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Abstract— Passivity-based approaches have been suggested
as a solution to the problem of decentralised control design in
many multi-agent network control problems due to the plug-
and-play functionality they provide. However, it is not clear if
these controllers are optimal at a network level due to their
inherently local formulation, with designers often relying on
heuristics to achieve desired global performance. On the other
hand, solving for an optimal controller is not guaranteed to
produce a passive system. In this paper, we address these dual
problems by using inverse optimal control theory to formulate
a set of sufficient local conditions, which when satisfied ensure
that the resulting decentralised control policies are the solution
to a network optimal control problem, while at the same time
satisfying appropriate passivity properties. These conditions
are then reformulated into a set of linear matrix inequalities
(LMIs) which can be solved to obtain such controllers for linear
systems. The proposed approach is demonstrated through a DC
microgrid case study. The results substantiate the feasibility and
efficacy of the presented method.

I. INTRODUCTION

Passivity-based approaches are widely used in the control
of dynamic multi-agent networks as they enable the design
of decentralised controllers which have desired plug-and-play
characteristics, i.e. stability is ensured when subsystems are
added/removed from the network [1], [2]. Such approaches
have been successfully applied to problems such as network
congestion control [3] and in chemical and biological sys-
tems [1]. One particular case of interest is that of power
systems, specifically the control of converter-based grids
[4]. Passivity-based approaches for grid-forming converter
control have been proposed to guarantee stability in a de-
centralised way in both AC [5], [6] and DC microgrids [7],
[8]. However, the performance metrics often used for control
design are only local and thus do not provide network-wide
performance guarantees.

Consequently, the need arises for a comprehensive met-
ric capable of evaluating controller performance for such
systems at the network level. Previous work revealed that
a duality exists between passivity-based cooperative control
problems and network optimisation problems [9]. However,
these results only considered steady-state equilibria and did
not address optimisation of system trajectories. While the
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passive controllers from the literature discussed above may
be optimal at a local level (e.g. the mixed H∞/passive
controller from [5]), the tuning of these controllers is often
based on heuristics and lacks a systematic way of achieving
network-wide performance objectives.

To address this gap, we propose an approach that ap-
plies the framework of inverse optimal control to network
systems where the local subsystems are designed to be
passive. Inverse optimal control is a well established branch
of optimal control theory that focuses on deriving a cost
functional for which a given controller is the optimal solution
[10], [11], [12]. We show that passive network systems
naturally fit within this theory, as the separable structure of
the Lyapunov functions allows to formulate optimal control
problems where the optimal controller is both decentralised
and passivates the subsystem dynamics.

The contributions of this paper are as follows:
1) We introduce a set of sufficient conditions that al-

low passive network systems to have an inverse op-
timal control formulation, i.e. the corresponding de-
centralised controllers are solutions to a network-wide
optimal control problem.

2) We show that these conditions can be transformed into
linear matrix inequalities (LMIs) for linear systems,
enabling the design of controllers that simultaneously
achieve plug-and-play functionality and global opti-
mality. Furthermore, we demonstrate that controllers
derived using this method can be easily tuned while
upholding both objectives.

3) This approach is tested and verified using a DC mi-
crogrid case study.

The paper is organised as follows. Section II introduces the
network model and reviews both passivity theory and inverse
optimal control. These concepts are combined in Section III
to analyse a class of decentralised controllers that passiviate
the local subsystems and also solve a network-wide optimal
control problem. A DC microgrid case study is analysed in
Section IV, before concluding in Section V.

II. PRELIMINARIES

A. Notation and Definitions

The matrix-weighted (semi)norm of a vector x ∈ Rn is
given by ‖x‖2R = xTRx for positive (semi-)definite R ∈
Rn×n. In denotes the n-dimensional identity matrix. The
Kronecker product is denoted by ⊗. The direct sum of a set
of indexed matrices Bk, with k an element of some ordered
index set A is denoted by ⊕k∈ABk. The composite vector
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constructed from a set of indexed vectors ak, where k is an
element of some ordered index set A is denoted [ak]k∈A. For
ease of presentation, we will denote (∇V (x))T as ∇TV (x).

B. Network Model

Consider a network modelled as a directed graph G(V, E),
with V = {ν1, ν2, . . . , ν|V|} the set representing the nodes
and E = {ε1, ε2, . . . , ε|E|} is the set representing the edges
of the graph. Assigning each edge in E an arbitrary direction,
we denote N+

i ⊂ E as the set of edges that have node i as
their sink and N−i ⊂ E as the set of edges that have node i as
their source. The edge εk ∈ E can equivalently be identified
as the couple εk ≡ (νi, νj) ∈ E ⊂ V × V , indicating that
εk connects node νi ∈ V to node νj ∈ V . Let B ∈ R|V|×|E|
denote the incidence matrix of the graph, with Bjk = 1 if
node j ∈ V is the sink node of edge k ∈ E , Bjk = −1 if
node j ∈ V is the source node of edge k ∈ E , or 0 otherwise.
Let Bp denote the matrix B ⊗ Ip.

For each node i ∈ V we associate controllable dynamics
that depend non-linearly on local state xi ∈ Rn and affinely
on local control variable ui ∈ Rm and input wi ∈ Rp

(defined in (3a) in terms of edge variables) as follows:

Σi :

{
ẋi = fi(xi) +Bui(xi)ui +Bi(xi)wi,

yi = hi(xi).
(1)

Here, fi : Rn → Rn, Bui : Rn → Rn×m and Bi :
Rn → Rn×p are Lipschitz continuous. In addition, the
system associated with i ∈ V produces output yi ∈ Rp and
hi : Rn → Rp is a continuous vector-valued function. In the
paper, we will consider decentralised static state-feedback
policies of the form ui = ui(xi), where ui : Rn → Rm

is Lipschitz continuous. The dependence on xi will be
henceforth omitted for simplicity in the presentation.

Similarly, with each edge j ∈ E we associate uncontrol-
lable dynamics that depend non-linearly on the local state
xj ∈ Rr and affinely on the input wj ∈ Rp (defined in (3b)
in terms of node variables) as follows:

Σj :

{
ẋj = fj(xj) +Bj(xj)wj ,

yj = hj(xj).
(2)

Here, fj : Rr → Rr and Bj : Rr → Rr×p are Lipschitz
continuous. In addition, the system associated with j ∈ E
produces output yj ∈ Rp and hj : Rr → Rp is continuous.

Motivated by electrical circuit theory, the interconnection
between the node and edge dynamics is characterised by
the following relations (which respectively correspond to
Kirchhoff’s Current Law and Kirchhoff’s Voltage Law):

wi =
∑

(l,m)∈N−
i

ylm −
∑

(l,m)∈N+
i

ylm, i ∈ V (3a)

wlm = −yl + ym, (l,m) ∈ E . (3b)

Here, wlm and ylm respectively denote the input and output
of system (2) associated with the edge (l,m) ∈ E .

Now, using the above relations, two composite subsystems
can be created representing the node and edge dynamics.
Letting xV = [xi]i∈V , fV(xV) = [fi(xi)]i∈V , wV = [wi]i∈V ,

−1 ΣV

ΣE

Bp BTp

wV yV

wEyE

Fig. 1. Negative feedback interconnection of the node system ΣV with
state xV and the edge system ΣE with state xE .

û = [ui]i∈V , BV(xV) = ⊕i∈VBi(xi) and Bu(xV) =
⊕i∈VBui(xi), we have the composite block diagonal node
dynamics

ΣV : ẋV = fV(xV) +BV(xV)wV +Bu(xV)û. (4)

Similarly, the composite block diagonal edge dynam-
ics can be described using xE = [xj ]j∈E , fE(xE) =
[fj(xj)]j∈E , wE = [wj ]j∈E and BE(xE) = ⊕j∈EBj(xj),
giving

ΣE : ẋE = fE(xE) +BE(xE)wE . (5)

The relations (3) then reduce to wV = −BpyE and wE =
BTp yV , where yV = [yi]i∈V and yE = [yj ]j∈E . Therefore, the
whole network can be described by ˙̂x = f̂(x̂)+ B̂(x̂)û, with
x̂ = [xTV xTE ]T and f̂(x̂) and B̂(x̂) given by the following
expression:[

ẋV
ẋE

]
=

[
fV(xV)−BV(xV)BpyE
fE(xE) +BE(xE)BTp yV

]
+

[
Bu(xV)

0

]
û. (6)

We therefore see that the system (6) in closed-loop is a
negative feedback interconnection of two aggregate systems
as demonstrated in Figure 1: the node subsystem ΣV with
state xV and the edge subsystem ΣE with state xE .

C. Review of Passivity Theory

As described in e.g. [1], a local state feedback controller
can be designed to achieve certain passivity properties of the
closed-loop node subsystem.

A system (1) or (2), with input wk and output yk, k ∈ V∪
E , is said to be strictly passive if there exists a positive semi-
definite, continuously differentiable function Vk : Rnk →
R≥0 (called the storage function) such that

wT
k yk ≥ V̇k(xk) + ψk(xk), ∀wk, xk (7)

where ψk : Rnk → R>0 is a positive definite function [13].
For linear systems i ∈ V of the form

ẋi = Aixi +Buiui +Biwi

yi = Cixi,
(8)

with linear controllers ui = Kixi, Ki ∈ Rm×n we can
take Vi(xi) = 1

2x
T
i Pixi and ψi(xi) = 1

2x
T
i Γ−1i xi for some

matrices satisfying Pi = PT
i > 0 and Γi = ΓT

i > 0. Then,
(7) can equivalently be written as the following bilinear
matrix inequality (BMI) in Pi, Ki and Γi [5], [13]:[

ÃTPi + PiÃ+ Γ−1i PiBi − CT
i

BT
i Pi − Ci 0

]
≤ 0, (9)
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where Ã = Ai +BuiKi. This BMI can then be converted to
an LMI using simple transformations.

Now, assuming the system associated with each edge
j ∈ E is strictly passive from wj to yj with storage
function Vj(xj), and the system associated with each node
i ∈ V can be rendered strictly passive from wi to yi with
storage function Vi(xi) by control action ui, we can then
construct a storage function for the entire network V̂ (x̂) =∑

i∈V Vi(xi) +
∑

j∈E Vj(xj), which can serve as a network
Lyapunov function. If all systems are linear, this can be
written in matrix form as V̂ (x̂) = 1

2 x̂
T P̂ x̂. The existence

of this separable Lyapunov function ensures stability of the
network under changes in network topology [5].

However, controllers designed using passivity-based meth-
ods do not necessarily guarantee desirable or optimal per-
formance due to their inherent conservatism. We show here
that inverse optimal control theory can be used to address
this problem.

D. Review of Inverse Optimal Control

The aim of inverse optimal control is to find a performance
metric for which a given controller is the optimal solution.
This problem has a long history, and various formulations
have been presented in the literature ([10], [11], [12]).
The approach taken in [12], [14] for nonlinear systems is
reproduced here:

Theorem 1: Consider the optimal control problem

min
u

∫ ∞
0

q(x,R) + ‖u‖2R dt

s.t. ẋ = f(x) +GT (x)u, x(0) = x0.

(10)

Here x ∈ Rn is the state vector, x(0) = x0 is the initial
condition and f : Rn → Rn is a continuous nonlinear
vector field with f(0) = 0. The input matrix is given by
the continuous matrix-valued function G : Rn → Rm×n.
We have R = RT> 0 ∈ Rm×m as a design matrix, and
the function q : Rn×Rm×m → R>0 has the condition
q(0, ·) = 0.

Now, let V : Rn → R>0 be a continuously differentiable
function associated with a stabilising feedback control law

u? = − 1
2R
−1G(x)∇V (x) (11)

where

∇TV (x)
(
f (x) +GT (x)u?

)
< −‖u?‖2R. (12)

Define

q(x,R) = −∇TV (x)
(
f (x) +GT (x)u?

)
− ‖u?‖2R. (13)

Then the following statements hold:
1) The unique optimal control law is given by (11).
2) The problem (10) has the optimal value V (x0).
Therefore, (10) serves as a performance metric for the

system. In addition, as described in [14], V (x) can be used
as a Lyapunov function to prove asymptotic stability, though
additional system structure needs to be exploited when the
right-hand-side of (12) is not positive definite in x.

For linear systems, (10) reduces to a linear quadratic
regulator (LQR) problem with q(x,R) = xTQ(R)x, where
Q(R) = Q(R)T ≥ 0 is the state cost matrix. Applying
Theorem 1 requires the optimal controller to have an as-
sociated control Lyapunov function V (x) = 1

2x
TPx with

P = PT > 0 and be of the form u? = − 1
2R
−1BTPx.

Equation (13) gives an expression for the state cost matrix
Q(R) and (12) gives the condition Q(R) > 0.

Remark 1: Note that Theorem 1 requires the control law
to be of the form (11) in order to be the solution to an
optimisation problem of the form (10). For linear systems, a
set of necessary and sufficient conditions for this to be the
case and for inverse optimality to hold are specified in [15].

For networks of interconnected systems, using a decen-
tralised controller at each node does not necessarily lead
to an inverse optimal control interpretation. At the same
time, solving a network-wide optimal control problem is
not guaranteed to produce a decentralised set of controllers,
nor is it guaranteed to produce controllers that lead to
passivity properties for the subsystems, and thus a plug-and-
play operation. In the sequel, we will discuss under what
conditions a decentralised controller can solve both these
problems simultaneously.

III. GLOBAL OPTIMALITY FROM DECENTRALISED
PASSIVE CONTROLLERS

We observe that a passivity-based control design leads to a
Lyapunov function for the entire interconnection. At the same
time inverse optimal control theory relies on the existence
of a Lyapunov function which satisfies certain additional
conditions. We will see in this section that by combining
these two approaches we can derive a set of sufficient local
conditions under which a set of decentralised controllers
simultaneously yield the optimal solution to a network-wide
optimal control problem, while also facilitating plug-and-
play operation when the network is modified. Proofs to the
results in this section are provided in [16].

Theorem 2: Consider the negative feedback interconnec-
tion network model (6). Assume that for each edge j ∈ E
the system with input wj and output yj is strictly passive
with storage function Vj(xj). For each node i ∈ V , assume
dynamics (1) with

ui = − 1
2R
−1
i BT

ui(xi)∇Vi(xi), (14)

with some matrix Ri = RT
i > 0 and some positive definite

function Vi(xi). Assume that using (14) in (1) generates a
local closed-loop system such that the node dynamics are
strictly passive from wi to yi with storage function Vi(xi),
i.e. (7) is satisfied.

If in addition at each node i ∈ V , the following local
condition is satisfied:

−∇TVi(xi)fi(xi)+
1
4∇

TVi(xi)Bui(xi)R
−1
i BT

ui∇Vi(xi) > 0. (15)

Then û? = [ui]i∈V is the globally optimal control input with
respect to the optimisation problem (10) for system (6) with
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control cost matrix given by R = ⊕i∈VRi and state cost
function

q(x̂, R) =
∑

k∈V∪E

[
−∇TVk(xk)fk(xk)

]
+
∑
i∈V

1
4∇

TVi(xi)Bui(xi)R
−1
i BT

ui∇Vi(xi). (16)

In addition, using (14) at each node ensures asymptotic
stability of the interconnected system independent of its
topology.

Remark 2: It should be noted that modifying the network
may lead to a change in the equilibrium point. For linear
systems, if the passivity property is satisfied about an equilib-
rium point, then it is satisfied at any equilibrium point [13].
In this case, Theorem 2 guarantees stability after network
modifications, thus providing plug-and-play functionality.
For nonlinear systems, satisfying the passivity property at
any equilibrium point is linked to incremental passivity [17].
In addition, the approach outlined here can also be useful in
practical designs where a change in an equilibrium point does
not significantly change the linearisation of the system at
that point, thus leading to plug-and-play functionality when
operating close to this equilibrium point.

It can be seen (as demonstrated in the proof of Theorem
2 in [16]) that as a result of the local passivity property of
each node and edge, the state cost function (16) is the sum
of terms involving local states only. This means that the cost
functional scales with the size of the network in question
and can easily be adjusted to account for new nodes.

Next, a method to find such controllers for linear systems
is presented. Here, the model (1) is linearised so that it can
be written in the form (8). Similar relationships hold for (2),
leading to a linearised version of the network system (6).

Lemma 3: Consider system (6) with linear node and edge
dynamics as in (8). For each i ∈ V with linearised dynamics
(8), consider matrices Yi ∈ Rn×n, Si ∈ Rm×m and
Γi ∈ Rn×n that satisfy the following set of linear matrix
inequalities (LMIs):YiAT

i +AiYi + 2BuiSiB
T
ui Yi Bi − YiCT

i

Yi −Γi 0
BT

i − CiYi 0 0

 ≤ 0,

(17a)

− 1
2BuiSiB

T
ui − 1

2

(
AiYi + YiA

T
i

)
> 0, (17b)

Yi = Y T
i > 0, Γi > 0, Si = ST

i > 0. (17c)

Considering Pi = Y −1i and Ri = − 1
2S
−1
i yields the

following distributed local controller for each i ∈ V:

u?i = − 1
2R
−1
i BT

uiPixi. (18)

Then, together with the assumption that the edge subsystems
(2) for j ∈ E , are strictly passive from input wj to output yj ,
we have that the local controller (18) satisfies the conditions
specified in Theorem 2 and therefore:

1) It generates a strictly passive local closed-loop node
subsystem (8) for i ∈ V , with input wi and output yi.

2) The global network-wide controller

û? = ⊕i∈V
(
− 1

2R
−1
i BT

uiPi

)
xV (19)

composed of the distributed controllers (18) is the
optimal solution to problem (10) for the linearised
system (6) with cost matrices

R = ⊕i∈VRi, (20a)

Q(R) = blockdiag
[
QV(R) QE

]
, (20b)

where

QV(R) =⊕i∈V
(
1
4PiBuiR

−1
i BT

uiPi

− 1
2

(
PiAi +AT

i Pi

))
,

QE =−⊕j∈E
1
2

(
PjkAjk +AT

jkPjk

)
.

(21)

3) The linearised system (6) is asymptotically stable in-
dependent of network topology.

Remark 3: Solving (17a) produces a local controller that
generates a strictly passive closed-loop node subsystem,
while (17b) ensures that condition (15) is satisfied. Therefore,
satisfying all these constraints simultaneously produces a
controller that fulfils the passivity property and is also a
component of the global optimal network controller.

Remark 4: If desired, additional LMI constraints can be
added to (17) to impose desired dynamic behaviour on the
local system. For example, the constraint

AT
i Pi + PiAi + 2PiBuiSiB

T
uiPi < λiPi (22)

has the effect of imposing a minimum decay rate of λi on
the storage function Vi(xi) = 1

2x
T
i Pixi, which can improve

performance by decreasing settling time for the local system
[18]. This then has a direct impact on global performance
in cases where the node dynamics dominate and there are
weak node-edge interactions.

In [14], it was noted that the control cost matrix R
can be used as a tuning parameter, whereby optimality is
preserved for any R̄ ≤ R. We show below that when this
property is applied to the controllers designed in Lemma 3,
decentralization and passivity are also retained.

In particular, once suitable Pi have been found for each
i ∈ V using (17), application of Theorem 1 means that
new controllers ūk can be found via ū = − 1

2 R̄
−1B̂T P̂ x̂

for any R̄ = R̄T > 0 with R̄ ≤ R. For a decentralised
controller, we require a block diagonal R̄. Taking R̄ =
⊕i∈VR̄i with all R̄i = R̄T

i > 0, gives the local controller
ūi = − 1

2 R̄
−1
i BT

uiPixi and ū satisfies the global optimality
condition with control cost R̄, provided Q

(
R̄
)
≥ 0.

Thus, the local control cost matrices R̄i can be used to
tune the control matrix gains, while maintaining an optimal
controller that solves (10). The lemma below shows that the
conditions in Lemma 3 ensure that the passivity property is
also satisfied when this class of control policies is considered.

Lemma 4: Let Ri and Pi denote particular solutions found
by solving (17). Let R̄i ∈ Rm×m, R̄i = R̄T

i > 0 be a
new tuning matrix that gives rise to local controller ūi =
− 1

2 R̄
−1
i BT

uiPixi and global controller ū via ū = [ūi]i∈V .
Then, if R̄i ≤ Ri,
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1) The local closed-loop node subsystem (8) with i ∈ V
is strictly passive from input wi to output yi.

2) ū is the optimal solution to the global network LQR
problem (10) with cost matrices R̄ = ⊕i∈VR̄i and
Q(R̄) given by (20b).

Remark 5: Lemma 4 suggests it may be useful to find
a maximal Ri that fulfils both the passivity and optimality
objectives when solving (17). The control cost can then be
lowered by choosing R̄i < Ri. We can achieve this by setting
Si = −siIm in (17) with si ∈ R, si > 0 and minimising over
si, turning (17) into an optimisation problem in si, Yi and
Γi. Therefore, we have that R̄i > Ri cannot satisfy both the
passivity and optimality conditions simultaneously when Ri

is the maximal value considered here.

IV. DC MICROGRID CASE STUDY

We illustrate our results using a DC microgrid example.
This was chosen as passivity-based approaches in DC mi-
crogrids have been frequently suggested in the literature
where they are used to provide a decentralised means for
control design without requiring knowledge of the microgrid
structure [19]. However, the tuning of such control schemes
is often based on heuristics due to the lack of a network-wide
performance metric.

In such a microgrid, we will assume that every bus
contains a DC source distributed generation unit (DGU)
(such as a solar PV source or a battery), or a load. The
DGU units interface with the grid via a DC-DC converter
to regulate the DC voltage [7], [8]. We will assume that
the node set V will be split between a collection of buses
containing DGUs indexed by the set D and a collection of
load buses indexed by the set L, such that V = {D,L}.

All DGU buses will be modelled with a buck converter
producing a controllable DC voltage. At the outlet of each
converter is an RLC filter which is connected to the lines
of the microgrid, as demonstrated in Figure 2. Using Kirch-
hoff’s Laws, this leads to the following equations for a DGU
bus i ∈ D:

lii̇i = −riii − vi + ui, (23a)
civ̇i = ii − ioi − givi, (23b)

where li, ri and ci are the filter inductance, resistance and
capacitance, gi is a parasitic conductance, ii is the filter
current, vi is the voltage at the output of the filter, ui is the
voltage output of the buck converter (the control variable)
and ioi is the current injection from the neighbouring lines
given by an expression analogous to (3a).

In order to track a voltage setpoint (which is broadcast by
a centralised microgrid controller at semi-regular intervals),
each converter also contains an integrator of the form [20]

ζ̇i = vi − vseti + zii
o
i , (24)

where ζi is the integrator state, vseti is the setpoint for
converter i ∈ D and zi is a virtual impedance used to enhance
stability [21] and allow for a passive controller of the form
(18) to be feasible in the case study considered.

li

ii

ri

ioi
+

vi

−−

ui

+

gi ci

Fig. 2. Circuit diagram of the buck converter filter.

The dynamics (23) and (24) together form the subsystem
i ∈ D, where the input from the line subsystem is −ioi and
the output is vi, which can be written in the form (8).

Meanwhile, we assume constant impedance loads at every
l ∈ L with the following dynamics:

clv̇l = −glvl − iol , (25)

where cl is the load capacitance, gl is the load conductance
and the rest of the notation has analogous meanings to those
in (23). We note that each l ∈ L is strictly passive from −iol
to vl with storage function Vl(vl) = 1

2clv
2
l .

Finally each line (i, j) ∈ E has the following dynamics:

lij i̇ij = −rijiij + vij , (26)

where lij and rij are the line inductance and resistance, iij
is the line current, and vij is the voltage difference between
buses i and j, given by an expression analogous to (3b).
We note that the dynamics associated with each (i, j) ∈ E
are strictly passive from vij to iij with storage function
Vij(iij) = 1

2 liji
2
ij .

The systems associated with {D,L} = V and E can
easily be combined into a closed-loop system of the form
depicted in Figure 1 and described by (6). However, here û
is restricted to D rather than all nodes in V , so û = [ui]i∈D.

Using Lemma 3, we can then construct matrices Pi and Ri

for each i ∈ D such that each DGU subsystem is strictly pas-
sive from −ioi to vi with storage function Vi(xi) = 1

2x
T
i Pixi

when the decentralised controller ui = − 1
2R
−1
i BT

uiPixi is
used to close the DGU subsystem control loop. This gives
rise to a global storage function V̂ (x̂) = 1

2 x̂
T P̂ x̂ with

P̂ = blockdiag
[
⊕i∈DPi ⊕l∈Lcl ⊕(i,j)∈E lij

]
. (27)

In addition, we have that the composite controller û is the
optimal network-wide controller with respect to the LQR
problem (10) with cost matrices R = ⊕i∈VRi and (using
QD(Ri) with an expression analogous to QV(Ri) in (21))

Q(R) = blockdiag
[
QV(Ri) ⊕l∈Lgl ⊕(i,j)∈Erij

]
.
(28)

Simulation: The above results have been tested numeri-
cally on a simple microgrid composed of three DGU buses
and two load buses (see Figure 3). The three DGU buses
have identical converters, defined by parameters in [16]. The
LMIs (17) were solved as an optimisation problem as out-
lined in Remark 5, and included the additional performance
constraint (22) (with λi = −8). The resulting Ri was 1.55,
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1 DGU 2 DGU4 Load 5 Load 3 DGU

Fig. 3. Graph structure of the DC microgrid used in simulation. The line
between DGU 3 and Load 5 is only connected at t = 3 seconds.

Fig. 4. The voltage vi generated by each converter in a five-bus system
containing three DGU buses and two load buses for various values for R̄i.
Here, g4 was altered at t = 1 s and g5 at t = 2 s (see [16]). The link
between DGU 3 and Load 5 was established at t = 3 s to test the plug-
and-play property.

enabling calculation of R and Q(R) using (28). The network
storage function P̂ was also found using (27).

Following this, tuning of R̄i was performed, with values
R̄i < 1.55 simultaneously generating a strictly passive bus
and an optimal controller as guaranteed from Lemma 4.
Values R̄i > 1.55 could not simultaneously satisfy the
passivity and optimality conditions (but may still lead to a
stable network). The controllers were tested in simulations
to evaluate performance and the results can be found in
Figure 4.

The results demonstrate that the controller quickly returns
the microgrid voltages to equilibrium after each disturbance
and easily handles the change in microgrid topology at
t = 3 s. As expected, lower values of R̄i establish equi-
librium more quickly by lowering the cost of control and
increasing the corresponding cost of non-equilibrium state
values. However, lower R̄i values yield controllers with
higher gains, potentially resulting in overly aggressive action
as in the case of R̄i = 0.1 and R̄i = 0.01. Nevertheless,
the framework described here offers a practical strategy for
designing controllers for DC microgrids, enabling plug-and-
play capabilities and quantifiable performance via an optimal
control problem for the network.

V. CONCLUSION

In this paper, we have introduced a set of sufficient condi-
tions that allow decentralised passivity-based controllers to
be optimal with respect to a global network performance
metric. A method for designing such decentralised control
systems via an LMI framework was provided. This approach

has the dual benefit of simultaneously rendering the closed-
loop system at each node strictly passive, thus ensuring
stability under network modifications, while also ensuring
that the synthesised controller is the solution to a network-
wide optimal control problem. The approach has also been
verified via a DC microgrid case study.
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J. Raisch, “A survey on modeling of microgrids—From fundamental
physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–
150, Dec. 2016.

[5] J. D. Watson, Y. Ojo, K. Laib, and I. Lestas, “A scalable control design
for grid-forming inverters in microgrids,” IEEE Transactions on Smart
Grid, vol. 12, no. 6, pp. 4726–4739, 2021.

[6] F. Strehle, P. Nahata, A. J. Malan, S. Hohmann, and G. Ferrari-
Trecate, “A Unified Passivity-Based Framework for Control of Mod-
ular Islanded AC Microgrids,” IEEE Transactions on Control Systems
Technology, pp. 1–17, 2021.

[7] K. Laib, J. Watson, Y. Ojo, and I. Lestas, “Decentralized stability con-
ditions for DC microgrids: Beyond passivity approaches,” Automatica,
vol. 149, p. 110705, Mar. 2023.

[8] P. Nahata, R. Soloperto, M. Tucci, A. Martinelli, and G. Ferrari-
Trecate, “A passivity-based approach to voltage stabilization in DC
microgrids with ZIP loads,” Automatica, vol. 113, p. 108770, Mar.
2020.

[9] M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network theory
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linear Control, ser. Communications and Control Engineering, B. W.
Dickinson, A. Fettweis, J. L. Massey, J. W. Modestino, E. D. Sontag,
and M. Thoma, Eds. London: Springer, 1997.

[13] H. Khalil, Nonlinear Systems. Pearson Education, Limited, 2013.
[14] T. Jouini and A. Rantzer, “On cost design in applications of optimal

control,” IEEE Control Systems Letters, vol. 6, pp. 452–457, 2022.
[15] A. Jameson and E. Kreindler, “Inverse Problem of Linear Optimal

Control,” SIAM Journal on Control, vol. 11, no. 1, pp. 1–19, Feb.
1973.

[16] L. Hallinan, J. D. Watson, and I. Lestas, “Inverse Optimal Control
and Passivity-Based Design for Converter-Based Microgrids,” May
2023. [Online]. Available: http://arxiv.org/abs/2305.08988

[17] G.-B. Stan and R. Sepulchre, “Analysis of Interconnected Oscillators
by Dissipativity Theory,” IEEE Transactions on Automatic Control,
vol. 52, no. 2, pp. 256–270, Feb. 2007.

[18] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[19] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and
J. M. Guerrero, “Review on Control of DC Microgrids and Multiple
Microgrid Clusters,” IEEE Journal of Emerging and Selected Topics
in Power Electronics, vol. 5, no. 3, pp. 928–948, Sep. 2017.

[20] M. S. Sadabadi, Q. Shafiee, and A. Karimi, “Plug-and-Play Robust
Voltage Control of DC Microgrids,” IEEE Transactions on Smart Grid,
vol. 9, no. 6, pp. 6886–6896, Nov. 2018.

[21] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, L. Huang, and
J. Wang, “Stability Enhancement Based on Virtual Impedance for DC
Microgrids With Constant Power Loads,” IEEE Transactions on Smart
Grid, vol. 6, no. 6, pp. 2770–2783, Nov. 2015.

1250


