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Abstract— This paper studies the problem of online per-
formance optimization of constrained closed-loop control sys-
tems, where both the objective and the constraints are un-
known black-box functions affected by exogenous time-varying
contextual disturbances. A primal-dual contextual Bayesian
optimization algorithm is proposed that achieves sublinear
cumulative regret with respect to the dynamic optimal solution
under certain regularity conditions. Furthermore, the algorithm
achieves zero time-average constraint violation, ensuring that
the average value of the constraint function satisfies the desired
constraint. The method is applied to both sampled instances
from Gaussian processes and a continuous stirred tank reactor
parameter tuning problem; simulation results show that the
method simultaneously provides close-to-optimal performance
and maintains constraint feasibility on average. This contrasts
current state-of-the-art methods, which either suffer from large
cumulative regret or severe constraint violations for the case
studies presented.

I. INTRODUCTION

Constrained closed-loop control systems are critical to
a wide range of applications, and optimizing their online
performance by tuning control parameters is a common
challenge. This paper studies the time-varying black-box
optimization problems that arise in optimizing system per-
formance with constraints, where both the objective and
the constraints are unknown. For instance, consider building
control, which aims to minimize energy consumption while
meeting occupant comfort requirements [1]. Solving the
controller tuning problem in such scenarios is challenging for
several reasons. Firstly, it is hard to model the mapping from
control parameters to the performance metric of the closed-
loop system. Secondly, unknown constraint violations need
to be taken care of during the optimization process. Finally,
evaluating the system’s performance is often expensive in
practice.

To tackle these challenges, Bayesian optimization has
shown promise as a sample-efficient, derivative-free black-
box optimization method [2]. Bayesian optimization con-
structs a surrogate model using Gaussian process regres-
sion [3] and uses this model to guide the sampling of the
black-box functions. Variants of Bayesian optimization meth-
ods have been proposed to handle constrained optimization
problems. One common method is to maximize constrained
expected improvement (CEI) [4], [5] to select the next
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sample in each step. Another line of research developed safe
Bayesian optimization (Safe BO) methods by restricting the
sampling to only feasible points [6]–[9]. These methods have
found wide applications in control system optimization. For
example, CEI method is applied to trajectory optimization
for path following control [10]. Safe BO is applied to tune
the PI controller of a room heating system subject to a group
of safe constraints [11]. However, the CEI method may not
guarantee constraint feasibility and can suffer from severe
constraint violations, while safe Bayesian optimization meth-
ods can be too cautious and lose performance due to the strict
requirement of sampling feasible points.

In the context of controller tuning, one additional chal-
lenge that needs to be considered is that the unknown
objective and constraints are time-varying [12]. To address
this challenge, several time-varying variants of Bayesian
optimization have been proposed in the literature [12]–[14].
In practice, these variations can be due to the change of
‘contextual variables’ observed by the decision-maker before
selecting a new set of parameters [15]. Affected by the
time-varying contextual disturbances, guaranteeing constraint
satisfaction at every time instant can be challenging and may
not be necessary [16]. But rather, it can be more of interest
to satisfy the time-average constraint [17], especially when it
represents some economic cost that accumulates over time.
Examples include performance optimization of a machine
subject to fatigue constraints (see, e.g., [18]) and data center
cooling subject to the constraints on the number of delayed
queries per unit of time [19].

Motivated by the aforementioned observations, we formu-
late the time-varying black-box optimization problem as a
constrained contextual Bayesian optimization problem. To
solve it, we extend the primal-dual Bayesian optimization
framework [20] to the contextual setting [21]. In the proposed
algorithm, the contextual variable that impacts the response
surface of the black-box functions can be observed at each
step before selecting a new set of parameters, and then the
system performance is optimized over the current context.
The detailed contribution is summarized as follows:

• We propose a Primal-Dual Contextual Bayesian
Optimization (PDCBO) algorithm for time-varying con-
strained black-box optimization problems. In contrast to
the regret with respect to a static optimal value in the
non-contextual setting [20], we provide bounds on the
contextual regret with respect to the time-varying opti-
mal solutions. Furthermore, our algorithm can achieve
zero time-averaged constraint violations, even under the
adversarial time-varying contextual setting;
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• The proposed method is deployed to both sampled
instances from Gaussian processes and to a continuous
stirred-tank reactor parameter tuning problem. Com-
pared to other state-of-the-art methods, our method can
simultaneously achieve the lowest cumulative objective
while satisfying all the constraints on average.

II. PROBLEM FORMULATION

This work aims to sequentially optimize the control param-
eters θt ∈ Θ ⊂ Rnθ after observing some contextual variable
zt ∈ Z ⊂ Rnz in each step t, where Θ is the candidate set of
the control parameters and Z is the set of possible contextual
variables. Our problem can be thus, formulated as follows:

min
θ∈Θ

f(θ, z), (1a)

subject to: gi(θ, z) ≤ 0, ∀i ∈ [N ], (1b)

where [N ] is defined as the set {1, 2, · · · , N} ⊂ Z, f :
Rnθ × Rnz → R is the black-box objective function, and
gi : Rnθ×Rnz → R, i ∈ [N ] is a set of black-box constraints
to be satisfied. We use θ∗(z) to denote the optimal solution
of the problem (1), which depends on the current context
variable z. We use g to denote the concatenation (gi)

N
i=1

and g(θ, z) to denote the concatenation (gi(θ, z))
N
i=1.

We make some assumptions regarding the regularities of
the problem.

Assumption 1 Both Z and Θ are compact.

Assumption 1 is commonly seen in practice. For example,
we can restrict the control parameter set Θ to a hyper box
and often know an apriori bound on the range of contextual
variables.

Assumption 2 f ∈ H0, gi ∈ Hi, where Hi, i ∈ {0}∪ [N ] is
a reproducing kernel Hilbert space (RKHS) equipped with
kernel function ki(·, ·) (See [22].). Furthermore, ∥f∥ ≤
C0, ∥gi∥ ≤ Ci,∀i ∈ [N ], where ∥ · ∥ is the norm induced by
the inner product of the corresponding RKHS without further
notice.

Assumption 2 requires that the underlying functions are reg-
ular in the sense of having a bounded norm in an RKHS. In
the existing literature, having a bounded norm in an RKHS is
a commonly adopted assumption (e.g., [20], [23]). Intuitively,
it means the black-box function has a ‘smoothness’ property
at least to a certain level (See [22]).

Assumption 3 We only have access to a noisy zero-order
oracle, which means each round of query θt with contextual
variable zt returns the noisy function evaluations,

y0,t = f(xt) + ν0,t , (2a)
yi,t = gi(xt) + νi,t , i ∈ [N ], (2b)

where xt denotes the concatenation (θt, zt) and νi,t, i ∈
{0}∪ [N ] are independent and identically distributed σ-sub-
Gaussian noise.

Assumption 3 is reasonable as, in many applications, the
performance value of a control system can be obtained
through experiment or simulation with noise. However, the
gradient or other higher-order information can be difficult to
acquire.

Throughout the rest of this paper, we use the notation
Xt := (x1, x2, · · · , xt) to define the sequence of sampled
points up to step t. Therefore, the historical evaluations are

D1:t := {(xτ , y0,τ , · · · , yN,τ )}tτ=1 .

Assumption 4 The kernel function is normalized, such that,
ki(x, x) ≤ 1,∀x ∈ X , i ∈ {0} ∪ [N ], where X = Z ×Θ.

Assumption 5 There exists ξ > 0 independent of the context
z ∈ Z and θ̄(z) ∈ Θ, which can be dependent on z, such
that g(θ̄(z), z) ≤ −ξe, where e ∈ RN is the vector with all
1s and the inequality is interpreted elementwise.

Asssumption 5 is the so-called Uniform Slater Condition.
Assump. 5 is quite mild since we only require that a small ξ
exists rather than knowing a feasible solution as assumed in
safe Bayesian optimization literature [6]. As an immediate
implication of Assumption 5, we have the following result.

Proposition 1 There exists a probability distribution π̄(z)
over Θ, such that Eπ̄(z) (g(θ, z)) ≤ −ξe.

III. PERFORMANCE METRIC

We compare the controller parameters selected by our
algorithm with the optimal tracking solution of problem (1),
given the context z taking the value zt at step t.

We are interested in two metrics,

RT =

T∑
t=1

(f(θt, zt)− f(θ∗(zt), zt)) , (3a)

VT =

∥∥∥∥∥∥
[

T∑
t=1

g(θt, zt)

]+∥∥∥∥∥∥ , (3b)

which are the cumulative regret compared to the optimal
tracking solutions and the cumulative constraint violations.
The regret here is essentially the contextual regret [21],
which is stronger than the regret considered in [20].

The form of constraint violation in (3b) is the violation
of cumulative constraint value. VT /T gives the violation of
the average constraint value, which is common in practice.
For example, when g represents some economic cost (e.g.,
monetary expenses and energy consumption), it is usually of
more interest to bound the average constraint value during a
period rather than the whole constraint function sequence.

IV. GAUSSIAN PROCESS REGRESSION

As in the existing popular Bayesian optimization methods,
we use Gaussian process surrogates to learn the unknown
functions. As in [24], we artificially introduce a Gaussian
process GP(0, k0(·, ·)) for the surrogate modelling of the
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unknown black-box function f . We also adopt an i.i.d
Gaussian zero-mean noise model with noise variance λ > 0,
which can be chosen by the algorithm.

Recall that xt is defined as (θt, zt). We introduce the
following functions of (x, x′),

µ0,t(x) = k0(x1:t, x)
⊤ (K0,t + λI)

−1
y0,1:t, (4a)

k0,t (x, x
′) = k0 (x, x

′)

−k0(x1:t, x)
⊤ (K0,t + λI)

−1
k0 (x1:t, x

′) , (4b)

σ2
0,t(x) = k0,t(x, x) (4c)

with k0(x1:t, x) = [k0(x1, x), k0(x2, x), · · · , k0(xt, x)]
⊤,

K0,t = (k0(x, x
′))x,x′∈Xt , y0,1:t = [y0,1, y0,2, · · · , y0,t]⊤.

Similarly, we can get µi,t(·), ki,t(·, ·), σi,t(·), ∀i ∈ [N ] for
the constraints.

To characterize the complexity of the Gaussian processes
and the RKHSs corresponding to the kernel functions, we
further introduce the maximum information gain for the
objective f as in [23],

γ0,t := max
A⊂Θ×Z;|A|=t

1

2
log
∣∣I + λ−1K0,A

∣∣ , (5)

where K0,A = (k0(x, x
′))x,x′∈A. Similarly, we introduce

γi,t,∀i ∈ [N ] for the constraints.

Remark 1 Note that the Gaussian process model above is
only used to derive posterior mean functions, covariance
functions, and maximum information gain for algorithm
design and theoretical analysis. It does not change our set-
up that f is a deterministic function and that the observation
noise only needs to be sub-Gaussian.

Based on the aforementioned preliminaries of Gaussian
process regression, we then derive the lower confidence, and
upper confidence bound functions.

Lemma 1 Let Assumptions 1 and 2 hold. With probability
at least 1− δ, ∀δ ∈ (0, 1), the following holds for all x ∈ X
and t ≥ 1,

gi(x) ∈ [g
i,t
(x), ḡi,t(x)], ∀i ∈ [N ] (6)

and f(x) ∈ [f
t
(x), f̄t(x)] , (7)

where for all i ∈ [N ],

f
t
(x) := max{µ0,t−1(x)− β

1/2
0,t σ0,t−1(x),−C0} , (8a)

f̄t(x) := min{µ0,t−1(x) + β
1/2
0,t σ0,t−1(x), C0} , (8b)

g
i,t
(x) := max{µi,t−1(x)− β

1/2
i,t σi,t−1(x),−Ci} , (8c)

ḡi,t(x) := min{µi,t−1(x) + β
1/2
i,t σi,t−1(x), Ci} , (8d)

β
1/2
i,t := Ci + σ

√
2 (γi,t−1 + 1 + ln((N + 1)/δ)) . (8e)

Proof: By Corollary 2.6, [25], with probability at least
1− δ, ∀δ ∈ (0, 1), for all x ∈ X and t ≥ 1,

µi,t−1(x)−β
1/2
i,t σi,t−1(x) ≤ gi(x) ≤ µi,t−1(x)+β

1/2
i,t σi,t−1(x).

Furthermore, |gi(x)| = |⟨gi, ki(x, ·)⟩| ≤ ∥gi∥∥ki(x, ·)∥ ≤
Ci,∀i ∈ [N ]. Therefore, gi(x) ∈ [g

i,t
(x), ḡi,t(x)]. Similarly,

f(x) ∈ [f
t
(x), f̄t(x)].

Without further notice, all the following results are con-
ditioned on the high probability event in Lem. 1 happening.

V. ALGORITHM AND THEORETICAL GUARANTEES

Our primal-dual algorithm is shown in Alg. 1, where η
is a small scaling factor to be chosen, λt can be interpreted
as the dual variable up to the scaling of η, 0 < ϵ ≤ ξ

2 is
a slackness parameter, and [·]+ is interpreted element-wise.
Intuitively, the larger η is, the more emphasis is given to the
constraints.

Algorithm 1 Primal-Dual Contextual Bayesian
Optimization (PDCBO).

1: for t ∈ [T ] do
2: Observe contextual variables zt.
3: Primal update:

θt = argmin
θ∈Θ

{f
t
(θ, zt) + ηλT

t gt(θ, zt)}. (9)

4: Dual update:

λt+1 = [λt + g
t
(θt, zt) + ϵe]+. (10)

5: Evaluate f and gi, i ∈ [N ] at xt = (θt, zt) with
noise.

6: Update (µi,t, σi,t), i ∈ {0} ∪ [N ] with the new data.
7: end for

The Alg. 1 is based on the well-known primal-dual op-
timization method. The Lagrangian of the original problem
is L(θ, z, ϕ) = f(θ, z) + ϕT g(θ, z) and the dual function
is D(z, ϕ) = minθ L(θ, z, ϕ). In the primal update step,
we optimize the Lagrangian. In the dual update step, we
apply the dual ascent method. In primal and dual updates,
we replace the unknown black-box functions with their lower
confidence bounds, following the principle of optimism in the
face of uncertainty.

The primal update (9) requires solving a potentially non-
convex auxiliary optimization problem. When the dimension
of θ is small (e.g., < 6) we can use a pure grid search method
to solve it. For larger dimensions, one can, for example, apply
the gradient descent method from multiple different initial
points. Line 5 can be done by querying a simulator or doing
an experiment in practice.

Remark 1 In Alg. 1, λt is not exactly the dual variable,
but the dual variable scaled by 1

η . Indeed, λt can be
interpreted as virtual queue length [20]. The intuition of ϵ
is to introduce some level of constant pessimistic drift to
control the cumulative violation.

We now give the theoretical guarantees in Thm. 1.

Theorem 1 Let the Assumptions 1, 2, 3, 4 and 5 hold. We
further assume the maximum information gain term satisfies
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limT→∞
∥γg

T ∥√
T

= 0, where γg
T := (γ1,T , · · · , γN,T ). We set

η = 1√
T

, λ1 = ( 4C0

ηξ + 4∥C∥2

ξ )e and

ϵ =

√
N

(
4C0
ηξ

+ 4∥C∥2
ξ

)2

+ 4C0
η

+ 4∥C∥2 + 8∥βg
T ∥

√
T∥γg

T ∥

T
,

where βg
T := (β1,T , · · · , βN,T ) and C := (C1, · · · , CN ).

Let T be large enough such that ϵ = O(∥γg
T ∥/

√
T ) ≤ ξ/2.

We have

RT = O

(
N∑
i=0

γi,T
√
T

)
and VT=0.

Proof Sketch Our proof involves three key ingredients. First,
the cumulative cost paid to learn the black-box functions
can be bounded by some term involving the maximum
information gain (5). Second, the regret and the violations
in the primal values can be bounded by the drift of dual
variables. Third, by properly selecting the constant dual drift
ϵ 1, we can balance the regret and violation such that time-
average constraints are strictly satisfied while the cumulative
contextual regret is bounded. The detailed proofs can be
found in the Appendix of our technical report [26].

Remark 2 Thm. 1 highlights that for kernels with the max-
imum information gain terms that grow slower than

√
T ,

our algorithm achieves average contextual regret converging
to zero while incurring no constraint violation on average.
The slow growth assumption holds for most popular kernels
including Squared Exponential and Mátern (under the as-
sumption shown in Tab. I) kernels [23].

By applying the bounds on maximum information gains
from [23], [27] to Thm. 1, we derive the kernel-specific
bounds as in Tab. I, where d = nθ + nz , ν is the smooth-
ness parameter of the Mátern kernel, and Õ(·) hides some
polylogarithmic term.

TABLE I
KERNEL-SPECIFIC REGRET BOUNDS.

Kernel Linear Squared Exponential Mátern (νd > 1
2 )

RT Õ(d
√
T ) Õ(

√
T ) Õ(T

2ν+3d
4ν+2d )

Remark 3 In Thm. 1, the running steps T is known be-
forehand. To extend to the case where T is unknown, we
can apply the doubling trick [28]. The idea is to start the
algorithm with a small T and restart it with T doubled every
time the running steps are exhausted.

VI. EXPERIMENTS

We consider two sets of experiments. In the first set,
we use the objective and constraint functions sampled from
Gaussian processes. In the second set, we consider the classi-
cal Williams-Otto benchmark problem [29]. We compare our

1In practice, we can set ϵ to be a small value as compared to the range
of the constraint function or even just 0.

method to the state-of-the-art Bayesian optimization methods
with constraints consideration, including SafeOPT [6], [30]
and CEI (Constrained Expected Improvement) method [4],
[5]. The experiments are implemented in python, based on
the package GPy [31]. The code for the experiments is avail-
able through https://github.com/PREDICT-EPFL/PDCBO.

Choice of Parameters. The performance of PDCBO is
mainly impacted by β

1/2
i,t . In practice, β1/2

i,t can usually be set
as a constant. Indeed, when the kernel choices and the kernel
hyperparameters fit the black-box functions well, setting
β
1/2
i,t = 3 typically works well. In our experiments, manually

setting β
1/2
i,t = 1.0 works well. We also set λ = 0.052 as

the noise variance for the Gaussian process modeling. We
use the common squared exponential kernel. For the second
example, we sample a few points randomly and maximize the
likelihood function to get the hyperparameters of the kernel.

Computational Time. In our experiments, all the prob-
lems have low-dimensional inputs (nθ ≤ 3). So we use pure
grid search to solve the auxiliary problem for primal update,
which is relatively cheap due to the explicit expressions of
the lower confidence bound functions as compared to the
simulation of the Williams-Otto benchmark problem.

Performance Metrics. To measure the quality of sample
sequences, we use constrained contextual regret shown in
Eq. 3a. To measure the violations, we introduce the cumula-
tive constraint value

∑t
τ=1 gi(θτ , zτ ), i ∈ [N ], and the time-

average constraint value 1
t

∑t
τ=1 gi(θτ , zτ ), i ∈ [N ].

A. Sampled Instances from Gaussian Process

We consider the problem (1) with only one constraint,
where θ ∈ Θ = [−10, 10], z ∈ Z = [−10, 10], and both
f and g are unknown black-box functions sampled from a
Gaussian process. We use the squared exponential kernel,

k((θ1, z1), (θ2, z2)) = (11)

σ2
SE exp

{
−
(
θ1 − θ2

lθ

)2

−
(
z1 − z2

lz

)2
}
,

where σ2
SE = 2.0, and lθ = lz = 1.0. We run different

algorithms for 500 steps over 50 different sampled instances.
The context sequence is randomly generated from a uniform
distribution over the context set Z . Fig. 1 shows the cu-
mulative contextual regret and cumulative constraint value
of different algorithms over 50 different trajectories. It can
be observed that our PDCBO achieves sublinear cumulative
contextual regret while keeping the cumulative constraint
value below zero with high confidence. In contrast, the CEI
method suffers from almost linear cumulative contextual re-
gret and fails to keep average constraint feasibility with high
probability. Although Safe BO can keep average constraint
feasibility, its cumulative contextual regret is about 62%
higher than our PDCBO due to its being overly cautious
to keep feasibility in every single step.

B. Williams-Otto Classical Problem

In this section, we consider the problem of the classical
Williams-Otto benchmark problem [29]. In this problem,
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Fig. 1. The cumulative context regret and cumulative constraint value of
different algorithms. The statistics are obtained over 50 different trajectories.
The shaded area represents ±0.5 standard deviation.

we feed a continuous stirred-tank reactor (CSTR) with two
components A and B. The reactor then operates at the steady
state under the reaction temperature Tr. During the chemical
reaction, a byproduct G is produced. We use XA and XG to
denote the steady-state residual mass fractions of A and G
at the reactor outlet. Both XA and XG need to be managed.
That is, we need to control the steady-state residual mass
fractions of A and G to be lower than some thresholds.
See [29, Sec. 4.1] for more details. Meanwhile, a key factor
that impacts the cumulative profit of the chemical reaction
process is the time-varying nature of the product price and
the costs of the raw materials [32]. To incorporate these time-
varying factors, we model them as contextual variables.

We want to adaptively tune the feed rate FB of the
component B and the reaction temperature Tr to maximize
the cumulative economic profit from the reaction while
managing XA and XG. Our problem can be formulated as,

min
FB,Tr

J(FB, Tr, P )

subject to CSTR model [33]
g1(FB, Tr) := XA(FB, Tr)− 0.12 ≤ 0

g2(FB, Tr) := XG(FB, Tr)− 0.08 ≤ 0,

FB ∈ [4, 7], Tr ∈ [70, 100]

(12)

where J(FB, Tr, P ) is the minimization objective that is
opposite to the net economic profit, P ∈ R4 is the price

vector of the product and the raw materials, g1(FB, Tr) and
g2(FB, Tr) are threshold constraints on the residual mass
fractions. To generate the context P t at step t, we randomly
sample P t

i uniformly from the interval [(1−α)P̄i, (1+α)P̄i],
where P̄i is a predefined normal price and α = 0.2.
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Fig. 2. Cumulative cost and average constraints of the chemical reaction
over 50 different context trajectories. The shaded area represents ±1.0
standard deviation.

Fig. 2 shows the cumulative cost and the running average
of the constraints with 50 different context trajectories. We
observe that our PDCBO achieves the lowest cumulative cost
(the highest cumulative profit, equivalently) while satisfying
the constraints on average. In contrast, Safe BO is overly
cautious and can not achieve all the potential economic profit.
Finally, the generic CEI method suffers from both low profit
and severe constraint violation for the second constraint.
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VII. CONCLUSION

This paper studied the problem of optimizing the closed-
loop performance of constrained control systems, where both
the objective and the constraints are unknown black-box
functions affected by exogenous time-varying contextual dis-
turbances. A primal-dual contextual Bayesian optimization
algorithm was proposed, and it was shown to achieve sub-
linear cumulative regret with respect to the dynamic optimal
solution under certain regularity conditions. Furthermore, the
algorithm achieves zero time-average constraint violation,
ensuring that the average value of the constraint function
satisfies the desired constraint. Our method is particularly
useful when the constraint functions correspond to some
economic costs that accumulate with time. The method is
applied to both sampled instances from Gaussian processes
and to a continuous stirred tank reactor feedrate and reaction
temperature tuning problem; simulation results on both prob-
lems show that the method simultaneously provides close-
to-optimal performance and maintains constraint feasibility
on average. This contrasts current state-of-the-art methods,
which either suffer from large cumulative regret or severe
constraint violations for the case studies presented.
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