
Multi-Agent Reinforcement Learning for Resource Allocation in
Large-Scale Robotic Warehouse Sortation Centers

Yi Shen1, Benjamin McClosky2, Joseph W. Durham2, and Michael M. Zavlanos1

Abstract— Robotic sortation centers use mobile robots to
sort packages by their destinations. The destination-to-sort-
location (chute) mapping can significantly impact the volume of
packages that can be sorted by the sortation floor. In this work,
we propose a multi-agent reinforcement learning method to solve
large-scale chute mapping problems with hundreds of agents
(the destinations). To address the exponential growth of the
state-action space, we decompose the joint action-value function
as the sum of local action-value functions associated with the
individual agents. To incorporate robot congestion effects on
the rates at which packages are sorted, we couple the local
action-value functions through the states of destinations mapped
to nearby chutes on the sortation floor. We show that our
proposed framework can solve large chute mapping problems
and outperforms static or reactive policies that are commonly
used in practice in robotic sortation facilities.

I. INTRODUCTION

Modern warehouses often rely on mobile robots to transport
and sort packages in their sortation hubs [1]–[4]. For example,
in Amazon Robotics sortation hubs [5], packages arrive at
induct stations, located on the perimeter of a sortation floor,
where they are loaded onto mobile robots and transported
based on their destinations to sort locations (eject chutes)
arranged in a grid in the interior of the sortation floor; see
Fig. 1. In these robotic sortation hubs, the volume of packages
(throughput) that can be sorted by the robot fleet is partly
determined by the availability of a sufficient number of eject
chutes for each destination as well as by how the robots
interfere with each other’s motion as they navigate from the
induct stations to their assigned eject chutes. As a result,
the destination-to-chute mapping can significantly impact the
throughput that the mobile robot fleet can deliver.

Robotic and automated warehouse systems as the one
discussed above have been extensively studied in the literature.
Generally, approaches to optimize their operation can be
classified as simulation-based or analytical; see [2] for a
detailed survey. Simulation-based methods rely on high-
fidelity simulators to evaluate the performance of different
operational decisions. However, designing good simulators
is labor-intensive and their use for warehouse optimization
is often hindered by prohibitively long simulation times
for typical large-scale warehouses. In contrast, analytical
methods focus on finding good approximate solutions fast, by
solving optimization problems with fairly relaxed assumptions

1Yi Shen and Michael M. Zavlanos are with Amazon Robotics and
the Department of Mechanical Engineering and Materials Science, Duke
University. {yishenn,miczavla}@amazon.com, {yi.shen478,
michael.zavlanos}@duke.edu.

2Benjamin McClosky and Joseph W. Durham are with Amazon Robotics.
{mcclosky, josepdur}@amazon.com

Fig. 1. A sortation floor in an Amazon Robotics sortation hub [3].

that capture the gist of reality. These approaches generally
belong to two main categories: queuing networks (QNs)
and mathematical programming models (e.g., mixed-integer
programs (MIP)). QNs, e.g., open queuing networks [6] or
semi-open queuing networks [7], rely on queueing theory to
build models of sorting systems and characterize system per-
formance in terms of, e.g., throughput and storage capacities.
QNs typically focus on system-level design decisions, also
called long-term decisions, such as design of facility layouts
[8] or robot zoning strategies [9]; see [10] for a review
of robotic sorting methods using QNs. In this paper, we
instead focus on operational planning decisions, also called
short-term decisions, and in particular, on the destination
assignment problem (DAP) [11] assuming that facility layouts,
workstation locations, robot path topologies, etc. are given.
QNs are not suitable for solving operational-level DAPs; these
problems can be solved using mathematical programming.

Mathematical programming has been long used for the
optimization of warehouse systems, including for the solution
of DAPs for sorting systems. For example, destination
mapping for conveyor-based sorting systems is studied in [12]
with the objective to minimize the total distance travelled by
packages between inbound and outbound stations. Although
distance travelled is only a proxy for system performance,
the authors empirically show that the proposed method
also improves package throughput. A different objective is
considered in [13] that focuses on minimizing the worst-
case flow imbalance across all work stations that process
packages on the sortation floor. To capture package variability,
a stochastic approach is developed that employs chance and
robust constraints. In the case of robotic sorting systems,
an integer programming method is developed in [14] to
solve DAPs that minimize sortation effort and satisfy package

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7131

deadlines. A robust formulation of this problem is proposed
in [15] that can handle uncertainty in the demands.

In this paper, we focus on DAPs for robotic sorting systems
such as those described in Fig. 1. The solution to these DAPs
is a chute mapping that determines how package destinations
are distributed over the chutes on the sortation floor. This
chute mapping directly impacts induct-to-eject mission lengths
and congestion of robots on the sortation floor, which together
determine the throughput of the sortation floor. Specifically, an
inadequate number of chutes per destination can lead to large
numbers of unsorted packages entering a overflow buffer as
they wait their turn to be sorted, which can cause significant
throughput drops. On the other hand, robot congestion on
the sortation floor affects the rate at which robots deliver
packages to their assigned chutes and, therefore, the rate at
which packages are sorted for each destination. Our goal is
to determine the optimal number of chutes per destination so
that the number of unsorted packages is minimized. While
we do not explicitly model robot congestion, we incorporate
congestion effects in the chute mapping decisions through
their impact on the rate at which packages are sorted for each
destination.

An important challenge in designing effective chute maps
is the ability to capture uncertainty in the incoming packages
that can substantially affect the required number of chutes
per destination. Since accurate statistical models of this
uncertainty are hard to obtain in practice, conventional
mathematical programming methods cannot be used to
obtain effective solutions to chute mapping problems. To
address this challenge, in this paper we employ model-free
reinforcement learning (RL) to dynamically determine the
optimal number of chutes per destination over the course
of a day.1 Specifically, we formulate the chute mapping
problem as a multi-agent Markov game where the agents
correspond to destinations and the actions control the number
of chutes assigned to each destination at each time step. To
address the exponential growth of the state-action space, we
decompose the joint action-value function as the sum of
local action-value functions associated with the individual
destinations, that are coupled through the states of other
destinations mapped to nearby chutes on the sortation floor.
This way, we incorporate robot congestion effects on the
rates at which packages are sorted for destinations mapped
to nearby chutes on the sortation floor. Then, using the local
action-value functions, we formulate an integer program to
optimally allocate the available chutes to the agents. We show
that our proposed framework can solve large chute mapping
problems and outperforms static or reactive policies that are
commonly used in robotic sortation floors.

We note that RL has been used before to solve resource
allocation problems. For example, a deep deterministic policy
gradient method is developed in [16] to solve cloud computing

1We assume that a chute placing policy is given, that assigns specific chutes
on the floor to every destination after the number of chutes per destination is
determined. Learning a complete chute map that determines both the number
and locations of chutes for every destination is a more challenging problem
due to the exponential growth of possible chute assignments.

Induct Chutes
Induct Buffer Laden Drive Buffer

Overflow

Overflow Buffer

Overflow Chutes

Sorted
Packages

Sortation Floor

Fig. 2. Flow of packages on the sortation floor, from induct stations to
eject chutes.

problems, which can be traced back to the seminal work
by Tesauro et al. [17], [18]. Yet, the method in [16] is
a single-agent method that cannot handle the exponential
growth of the state-action space akin to large-scale resource
allocation problems as the one considered here. Most relevant
to the method proposed here is perhaps the work in [19], that
proposes a multi-agent RL framework for ocean transportation
networks. Specifically, in [19], a multi-agent Q-learning
algorithm is developed where the local Q-networks depend
on the joint states (including the limited shared resources)
and the joint actions. However, since the joint state-action
space grows exponentially with the number of agents, the
local Q-networks are hard to learn and this method does not
scale well in practice. Instead, here the local Q-networks
are only loosely coupled, in a way that improves scalability
yet allows to model robot congestion effects on the rates at
which packages are sorted on the sortation floor. Moreover,
compared to [19], our method proposed here models resources
explicitly as actions and respects budget constraints when
taking joint actions.

The rest of the paper is organized as follows. In section
II, we provide preliminaries on Markov games and deep
Q learning. In section III, we develop the proposed multi-
agent reinforcement learning framework that can handle large
numbers of agents and constrained actions. Finally, in Section
IV, we validate the effectiveness of our proposed method
and benchmark against static or reactive policies that are
commonly used in robotic sortation floors.

II. PROBLEM DEFINITION

In this paper we consider the destination assignment
problem (DAP), also called chute mapping problem, for
robotic sortation systems, as those discussed in Section I
and Fig. 1. We assume that packages arrive randomly at
induct stations located at the perimeter of the sortation floor
and are placed onto mobile robots, also called drives, that
transport them based on their destinations to eject chutes in
the interior of the sortation floor. Moreover, we assume that
each destination can be serviced by multiple chutes and each
chute can service a single destination.

The flow of packages on the sortation floor can be modeled
using two buffers, the laden drive buffer and the overflow

7132

buffer, as seen in Fig. 2. The laden drive buffer models
the volume of packages on robot drives as they are being
transported to chutes on the sortation floor. To reduce robot
congestion, the number of robot drives that can concurrently
transport packages to any one chute on the sortation floor is
capped. Therefore, the laden drive buffer has limited capacity
for packages per destination. If the number of chutes allocated
to any one destination is insufficient, the sortation floor will
not be able to sort the volume of incoming packages for that
destination.2 In this case, packages at the induct stations that
cannot be absorbed by the laden drive buffer are picked up
by robot drives and are routed to designated overflow chutes
on the sortation floor, from where they enter an overflow
buffer and subsequently reenter the sortation system for
future processing; see Fig. 2. Our goal in this paper is to
determine the optimal number of chutes per destination so
that the number of unsorted packages in the overflow buffer
is minimized and, therefore, the throughput of the sortation
floor is maximized.

III. METHOD

A. Multi-Agent Reinforcement Learning Formulation

Since the rates at which packages for each destination
arrive at the induct stations are unknown and can fluctuate
significantly during the course of a day, we formulate the
chute mapping problem described in Section II as a se-
quential decision making problem, specifically, a multi-agent
reinforcement learning problem (MARL), that determines
an optimal sequence of chute allocations that minimizes
the number of packages in the overflow buffer at each
time step (e.g., every 1 hour). To do so, we define a
Markov game over N agents (the destinations) by a tuple(
N,S, {Oi}Ni=1, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ0

)
, where S is the

joint state space, Oi ⊂ S and Ai are the local observation
and action spaces of agent i, γ ∈ (0, 1) is the discount factor,
and ρ0 is the initial state distribution. The local observation
of each agent i at each time step is defined as the number of
packages associated with this agent that are currently in the
induct buffer and will be pushed into the sortation system
in the next 30 minutes as well as the number of packages
associated with this agent that are currently in the overflow
buffer; see Fig. 2. Moreover, the local action of each agent
i at each time step is the number of chutes assigned to that
agent at that time step. The joint action space of all agents is
defined by A = ΠN

i=1Ai. Note that all the state and action
variables are discrete.

In the Markov game described above, P : S ×A× S →
[0, 1] denotes the state transition probability, that is the
probability that packages will be sorted by the chutes or
alternatively sent to the overflow buffer. To obtain the state

2Note that the required number of chutes per destination depends not only
on the corresponding volume of incoming packages but also on the ability
of the laden drive buffer to empty itself. Generally, the longer packages
remain in the laden drive buffer, the more chutes are needed to avoid
package overflows. This is the case, e.g., in the presence of robot congestion
that increases the mission times of robot drives on the sortation floor and,
therefore, the time packages spend in the laden drive buffer.

transition probability we construct an approximate input-
output model of the system described in Fig. 2, specifically,
the simulation environment described in Section IV-A, where
the rate at which packages enter the overflow buffer is equal
to the rate at which packages arrive at the induct (new
packages plus packages from overflow) minus the rate at
which packages are processed by the chutes. Specifically, the
rate at which packages for each destination are processed by
the chutes is determined by the number of chutes assigned
to each destination and the rate at which these chutes can
process packages. We assume that the chutes can generally
process packages at their maximum rate which, however, can
be lower due to robot congestion on the sortation floor, which
affects mission times and, therefore, the rates at which robots
can transport packages to their assigned chutes. While we do
not explicitly model robot congestion on the sortation floor,
we assume that the processing rates of destinations mapped
to nearby chutes on the sortation floor are coupled due to
such congestion effects; see Section III-B.1 for details on
how we model dependencies between destinations. Finally,
ri : S ×A → R denotes the reward function of agent i. The
reward function at each time step captures the number of
chutes allocated to each destination as well as the number
of packages for each destination in the overflow buffer.
Large numbers of chutes per destination and packages in
the overflow buffer are penalized.

At each time step t, every agent i selects an action
according to a local policy πi : Oi × Ai → [0, 1] that
represents the probability of assigning a different number
of chutes to destination i when observing oi. Then, the
goal of every agent i is to learn the optimal local policy
πi,∗ that maximizes its expected future return E[Ri

t] =
E[
∑∞

t′=t γ
t′−trit′], where rit′ is the reward received at time

step t′ and the expectation is taken over the randomness in
the stochastic local policy and the transition probability. Since
the agent actions are generally coupled, to find the optimal
local policies πi,∗ we utilize the joint action-value function
Qπ(s, a) = E[

∑N
i=1 R

i
t|st = s, at = a] under the joint policy

π, which captures the expected return that can be achieved
by taking a joint action a = (a1, · · · , aN) at state s and
following the joint policy π afterwards. In what follows, we
assume that all agents take actions independently so that the
policy space does not grow exponentially, i.e., π = ΠN

i=1π
i.

Then, to find the optimal policy π∗, we employ Deep Q
Network (DQN) learning [20]. Specifically, we approximate
the optimal action-value function Qπ∗

(s, a) by a deep neural
network Q(s, a; θ) with parameter θ and learn the optimal
action-value function corresponding to the optimal policy by
minimizing the loss function

L(θ) = Es,a,r,s′ [(Q(s, a; θ)− y)2], (1)

where y = r+ γmaxa′ Q̄(s′, a′; θ̄) approximates the optimal
target values r + γmaxa′ Qπ∗

(s′, a′). Q̄ is a separate target
Q network that is periodically updated using the most
recent values for the parameter θ, which helps to stabilize
the learning process. To further stabilize learning, we also
utilize a replay buffer D that contains multiple transition

7133

pairs (s, a, r, s′) to compute the expectation in (1). Then,
the optimal policy can be found as π∗(s, a; θ) = 1

|A(s)|
if a ∈ A(s) and π∗(s, a; θ) = 0 if a /∈ A(s), where
A(s) = argmaxa Q(s, a; θ∗) and θ∗ = argminL(θ).

B. Networked Value Decomposition Network (NVDN)

There are two main challenges in using (1) to learn the
optimal action-value function for the chute mapping problem
under consideration. First, the state-action space grows
exponentially with the number of agents. A simple remedy to
this problem is learning separate Q networks independently
for each agent. Nevertheless, since the agents update their
policies independently as they learn, the environment is no
longer stable from the perspective of each agent and thus
the Markov assumption is violated. As a result, individual Q
network approaches may diverge [21]. The second challenge is
ensuring that the data in the replay buffer used to calculate the
expectation in (1) are feasible. This requirement is particularly
relevant in the chute mapping problem considered here,
since the agents share limited actions (numbers of available
chutes). In what follows, we propose a Networked Value
Decomposition Network (VDN) method to address these
challenges and solve the proposed multi-agent RL problem.

1) Dimension Reduction of the State-Action Space: To
limit the dimension of the state-action space, we assume that
the joint Q network that captures the expected return of the
joint chute mapping action (chute assignment for all agents)
can be decomposed as the sum of local Q networks that
capture the expected return of local chute mapping actions
(chute assignment to individual agents). Specifically, let G =
(N , E) denote a directed graph that measures the dependencies
among agents, where N is the set of agents and E ⊆ N ×N
is the set of edges, and let Gi = {j ∈ N|(j, i) ∈ E} denote
the set of agents that can influence the observations and/or
rewards of agent i. Then, we assume that the joint Q network
can be written as

Q(s, a, {θi}Ni=1) =
∑N

i=1
Qi(oi, ai, oG

i

; θi), (2)

where oG
i

= {oj}j∈Gi is the collection of local observations
of all agents in the set Gi. As a result, the input space only
grows linearly with the number of agents.

We note that the construction in (2) generalizes the notion
of value decomposition networks (VDN) in [22], where the
local Qi networks only depend on local observations and
actions as Q(s, a) =

∑N
i=1 Q

i(oi, ai). A limitation of VDN
is that if, e.g., the rewards of the local agents also depend
on the observations of their neighbors (along with their own
observations), then the local Qi networks cannot learn the
correct state-action values due to the missing observations.
We call the method proposed here networked VDN (NVDN).

We also note that, in the chute mapping problem considered
here, the proposed networked VDN method allows to model
practical dependencies between the agents. Specifically, the
directed graph G can model the effect of the joint chute
mapping decisions on the rates at which the chutes can process
the packages of their assigned destinations. For example, the

assignment of destinations to chutes on the sortation floor
can give rise to high-traffic areas (robot congestion) that can
affect the rates at which chutes in these areas can process
packages for their assigned destinations; see the simulation
environment described in Section IV-A.3

2) Feasibility of Joint Actions: When the actions are
unconstrained, the agents will select the actions that maximize
their individual Q networks; the joint action is a collection of
all agents’ actions. However, in the chute mapping problem
considered here, agents share limited actions (available
chutes). Thus, coordination among agents is required to assign
more resources to agents with higher state-action values.
Specifically, given a limited budget M on the joint actions,
we require that the joint action satisfies

∑N
i=1 ai ≤ M . Then,

to select the best joint action that maximizes the joint Q
network while satisfying the required budget constraints, we
solve the following integer program for any given state s:

max
a1,··· ,aN

∑N

i=1
Qi(oi, ai, oG

i

; θi),

s.t.
∑N

i=1
ai ≤ M, ai ∈ N. (3)

Note that Qi is a vector with the same size as the action
space ai for any given state. Moreover, this integer program
does not involve any Q learning steps and can be solved
very efficiently using dynamic programming or commercial
solvers, e.g., FICO Xpress [24]. The actions obtained by
the solution of problem (3) are used to generate feasible
data in the replay buffer to compute the expectation in (1)
during each learning step. Also, the solution of (3) provides
the optimal actions after learning has converged. The full
algorithm is presented in Algorithm 1.

Note that the proposed method can be easily extended to
account for additional operational constrains including, e.g.,
limits on the agents’ consecutive action variations by adding
the constraints |ait − ait−1| ≤ δ for some δ ∈ N.

IV. NUMERICAL EXPERIMENTS

A. Simulator Setup

To validate Algorithm 1 we developed a simplified ware-
house simulator that at a high level captures the main
operations that take place in an Amazon sortation center,
as summarized in Fig. 2. Specifically, we assume that every
hour (a time step) a total of 20,000 new packages arrive at
the induct stations (induct buffer data) for N = 100 different
destinations. Every 6 hours this number is reduced to 15,000
to capture package variations due to upstream tasks related
to human activity or logistic operations, e.g., breaks between
shifts. Such variations are common in production data. The
hourly number of packages per destination is sampled from
a generative model that captures similar patterns as those
observed in real induct buffer data, e.g., patterns on the
number of packages during peak time. Fig. 3 shows the hourly

3Note that in many RL applications, dependencies between agents cannot
be easily described by a graph using prior knowledge. An example is
collaboration between teams in games such as StarCraft [23]. The chute
mapping problem in this sense is a special case of multi-agent RL problems.

7134

Algorithm 1 Networked VDN with Budget Constraints
Input: Number of agents N , budget on actions M
1: Initialize replay buffer Di, action-value function Qi, and target

action-value function Q̄i, for all agent i = 1, · · · , N
2: for episode = 1, . . . ,m do
3: Observe an initial observation oi0 for all agents i
4: for step t = 0, · · · , T do
5: With probability ϵ select a random action at such that∑N

i=1 a
i
t = M ; otherwise, select at according to (3)

6: Execute action at and observe rit and oit+1 for all agents
7: for each agent i = 1, ..., N do
8: Collect local observations (oGi

t , oGi
t+1) from neighbors

and store local transition (oit, o
Gi
t , ai

t, r
i
t, o

i
t+1, o

Gi
t+1) in

the replay buffer Di

9: Sample a minibatch of transitions
(oit, o

Gi
t , ai

t, r
i
t, o

i
t+1, o

Gi
t+1) from Di

10: Set yi
t = rit if episode terminates at t+1 and otherwise

set yi
t = rit + γmaxa′ Q̄(oit+1, o

Gi
t+1, a

′; θ̄i)
11: Run a gradient descent step on the loss (yi

t −
Q(oit, o

Gi
t , ai

t; θ
i))2 with respect to the local policy

parameters θi

12: Set θ̄i = θi every c steps

Fig. 3. Hourly numbers of incoming packages for the first five destinations
calculated from 30 samples (days). The solid lines represent averages and
the shades represent ± standard deviations.

average number of packages for the first five destinations
sampled from the above generative model.

We assume there are 440 destination-free chutes on the
sortation floor, each one of which can be assigned to only
one destination and each one of which can process at most
100 packages per hour. To reduce the computational cost of
the proposed RL algorithm, we partition the total 440 chutes
into 340 static chutes and M = 100 dynamic chutes, so
that the assignment of destinations to static chutes remains
unchanged over the whole simulation and only the assignment
of destinations to dynamic chutes changes using Algorithm
1.4 Specifically, we define the static chute map as

aistatic = ⌈(α · mean({ni}) + β · std({ni}))⌉,

where {ni} denotes the samples obtained by the generative
model for each destination i and ⌈·⌉ is the ceiling function.
We appropriately select α and β so that

∑
i a

i
static = 340.

4The idea is that static chutes absorb average volumes and dynamic chutes
are used to absorb large deviations from the steady state.

Note that the static chute map, in general, may not be able to
service destinations during peak hours. For example, in Fig. 3,
over 3,000 packages arrive around time step 15 for destination
4. The static map assigns only 11 chutes to destination 4
that can collectively process up to 1,100 packages per hour,
which is much lower than 3,000.

As discussed in Section III, we assume that the processing
rates of the chutes can be negatively affected by robot
congestion on the sortation floor. Since we assume that the
packages for each destination arrive uniformly at random at
the induct stations on the perimeter of the sortation floor,
we assign destinations to the static chutes so that the sum
of pairwise Manhattan distances between all chutes assigned
to every individual destination is maximized. Spreading the
chutes assigned to individual destinations over the sortation
floor reduces the chances of robot congestion due to volume
surges for specific destinations. Fig. 4 shows the floor layout
with 340 static chutes assigned to 100 destinations. In
this static map, the neighbors of any destination i are all
destinations j with chutes located directly North, South, East,
and West of any chute assigned to destination i. Since this
neighbor set can be very large (for many destinations) we
remove from the neighbor set of destination i any destinations
j that have only few chutes adjacent to chutes assigned to
destination i. Effectively, two destinations are neighbors if
their assigned chutes are next to each other frequently enough.
Therefore, we can define the graph G = (N , E) in Section III-
B that measures the dependencies among agents. Using this
dependency graph, the processing rate of each chute assigned
to destination i is defined as

ti = 100− ⌈(
∑

j∈Gi

xj)/γ⌉,

where xj denotes the packages arriving at the induct stations
for destination j during the next hour, γ > 0 is a parameter
selected so that the rates ti obtain values in a range that is
typical during operation of the sortation floor (here γ = 200),
and Gi = {j ∈ N|(j, i) ∈ E} is the neighbor set of agent i
defined in Section III-B.1. Note that the rate ti is not the true
rate at which the individual chutes assigned to destination
i process packages. The rate pi is an approximate average
processing rate for destination i that can be different from
the true processing rates of the individual chutes.

During training of the RL policy, we assume the processing
rate of each destination is only affected by its neighbors in the
static map. Otherwise, the graph G will change and become a
state variable in the RL problem that will significantly increase
the dimension of the state space and affect the complexity of
learning. However, during testing of the learned RL policies,
the processing rates depend on both the static and dynamic
maps. Therefore, there exists a shift between the training and
testing environments as a result of the different processing
rates used for training and testing. Fig. 5 shows the average
processing rate for the first two destinations. In what follows,
we show that the policies trained on the static map are robust

7135

Fig. 4. The sortation floor layout. The colored dots represent the static
chute map, where each unique color corresponds to a unique destination.
Empty positions are reserved for dynamic chutes.

Fig. 5. Processing rates of the first two destinations calculated from
30 samples.The solid lines represent averages and the shades represent ±
standard deviations.

to this shift and transfer well to the dynamic map too.5

As discussed in Section III, packages that exceed the
chutes’ capacities are sent to the overflow buffer and added
to the sequence of new packages of the next time step. One
episode (day) consists of 24 time steps (hours), after which the
environment is reset. The observation of each agent consists
of the sum of the first 10,000 packages from induct buffer
data oi, i.e., partial observation, and the number of packages
in the overflow buffer bi. The individual reward is defined
by ri = −bi − ai, where ai is the number of dynamic chutes
being used.

B. Results

We first compare our RL policy to a static policy, commonly
used in warehouse sortation facilities, that assigns the dynamic
chutes to destinations in a similar way as the static policy
aistatic defined above. In Fig. 6, we observe that this static
policy maintains over 25,000 unsorted packages per hour,
since it cannot adapt to varying demands. As a result, unsorted
packages accumulate over time burdening the overflow buffer
and decreasing throughput. This is expected as the static
policy does not use data from induct or the overflow buffer.

5We place the dynamic chutes on the sortation floor in a similar way, so
that the sum of pairwise Manhattan distances between the chutes assigned
to each destination is maximized.

Fig. 6. Comparison between the static policy and the RL policy. (Statistics
are obtained from 30 runs.)

Fig. 7. Comparison between the reactive policy and the RL policy. (Statistics
are obtained from 30 runs.)

Alternatively, we also compare to a reactive policy that
assigns chutes in proportion to the number of packages in
the overflow buffer bi and the number of incoming packages
oi obtained from partial induct buffer data (same as the RL
policy). Specifically, we define the probability of assigning
chute j to agent i as

p(i) =
max{λ(bi+oi)

100 − aistatic, 0}∑N
k=1 max{λ(bk+ok)

100 − akstatic, 0}
.

Therefore, we can obtain a reactive chute map by sampling
from this distribution up to the allowable budget M = 100 of
dynamic chutes. Note that destinations with a larger number
of packages will be assigned more chutes in expectation. In
the experiments, we selected the value of λ that returned the
reactive policy with the best performance. A comparison with
the proposed RL policy is shown in Fig. 7. We observe that the
RL policy outperforms the reactive policy, which is expected
since the RL policy is optimized over a larger functional
space compared to the linear space that defines the reactive
policy. In addition, the RL policy is learned by maximizing the
expected accumulated future rewards while the reactive policy
is a pre-determined policy that does not predict the number
of packages in the future. More importantly, computation of
the RL policy is fast, similar to computation of the static and
reactive policies, as it only requires evaluation of a trained
neural network and solution of a simple integer program as
in (3).

7136

Fig. 8. Comparison between RL policies with different budgets. Statistics
are obtained over 30 runs.

Finally, we show that the proposed RL policy can be
transferred to environments with different budget constraints
M = {80, 120} without retraining (zero shot transfer) from
the training environment M = 100. This owes to the nature
of the proposed algorithm where the chutes are assigned
to destinations independently via the solution of the integer
program in (3), as opposed to directly from the trained local
Q networks. The results are shown in Fig. 8. Note that the
dynamic chute map with a smaller budget is not as capable as
the one with a larger budget due to fewer available resources.
As a result, the number of unsorted packages increases as
the budget M decreases.

V. CONCLUSION

In this work, we proposed a multi-agent reinforcement
learning method to solve chute mapping problems in ware-
house sortation centers. Specifically, we formulated a net-
worked decomposition network framework where the joint
action-value function is the sum of all local agents’ action-
value functions. We showed that our proposed framework can
solve large chute mapping problems and outperforms static
or reactive policies that are commonly used in practice in
robotic sortation facilities. It is also transferable to different
sortation environments.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[2] K. Azadeh, R. De Koster, and D. Roy, “Robotized and automated
warehouse systems: Review and recent developments,” Transportation
Science, vol. 53, no. 4, pp. 917–945, 2019.

[3] Amazon, “How amazon robots navigate congestion,”
https://www.amazon.science/latest-news/how-amazon-robots-navigate-
congestion, 2022.

[4] ——, “10 years of amazon robotics: how robots help
sort packages, move product, and improve safety,”
https://www.aboutamazon.com/news/operations/10-years-of-amazon-
robotics-how-robots-help-sort-packages-move-product-and-improve-
safety, 2022, accessed: 2023-01-23.

[5] ——, “Tour an amazon fulfillment center,”
https://www.aboutamazon.com/workplace/tours, 2023, accessed:
2023-01-23.

[6] S. S. Heragu, X. Cai, A. Krishnamurthy, and C. J. Malmborg,
“Analytical models for analysis of automated warehouse material
handling systems,” International Journal of Production Research,
vol. 49, no. 22, pp. 6833–6861, 2011.

[7] D. Roy, “Semi-open queuing networks: a review of stochastic models,
solution methods and new research areas,” International Journal of
Production Research, vol. 54, no. 6, pp. 1735–1752, 2016.

[8] T. Lamballais, D. Roy, and M. De Koster, “Estimating performance in
a robotic mobile fulfillment system,” European Journal of Operational
Research, vol. 256, no. 3, pp. 976–990, 2017.

[9] M. Yu and R. B. De Koster, “The impact of order batching and picking
area zoning on order picking system performance,” European Journal
of Operational Research, vol. 198, no. 2, pp. 480–490, 2009.

[10] B. Zou, R. De Koster, Y. Gong, X. Xu, and G. Shen, “Robotic
sorting systems: Performance estimation and operating policies analysis,”
Transportation Science, vol. 55, no. 6, pp. 1430–1455, 2021.

[11] N. Boysen and M. Fliedner, “Cross dock scheduling: Classification,
literature review and research agenda,” Omega, vol. 38, no. 6, pp.
413–422, 2010.

[12] S. Fedtke and N. Boysen, “Layout planning of sortation conveyors in
parcel distribution centers,” Transportation Science, vol. 51, no. 1, pp.
3–18, 2017.

[13] L. J. Novoa, A. I. Jarrah, and D. P. Morton, “Flow balancing with un-
certain demand for automated package sorting centers,” Transportation
Science, vol. 52, no. 1, pp. 210–227, 2018.

[14] R. Khir, A. Erera, and A. Toriello, “Two-stage sort planning for express
parcel delivery,” IISE Transactions, vol. 53, no. 12, pp. 1353–1368,
2021.

[15] ——, “Robust planning of sorting operations in express delivery
systems,” European Journal of Operational Research, 2022.

[16] B. Du, C. Wu, and Z. Huang, “Learning resource allocation and pricing
for cloud profit maximization,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 33, no. 01, 2019, pp. 7570–7577.

[17] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley,
J. O. Kephart, and S. R. White, “A multi-agent systems approach to
autonomic computing,” in Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 1,
2004, pp. 464–471.

[18] G. Tesauro et al., “Online resource allocation using decompositional
reinforcement learning,” in AAAI, vol. 5, 2005, pp. 886–891.

[19] X. Li, J. Zhang, J. Bian, Y. Tong, and T.-Y. Liu, “A cooperative
multi-agent reinforcement learning framework for resource balancing
in complex logistics network,” arXiv preprint arXiv:1903.00714, 2019.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[21] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in Proceedings of the tenth international conference on
machine learning, 1993, pp. 330–337.

[22] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[23] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli,
T. G. Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and S. Whiteson,
“The starcraft multi-agent challenge,” arXiv preprint arXiv:1902.04043,
2019.

[24] FICO, “Xpress optimizer,” https://www.fico.com/en/products/fico-
xpress-optimization, 2023, accessed: 2023-01-23.

7137

