tk, robot i receives its camera measurement of
environmental features, as well as from its neighbors. If
the measurement of one environmental feature from the
robot itself and any of its neighbors are matched, i.e., the
same feature is captured, this feature is classified as a
common feature. Otherwise, the feature will be classified
as an independent feature. If a feature is a common feature,
robot i will store its neighbors’ estimated states, estimated
covariances, and measurements.
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To update an independent feature, we will use the standard
MSCKF update [20]. On the other hand, if this feature is
a common feature, we will also utilize the measurements
from the neighbors by following the CVIO update technique
[13]. Denote the updated covariance as Pi,k|k, and the state
correction term as δxi,k which is used to update x̂i,k|k−1

to obtain x̂i,k|k. It is worth noting that as the covariance
estimate Pi,k|k−1 contains the cross-correlations between
the robots’ localization and target estimates within the state
vector x̂i,k|k−1, the target state estimate is also updated.

3) Target Measurement Update: When a robot captures
an image with the target in the field of view, the robot will
update its state estimate x̂i,k|k using the target measurement.
The linearized residual system corresponding to the target
measurement can be calculated as

rT,i,k = HT,i,kx̃i,k|k + nT,i,k, (4)

where rT,i,k denotes the residual of the measurement, HT,i,k

is the linearized Jacobian matrix, and nT,i,k denotes mea-
surement noise. Note that in HT,i,k, the columns corre-
sponding to x̃Ci,k are all zero. From (4), one idea is to
directly update using EKF. However, as the localization
from the environmental features update is more accurate
than the target state estimation, to avoid the bad influence
of the less accurate target estimate on the localization,
we propose to utilize the SKF to update the estimator
by using (4). The SKF can provide a consistent estima-
tion result by only updating part of the state. We pro-
pose to only update the target estimation part by using
the target measurement. The Kalman innovation ST,i,k can
be calculated as ST,i,k = HT,i,kPi,k|kH

⊤
T,i,k + RT,i,k,

where RT,i,k denotes the covariance matrix associated with
nT,i,k. The traditional Kalman gain Ktra

T,i,k is calculated
as Ktra

T,i,k = Pi,k|kH
⊤
T,i,kS

−1
T,i,k, which can be written as

Ktra
T,i,k = [. . . ,K⊤

Ti,k
, . . . ]⊤, where KTi,k denotes the rows

that correspond to the target error state x̃Ti,k|k. Using the
SKF idea, we set the rows in Ktra

T,i,k other than KTi,k to be
zeros. The Kalman gain for the SKF can be written as

Kskf
T,i,k = [0⊤,K⊤

Ti,k,0
⊤]⊤, (5)

where 0 denotes the zero matrices of the same dimension
corresponding to the matrix blocks in Ktra

T,i,k. The error state
correction term δx̃T,i,k is then calculated as

δx̃i,k = Kskf
T,i,krT,i,k, (6)

and the covariance is updated as

P+
i,k|k =(I−Kskf

T,i,kHT,i,k)Pi,k|k(I−Kskf
T,i,kHT,i,k)

⊤

+Kskf
T,i,kRT,i,kK

skf
T,i,k

⊤
,

(7)

where the superscript + means that Pi,k|k is updated to a
new value. In essence, only the estimate of xTi,k in xi,k
is updated while the other parts remain unchanged. The
sub-blocks in Pi,k|k corresponding to x̃Ti,k, as well as its
correlation with other states, are updated, while the sub-
blocks corresponding to x̃Ii,k and x̃Ci,k are unchanged.

If the robot does not see the target in the current field of
view, the neighbor estimator fusion step is triggered, which
updates the current estimate of robot i’s state and covariance
by using its neighbors’ latest estimate of the target. The
SKF is also used to allow less influence on the localization
estimate. If any of the neighbors has a measurement of the
target at the current timestep, that neighbor should perform
its own target measurement update first before sending its
target estimate to robot i.

After robot i receives its neighbors’ current estimates
of the target, we perform the SKF update on robot i
by treating the neighbors’ current estimates of the tar-
get as measurements, and their error state covariances as
the measurements noises. Denote robot i’s neighbors as
j1, j2, . . . , jM . Specifically, for any neighbor jm, it has a
latest estimator of the target (x̂Tjm ,k|k,PTjm ,k|k), where
PTjm ,k|k is the sub-block that corresponds to the target’s
error state in jm’s latest covariance estimate. The linearized
residual system can be written as ri,jm,k = HT,i,jm,kx̃i,k|k−
x̃Tjm ,k|k, where the entries of position and velocity of the
target in x̃Tjm ,k|k is calculated by the standard subtrac-
tion as, respectively, Gp̂Tjm ,k|k − Gp̂Ti,k|k and Gv̂Tjm ,k|k −
Gv̂Ti,k|k, the entries of the orientation error is calculated

as Log((
ITi,k|k
G R)(

ITjm
,k|k

G R)⊤), and HT,i,jm,k = [0, I,0],
with the dimension of the identity matrix I corresponding
to that of the target error state. By stacking the linearized
residuals for all jm, where m = 1, 2, . . . ,M , we obtain a
new system as ri,j,k = HT,i,j,kx̃i,k|k − x̃nTj ,k|k, where ri,j,k
and HT,i,j,k are obtained by stacking ri,jm,k and HT,i,jm,k

for all neighbors of agent i. It is important to note that
x̃Tj ,k|k is subject to influence from other robots’ estimates
because each robot may have used other robots’ estimates to
update its own estimator in previous timesteps. As a result,
x̃Tjm ,k|k (m = 1, 2, . . . ,M), whose covariance matrices are
PTjm ,k|k, defining neighbors’ target estimate covariances,
are generally correlated with each other, as well as robot
i’s own error state x̃i,k|k, with unknown correlations. Thus,
the covariance intersection (CI) algorithm [21] is applied to
ensure consistency:

P̂T,j,k = Diag(
1

wT,j1,k
PTj1,k|k , . . . ,

1

wT,jM ,k
PTjM ,k|k , )

P+
i,k|k =

1

wT,i,k
Pi,k|k

(8)
where wT,i,k and wT,jm,k denote the CI weights satisfying
wT,i,k ≥ 0, wT,jm,k ≥ 0, and wT,i,k +

∑M
m=1 wT,jm,k =

1. The Kalman innovation is calculated as ST,i,j,k =
HT,i,j,kP

+
i,k|kH

⊤
T,i,j,k+P̂T,j,k, The traditional Kalman gain

is calculated as Ktra
T,i,j,k = P+

i,k|kH
⊤
T,i,j,kS

−1
T,i,j,k. To make

use of the SKF to update the estimate of the target at robot
i, we adopt a similar approach to that in (5) to construct
Kskf

T,i,j,k. Then the error state and covariance update can be
written analogously as (6) and (7).
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B. Active Target Tracking

After the measurements update step, the control inputs are
generated at each robot in order to actively track the target
at timestep tk. The planning horizon is given as Z. Based on
the predicted robot’s state as a function of its control inputs,
the motion of the robot can be designed such that the robot
is able to follow the target and have the target in its field of
view effectively.

Let ui,k = [Iω⊤
Ii,k

, Iv⊤Ii,k]
⊤. At the first timestep, i.e.

k = 0, the initial control inputs from timestep tk to tk+Z−1,
denoted as [u⊤

i,k, u
⊤
i,k+1, . . . , u

⊤
i,k+Z−1]

⊤, are generated ran-
domly. At k > 0, to initialize the control inputs from tk
to tk+Z−1, the first Z − 1 entries are inherited from the
calculated results in the previous timestep tk−1, and the
last entry ui,k+Z−1 is generated randomly. Define x̄i,k =

[
Ii,k|k
G

ˆ̄q
⊤
,Gp̂Ii,k|k

⊤
,
ITi,k|k
G

ˆ̄q
⊤
,Gp̂Ti,k|k

⊤
]⊤ as the pose esti-

mate of the robot and the target, and P̄i,p,k as the covariance
estimate by selecting the corresponding blocks in the original
covariance matrix Pi,k|k at the current timestep k.

Define the propagated stacked vector of predicted states
as x̄i,k:k+z = [x̄⊤i,k, . . . , x̄

⊤
i,k+z]

⊤ with the corresponding
covariance P̄i,p,k:k+z . Given the control inputs, x̄i,k:k+z

can be obtained by appending calculated predicted states
according to (2) by setting noises to 0, and assuming that the
target propagates with the same angular and linear velocities
as timestep k. The covariance update for each timestep can
be written as

P̄i,p,k:k+z = Φi,p,k+zP̄i,p,k:k+z−1Φ
⊤
i,p,k+z +Up,k+z, (9)

where Up,k+z is the propagation noise covariance at the
prediction timestep tk+z , and Φi,p,k+z denotes the state
transition matrix. Note that the predicted covariance is aug-
mented at each timestep, and the final predicted covariance
P̄i,p,k:k+Z corresponds to the stacked vector x̄i,k:k+Z .

To calculate a set of control inputs that works better for
our goal, we adopt the differentiable field of view [19] and
use a gradient descent algorithm to minimize a cost which is
a combination of the log-determinant of the final predicted
covariance P̄i,p,k:k+Z and the defined potential functions
among robots and the target. With the field of view of the
camera, we can calculate the estimated distance di,k+z of the
target to the nearest boundary of the field of view from the
predicted states. The distance is set to be positive if the target
is in the field of view of the robot, and negative otherwise.
A coefficient αi,k+z ∈ (0, 1) is defined by using the logistic
function which depends on di,k+z as

αi,k+z = logis(di,k+z) =
1

1 + e−qdi,k+z
(10)

where q is a parameter defining the stiffness. The lo-
gistic function is close to 1 as di,k+z ≫ 0, and is
close to 0 as di,k+z ≪ 0. Denote MT,i,k+z,p =
H⊤

T,i,k+z,pR
−1
T,i,k+z,pHT,i,k+z,p as the information gain for

the measurement at each timestep, where HT,i,k+z,p denotes
the measurement Jacobian matrix corresponding to each
prediction timestep tk+z of robot i, and RT,i,k+z,p is the

known measurement noise covariance. The coefficient αi,k+z

is multiplied in front of the information gain MT,i,z,p to
make the information gain differentiable. As a result, the
update of the final covariance matrix becomes

P̄
−1
i,p,k:k+Z ← P̄

−1
i,p,k:k+Z +

Z∑
z=1

αi,k+zMT,i,k+z,p. (11)

In the meantime, the robots should avoid collision as well
as maintain communication connections when generating
their control inputs. Let Ni,k denote the set that includes
all neighbors of i (excludes i itself) at time tk. At the pre-
dicted planning timestep tk+z , denote the predicted distance
between robots i and j, where j ∈ Ni,k ∪ {T}, to be
νi,j,k+z . We introduce potential function h(νi,j,k+z) that can
characterize νi,j,k+z . Let the safe distance between robots
and the target to avoid collisions be denoted as ν, and let
the communication range of any two robots be denoted as
ν̄. We define two types of potential functions depending on
whether robots are neighbors from timestep 0 or not [18].

Define the cost cki as cki = cki,1 + cki,2, where

cki,1 = log(det(P̄i,p,k:k+Z)),

cki,2 =

Z∑
z=1

(
∑

j∈Ni,k∪{T}

h(νi,j,k+z)).
(12)

To simplify the procedure of deriving gradients, we use
the equivalent SE(3) representation of (2). Let X̄i,k =[
Ii,k
G R̂

⊤ Gp̂Ii,k
01×3 1

]
be the estimate in SE(3) at time tk. It

follows that X̄i,k+1 = X̄i,kExp(τkui,k), where τk is the
sampling period. The gradient of cki,1 with respect to the sth
entry u

(s)
i,k+z−1 ∈ [Iω⊤

k+z−1,
Iv

⊤
k+z−1]

⊤ can be calculated
from [19] as

∂cki,1

∂u
(s)
i,k+z−1

= −trace(P̄i,p,k:k+Z

k+Z∑
γ=k+z

∂αi,γ

∂u
(s)
i,k+z−1

MT,i,γ,p +

k+Z∑
γ=k+z

αi,γ
∂MT,i,γ,p

∂u
(s)
i,k+z−1

),

∂αi,γ

∂u
(s)
i,k+z−1

=
∂αi,γ

∂di,γ

∂di,γ

∂X̄T,i,γ

∂X̄T,i,γ

∂u
(s)
i,k+z−1

,

∂X̄T,i,γ

∂u
(s)
i,k+z−1

= −QX̄
−1
i,γ

∂X̄i,γ

∂u
(s)
i,k+z−1

X̄
−1
i,γ

[
p̄Ti,γ

1

]
(13)

where X̄T,i,γ = QX̄
−1
i,γ [p̄

⊤
Ti,γ

, 1]⊤ represents the target state
in the robot i’s body frame using the predicted states from
x̄i,k:k+Z , and Q is defined as Q = [I3,03×1]. Moreover,
the linearization states used to calculate MT,i,γ,p is assumed
to be unchanged during every iteration, and thus the partial
fraction ∂MT,i,γ,p

∂u
(s)
i,k+z

is set to be zero in our setting.

To calculate the gradient of cki,2, note that the predicted
distance νi,j,k+z is a function of robot i’s control inputs, as
well as robot j’s control inputs, up to prediction time tk+z .
Although the gradient of cki,2 with respect to robot j’s control
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inputs should also be considered, we do not have access to
them at robot i. As a result, we use the initial control input
of robot j for the calculation throughout the process. Then
the gradient of cki,2 is calculated as

∂cki,2

∂u
(s)
i,k+z−1

=

k+Z∑
γ=k+1

∑
j∈Ni,k∪{T}

∂h

∂νi,j,γ

∂νi,j,γ

∂u
(s)
i,k+z−1

,

∂νi,j,γ

∂u
(s)
i,k+z−1

=
∂νi,j,γ
∂Gp̄Ii,ζ

∂Gp̄Ii,ζ

∂u
(s)
i,k+z−1

,

(14)

where Gp̄Ii,ζ is the corresponding position elements in X̄i,γ .
As a result, the gradient of cki can be computed from (13)

and (14) and the control inputs are updated by

u
(s)
i,k+z−1 ← Projection(u(s)

i,k+z−1 − β(s)
∂cki,

∂u
(s)
i,k+z−1

), (15)

where β(s) is a fixed step size, and "Projection" projects the
calculated result onto the feasible set. With the new control
inputs, new iterations need to be performed following the
steps shown in equations from (9) to (15) until the result
converges. At timestep tk, each robot i applies ui,k. At
timestep tk+1, each robot applies the resulting control input
ui,k and replans future control inputs.

IV. SIMULATION RESULTS

In this section, we use Monte Carlo simulations to demon-
strate the performance of our algorithm.

A. Simulation Settings

We consider a scenario where 5 robots and one target
move in a 3-D environment. The robots are equipped with
IMUs and cameras to estimate the target state. The camera
measurements zmi,k in (3) are assumed to be corrupted by
zero-mean Gaussian noises N (0, σ2

zi), which is calculated
from one-pixel noise and camera intrinsics. The noise models
for the IMUs can be written as:
Iω

m

Ii,k = IωIi,k + nIi,k,ω, nIi,k,ω ∼ N (0, σ2
ωIi

),

Ia
m

Ii,k = IaIi,k − (Ii,kG R)g + nIi,k,a, nIi,k,a ∼ N (0, σ2
aIi

),

where i = 1, 2, ..., 5, k denotes the timestep tk, g =
[0, 0, 9.81]⊤ is the gravity, σωIi

= 1.122 × 10−4 I3, and
σaIi

= 5.0119× 10−3 I3.
In each camera frame, the sensing zone is a fixed pyramid

shape in the camera frame. The five points of the pyramid in
the camera frame are located at [0, 0, 0]⊤ and [−5,−8, 8]⊤,
[−5, 8, 8]⊤, [5,−8, 8]⊤, [5, 8, 8]⊤, respectively. At each time
step, we generate linear and angular velocity control inputs
using our active tracking algorithm for the next 3 time steps
Z = 3. We then apply the actual control input for the next
time step by adding Gaussian noises to the calculated inputs
to account for noisy control inputs applied to the robots.

We specify the communication range ν̄ between the robots
to be 12 meters, and the minimum safe distance ν be-
tween robots to be 1.5 meters. The initial positions of the
five robots are set to be [0.1,−0.1, 0]⊤, [−10.1, 0.1, 8.1]⊤,

(a) Average PRMSE of each robot’s target estimate

(b) Average ORMSE of each robot’s target estimate

[0.1, 0.2, 8.1]⊤, [−9.9, 0.1, 2.5]⊤, and [−19.9, 0.1, 2.5]⊤, re-
spectively. In this setting, the initial communication topology
is connected. We set the initial estimate for each robot’s
state to be the corresponding true state, i.e., x̂Ii,0 = xIi,0.
We also provide an initial covariance estimate of 10−3I15
for each robot’s state. For the target estimate, we set the
initial estimate to be the ground truth, and we set the initial
covariance matrix to be 10−3I9.

Regarding the CI weights in (8), similar to the CVIO
weight selection [13], we set a fixed weight of ωT,i,k = 0.99
for robot i itself, and evenly distribute the remaining weight
among its neighbors to ensure that they sum up to 1.

B. Simulation Results

We conducted 20 Monte Carlo simulations to evaluate
the accuracy of the estimation. The root-mean-square error
(RMSE) was used as the performance metric to evaluate
the localization accuracy of the robots and the target state
estimation. Specifically, the position and orientation RMSEs
were calculated and analyzed.

The average robot position RMSE (PRMSE) and orienta-
tion RMSE (ORMSE) are calculated to be 2.7×10−2 m and
1×10−3 rad, respectively, indicating a high level of accuracy
in the localization performance of our robots. Therefore, we
conclude that our cooperative localization algorithm provides
a satisfactory level of accuracy.

Furthermore, we evaluate the performance of the target
tracking in our cooperative estimation and active target
tracking algorithm. Figures 1a and 1b present the target
tracking performance of each robot, with an average PRMSE
of 4.6×10−2 m and an average ORMSE of 1.3×10−3 rad for
all robots’ estimates of the target. We compare cooperative
and non-cooperative target tracking by presenting the average
PRMSE without cooperation in Figure 2. It can be observed
that the robots may fail to obtain an accurate estimate
of the target and lose track. Our results show that the
robots’ performance is better when they cooperate to track
the target. We further present the outcomes of our target
tracking approach in a scenario where the robots move in
a random manner within the environment. To simulate the
robot’s behavior, we employ Gaussian processes to generate
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Fig. 2: Average PRMSE of each robot’s target estimate
without cooperation

linear velocity and angular control commands for each robot,
with standard deviations of 2 × 10−1I3 and 5 × 10−2I3,
respectively. We show the PRMSE of the target estimate
in Figure 3, demonstrating that the proposed active target
tracking technique is effective in reducing the uncertainty of
the target estimate in comparison to random motion.

In Figure 4a, we show the trajectories of 5 robots and
the target from the first Monte Carlo iteration. Figure 4b
includes the distances of the robots to the target. The robots
effectively approach and follow the target, improving target
estimation even from distant starting points. Notably, the
minimum inter-robot distance is consistently 3.9 meters,
ensuring collision avoidance.

V. CONCLUSION

In this paper, we have presented a distributed approach
to address the coupled problem of cooperative localization,
target tracking, and active motion planning. We used Monte
Carlo simulations to show the effectiveness of our algorithm.
Our comparative analysis between the cooperative and non-
cooperative estimation performance, as well as the active
motion planning and random walk case, has clearly demon-
strated the significant improvements achieved through using
our algorithm. Our contribution is to provide a solution to
the problem that is both practical and effective.

Fig. 3: Average PRMSE of each robot’s target estimate with
random motion of the robots

(a) Trajectories of the robots
and the target (run 1)

(b) Distance of each robot to
the target (run 1)

Fig. 4: Trajectories and distances
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