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MPC for Tracking applied to rendezvous with non-cooperative
tumbling targets ensuring stability and feasibility

Jose Antonio Rebollo, Rafael Vazquez, Ignacio Alvarado and Daniel Limon

Abstract— A Model Predictive Controller for Tracking is
introduced for rendezvous with non-cooperative tumbling tar-
gets in active debris removal applications. The target’s three-
dimensional non-periodic rotational dynamics as well as other
state and control constraints are considered. The approach is
based on applying an intermediate coordinate transformation
that eliminates the time-dependency due to rotations in the
constraints. The control law is then found as the solution to a
Quadratic Programming problem with linear constraints and
dynamics, as derived from the Hill-Clohesy-Wiltshire equations,
that provides feasibility and stability guarantees by means of
a terminal Linear Quadratic Regulator and dead-beat region.
The proposed control algorithm performs well in a realistic
simulation scenario, namely a near rendezvous with the Envisat
spacecraft.

I. INTRODUCTION

Space debris presents a growing threat to operational
spacecraft, with increased satellite deployments raising the
risk of in-orbit collisions, underscoring the need for Active
Debris Removal (ADR) strategies. ADR aims to remove de-
funct objects, reducing collision risks and debris population
[1].

Various rendezvous-based ADR technologies have been
proposed [2], involving mechanical attachment to deploy
deorbiting devices like Electrodynamic Tethers (ET) [3],
[4] or solid propellant kits [5]. A key challenge is safely
and precisely rendezvousing with non-cooperative, often
tumbling targets [6].

Model Predictive Control (MPC) is well-suited for com-
plex, safety-critical missions like ADR due to its ability
to handle constraints and optimize control actions in real-
time. While previous research focuses on 3-DOF rendezvous
with tumbling targets, time-varying constraints complicate
finding and maintaining feasible solutions, often requiring
longer prediction horizons or optimal trajectories, which in-
creases computational complexity. This “feasibility problem”
affects the current scenario. For instance, [7] solved time-
constrained rendezvous but didn’t explicitly address collision
avoidance, while [8] assumed attitude synchronization and
used quadratic programs but limited collision avoidance to
keeping the chaser outside a sphere around the target. More
sophisticated strategies like [9] divide docking into phases
for improved safety.

MPC has shown robustness under uncertainties, especially
using tube-based approaches [10]. For instance, [11] ap-
plied Tube-Based MPC for rendezvous without considering
tumbling targets, while [12], [13] used Tube-Based MPC
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with robust control for tumbling targets, relying on motion
planners for reference trajectories. Traditional controllers
focus on fixed equilibria [14], but dynamic targets complicate
control design. Recent controllers ensure stability for moving
targets [15]. In [16], a multistage MPC for Tracking (MPCT)
ensured safe, stable 3-DOF rendezvous with tumbling targets.

This paper is organized as follows: Section II outlines the
problem and constraints, Section III introduces the control
strategy, applied in Section IV. Section V evaluates the con-
troller’s implementation, and Section VI presents simulation
results for the Envisat scenario. Finally, concluding remarks
are in Section VII. For further details, see the extended
version of this paper [17].

II. PROBLEM FORMULATION

Let D be the target in the rendezvous operation, assumed
to follow a circular geocentric orbit of radius R with an
angular rate n = \/%, where p = 398600.4 km®s—2.
The corresponding orbital period is Tp = 27n/n. The
chaser spacecraft, C', must rendezvous with D, respecting
the engineering constraints defined later.

The chaser’s relative position and velocity to the target are
described by vectors  and v, expressed in the Local Vertical
Local Horizontal (LVLH) frame, L. The target’s position and
velocity are given by rp and vp. The relative motion of C
and D is governed by the Hill-Clohessy-Wiltshire (HCW)
equations [18], [19], where for an impulsive control u and
propagation time 7', the linearized evolution from t; = kT
to to = (k+1)T is

) R

where the components of Ay are affine functions of s =
sinnT, ¢ = cosnT (see [17]), and for By, = [03x3 I3].

The target is modeled as a rigid body that rotates freely
around its center of mass. In particular, let EC’ (k) be the
rotation matrix from L coordinates to the target’s body axes
B at time k7. Given two vectors a, b € R3, the cross product
matrix operator is defined such as a*b = a x b.

For a given initial attitude and angular velocity of the
target Zw?, the evolution of this matrix is written as the so-
lution of the Euler-Poinsot differential equations, depending
on the target’s inertia tensor I5 in body axes. In particular,
if n <« ||EwB , the rotational kinematics can be simplified
to

. —1

twf=—(Ip)  fw” xIjfw”® 6)
B .
L0 =—(FuP) e (3)

The attitude of the chaser, in the other hand, is assumed to
match the one required to perform all maneuvers.
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The chaser’s attitude is assumed to be aligned with the
required orientation for docking, so its angular dynamics are
not considered. To ensure collision avoidance, the chaser
must stay within a safety region defined by the target’s
geometry. The Line of Sight (LOS) prism, attached to
the target’s rendezvous point, defines a convex and linear
constraint in the body frame B,

0o -1 o0 0
c, —1 0 CxTo
—c, —1 0 rB < czTo | - @)
0 -1 c, C220
0 -1 —c, C2 20

A diagram of the LVLH and body frames, along with the
LOS prism, is shown in Fig. 1.

Fig. 1: Rendezvous operation considering debris body (B)
and LVLH (L) reference frames.

Control inputs in the chaser’s body frame are bounded as
Ummin < uf < Upmaz,t = 1,2,3. Additionally, constraints on
state and control inputs are compactly written as

A (9T @) <be AwP <. ©

and fuel efficiency is modeled by minimizing

N N
D Av(k)? =" Jluk)]. (©6)
k=1 k=1

III. MPCT-BASED RENDEZVOUS

In general, the safe rendezvous operation can be written as
a constrained optimization problem, the structure of which
is given by the considered control framework, and has an
effect on the properties and guarantees of the controller.
As discussed in Section V, the approach considered herein,
which based on a novel extension of MPCT [16] for rotation-
based LTV systems, leads to a promising results in terms of
computational cost, optimality and feasibility. In particular,
this strategy leads to the QP problem in (8)—(17), which is
solved for each iteration k,

V(k,aw, Uk), 0(k)) =

Np—1
37 llalk +ilk) — ok + k)]
o (7
+ 3 [tk +ilk) — us(k +ilk) |5
=0
-~ 2
+ 100k

V*(k,xr) = U(%ig(k) V (k, 2, U(k),0(k)) 8)
s.t.

U(k) = (u(k|k) u(k + Ne — 1]k)) )

x(klk) = xp (10)

w(k+i+1k) = Ak + i)z(k + i|k) + B(k + i)u(k + i|k),
i=1,2,.,N, — 1
(11)

(a:s(kJrilk)) = M(k+d)dk), i=12..N, (12

u(k +ilk) = Kror(k +1) (x(k +i|k) — zs(k + i|k))
+us(k+ilk), i=N¢...N, —2

(13)
u(k +ilk) = Kpp,«(k + i)z (k + ilk)
+ Kppo(k+i)0(k), i=N,—1,N,
(14)
Ayx(k +ilk) < by, Ayu(k +ilk) < by, i=1,2,..,N,
(15)
Apxs(k+ilk) < by, Ayus(k +ilk) < by, i=1,2,..,N,
(16)
Appl(k) < bpp. (17)

Note that the MPC controller has one control horizon N,
and two prediction horizons N, — 2 and N, for the terminal
controllers. Firstly, the reader is presented with a concise
overview of the problem in (8)—(17). Subsequently, a detailed
analysis of the definition of variables, linear transformations
and constraints is provided.

A. Brief review of the optimization problem

The optimization problem has two variables. As in (9),
U (k) represents the predicted control inputs from k to the
control horizon N, with only u(k|k) applied in a receding
horizon. In MPCT, 6(k) € R3, the artificial reference,
defines an equilibrium trajectory. The quadratic cost function
in (8) includes a term for 6(k), steering the system to
an equilibrium while improving feasibility and region of
attraction with minimal computational effort.

After N, explicit control laws from Section IV (see (13),

(14)) are applied, reducing variables and enhancing perfor-
mance. The predicted state, initialized at k, is propagated
using the time-dependent law in (11).
_ The equilibrium trajectory is a linear transformation of
0(k), as per (12). While 6(k) is constant, the map M (k +
1) and the trajectory are time-dependent. Time-independent
constraints are applied to the equilibrium trajectory in (16)
and to the artificial reference in (17).

B. Definition of state and control variables

The structure of the optimization problem in (8)—(17) is
such that all constraints are time-invariant. This is particu-
larly convenient, as it allows to mathematically prove the
recursive feasibility of the controller, as detailed later on.
Note, however, that the state and control definitions used for
propagation in (1), this is, measured in the LVLH reference
frame, do not coincide with the ones for which constraints
are constant inequalities, included in (5). For this reason, a
partial change of reference frame is introduced.
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If the initial attitude and angular velocity of the target are
known, the corresponding rotation matrix evolution 7 C'(k)
can be computed up to an arbitrary horizon from (2) and
(3). For the described attitude matrix, the following linear
transformations hold for any given vector a

aB (k) = BC(k)a* (k), a“(k) = (5C(k))" aB(k). (18)
Substituting in (1),
((Ecac + 1) Bk + 1)> a ((EC(k))T rB(k)>
vl(k+1) vl (k)
+By, (BC(k)" uP (k).
(19)

It is useful to decompose A; and By into the submatrices
connecting position, velocity and control, this is,

_ AL,rr AL,TU _ BL,ru
AL B l:AL,vr AL,UU:| ’ BL - |:BL,vu ’

Therefore, and given that £C (k) is known beforehand, (19)
can be written as

Cigllz T 3) =As(k) (i&;) +Bp(k)u”(k), (1)

where

(20)

[Pete+ )AL, (Bom®)” BO(k+ 1AL,
Ap(k) = |L
B( ) AL,UT (?CU{:))T AL7’L)’L)
(22)
_[Bok+ 1B (Botk)"
Bg(k) _ Br (EC’(k))T : (23)

. rB(k) .
For the modified state z(k) = ol (k) and control input
u(k) = uP(k), all constraints are time-invariant, directly as
written in (5). Therefore, if a position given by the first three
components of x(k) is chosen, and provided that it satisfies
the LOS constraints at k, it is guaranteed to verify them at
all future time steps. The cost incurred of introducing this
new definition is that the propagation equations are no longer
time-invariant. Indeed, the A(k) and B(k) matrices in (11)
are given by Ap(k) and Bg(k), as written in (22) and (23).

C. Artificial reference and equilibrium trajectory

MPCT makes use of equilibrium points of the linear
system as decision variables to increase the region of the
attraction of the controller and enhance its stability and
feasibility guarantees [20]. For an LTI linear system such
as z(k + 1) = Axz(k) + Bu(k) an equilibrium point is
given by any pair {x.,u.} verifying the invariant equation
Te = Axe+ Bu,. In this work, this definition is successfully
extended to LTV systems by means of equilibrium trajecto-
ries. For a time instant k, an equilibrium trajectory is given
by the pair {z.,u.} satisfying z. = A(k)z. + B(k)ue.
Consequently, let the set of all equilibrium trajectories at
time k, Z(k) such that

€

Z(k) = {z = (2) eR™ s g, = A(k)xe + B(k)ue} .

(24)

The equilibrium trajectories are mapped by means of the
artificial reference § € R (*), for ngy(k) the dimension of
the subspace of equilibrium points at time k,

2= M(K)0 = [M, (k)T M,(k)T]" 6,¥z € Z(k). (25

The dimension ng(k) is in principle time-varying, as are ma-
trices A(k) and B(k). Introducing (25) in the invariant equa-
tion, M (k) can be derived as [A(k) — I, B(k)] M(k) =
0. This is equivalent to M (k) = ker [A(k) — I, B(k)].
The following result, proven in [17], allows to define a
consistent framework of equilibrium trajectories.

Lemma 1: The dimension of the space of equilibrium
points for the LTV system given in (21) is constant and equal
to ng(k) = 3. Furthermore, it is possible to define M (k) such
that 6 is equal to the position of the considered equilibrium
point in B, 8 = rf , which is constant by definition.

As a consequence M (k) can be written as

M(k)=[1; ---]". (26)
In this formulation, the bijection @ <> 2 (k) is the identity,
thus equilibrium trajectories are uniquely associated to their
constant position. Hence, if an equilibrium trajectory associ-
ated to 6 initially verifies the LOS constraints, it does verify
them for all times. The computation of (26) is straightforward
and computationally efficient; any basis of the kernel defining
M (k) can be obtained and written in column echelon form
to derive M (k) as defined in this work.

IV. DESIGN OF THE CONTROLLER

With the state, control, and equilibrium trajectories de-
fined, the next step is to characterize the virtual controllers in
(13) and (14) and establish the additional artificial reference
constraint in (17). These elements are closely linked to
controller properties. For example, (13) enhances optimality
and stability, while both (14) and (17) ensure recursive feasi-
bility. Additionally, the controller requires defining weighting
matrices for both the cost function (8) and the terminal LQR
(13). This section covers these topics in detail, leading to a
full characterization of the controller.

A. Terminal controllers design

After the control horizon, the optimizer explicitly com-
putes a control input given by a two-phases policy. This
leads to a terminal virtual controller applied up to the
prediction horizon, as displayed schematically in Fig. 2.
Between £ + N, and £+ N, — 2 = k 4+ N, + N, with

LQR

,Dead-beat

Virtual controller

Fig. 2: Real and virtual controller layout.

horizon N = N, — 2 — N, an infinite-time time-varying
LQR, derived from a rotation of the LVLH frame, steers the
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state toward the target equilibrium trajectory. At £+ N, —1
and k£ + N,, an explicit dead-beat controller is applied to
reach the target equilibrium. From £ + N, + 1 onward, a
dead-beat controller tracks the target trajectory.

An infinite-time time-varying LQR for a moving target
can be derived by constructing the controller in the LVLH
reference frame, in which dynamics are LTI. Indeed, let Kr
and Prggr be the gain and Lyapunov matrix for state and
control weighting matrices Qrgr and Rrgr, respectively.
For system { Ay, By}, an infinite horizon LQR is described
by

N L .
ul (k +ilk) = ( Lk +ilk) riL(k+|k:)) -

Lk +i|k) — vE(k +i|k)
ul(k +ilk).

Thus, expressing the control law in the modified reference
frame, a control law as given in (13) is obtained, where

Bo(k+4)T 0
L 3
0 IJ. (28)

The weighting matrices Qrgr and Rygr can differ from
those in the MPC cost function. Notably, K gr(k + 7) is
state-independent and can be precomputed, enabling long
horizons without impacting computational performance.

After the LQR, a two-step dead-beat controller is used
to reach the target. This controller is first computed in the
LVLH frame, then aligned with (14). Without constraints, it
steers any state to the target as (B . ALB L) is full rank.
Given Bp’s structure, ul (k) only impacts the state at k + 2.
By applying ut(k+ N, — 1|k:) to guide 7% (k + N, + 1]k)
torl(k+ N, + 1|k: and L(k + N,|k) to ensure 7 (k +
N, + 2|k) = rL(k + N, + 2|k), the target is reached and
tracked pre01sely from k: + N, + 1 onward.

Following this strategy, the control actions at k + 4, with
t = N, —1 and ¢ = N, are proved in [17] to be linear
functions of z(k + 4|k) and 6(k) only, such as

Kror(k+i)=5C(k +i)Kp [

u(k+ilk) = Kpp.(k+i)z(k +ilk) + Kpp.e(k+14)0(k),
where Kpp = (Kps,r Kpp.), and for @)
Kpp, = *AZ}M (A%,M + AL rvALwr) (30
Kppo=—(ApsAL o+ AL AL vy) 31
Kpma(k+9) = 50+ 0fps [ FO4E T 0] )
Kppo(k+i)=7C(k+i)ALL, TCk+i+2)". (33)

B. Feasibility constraint

Once the initial dead-beat controller guides the system
to the target equilibrium trajectory, a secondary controller
is employed for trajectory tracking. Rather than imposing
constraints on each input, the maximum control authority
required for indefinite tracking is calculated and compared
to available limits for feasibility. Additionally, a linear con-
straint on the artificial reference # is introduced to ensure
recursive feasibility, evaluated using a dead-beat controller.

For analysis, consider the following results: The position
of a given equilibrium point remains at a constant distance
from the target, i.e., (k) € 9B(|0|), where B(|6]) is a 3-
ball of radius § and 95 (16]) its contour. The norm of the ve-
locity vector is bounded by angular momentum conservation.

For inertia components I3 > I > I, [vl (k)| € [0, |h|/I5],
with h as the target’s angular momentum. The equilibrium
point velocity in LVLH axes is given by vZ (k) = Bw(k) x
rL(k), and the evolution of Zw(k) is derived from Euler-
Poinsot equations in (2), ensuring that both momentum h
and rotational energy E remain invariant.

For small angular velocities with respect to the sampling
time T, the motion of a given equilibrium point can be
written as rZ(k + 1) = L (k) + v (k)T. The position of
the chaser is propagated as rL(k + 1) = Ap,..rE(k) +
A Lyva (k). Therefore, the chaser can follow an equilibrium
point position only if
Ale i(]i? - A Tr)
The control itself is involved in the propagation of the
chaser’s velocity, so that

vl(k) = L(k) + oL (K)T]. (34

ul(k) = vE(k + 1) — Ap v (k) — Ap o7l (E)
= Apl, [(Is = Appr) rE(k + 1) + 0E (6 + 1)T]
- AL,UUAZ,lm (I3 — Apyr) T E(k) + vt (k)Tl
— Ap (k).

The kinematics of the equilibrium points relate position in

two consecutive iterations. As for velocity, the following can
be written for a small sampling time,

vl(k+1) =80l (k+1) x

= (Bl (k) + T fot

rE(k+1)
(k) x (re
where vl (k) = Bwk (k) x rL(k). Simplifying from orthog-

onality, retaining terms up to the first order and introducing
the first order kinematics in the control law, where A} . =

(I3 — AL r) and AvE(k) = T?wL(k) x rL(k).

(k) +vf (K)T)

(k) = [A7L AL — AnwATL A, = Av] rE(R)
+ [T AL, — TALW AL, + TAL,] o (k)
+[ragh,| avk).

Condensing notation,

ub (k) =U" (el (0T Wl (BT Mol(R)T)", (39)
where U* = [UF Ul UE,] is a constant matrix, given
a sampling time, for varying rotational states of the target.
This control policy can be rotated to body axes B, leading
to

. o TER)
Fout (1CK) f(() :

where EC_'(k) = I3 ® 2C(k), for ® the Kronecker product.
The proposed control action must satisfy the corresponding
constraints, this is,

uB(k) = (36)

rE(k)
f() < by, Vk. (37
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Interestingly, as proved in [17], this constraint is satisfied for
an equilibrium trajectory, provided that

Ay U (21 22 ws)” <o,

h
Va1 € B(|0]),z2 € B (|e||”13”) x5 € B (\ﬁw»«meu) ,
(38)

for the matrix 2-norm operator HZ/IL H defined as usual, and
where,

2
(I,' + Ij)

* h? —2LL,E) (h® — 2I.E
i ) (* —21,E)

w = max {—
i#je{1,2,3}
(39)

Inequality (38), dependent only on the norm of ¢, remains
constant over time. Therefore, the set of feasible trajectories,
defined by 6, can be precomputed offline for all controllers,
forming a sphere. This constraint determines the maximum
distance for equilibrium points based on |h|/I5 and v/o*T.
For a given chaser sampling time, the maximum allowable
0 can be computed from the target’s rotational state, defin-
ing key admissible rendezvous missions and aiding chaser
design. Explicit computation of § minimizes implementation
costs. Details are provided in [17].

Lemma 2: Let the nonzero matrices A', ..., Al € R™*",
Let b € R™, r € R! such that b > 0,7 > 0. For the scalar
6 € R, let the sets given by n-balls of radius 7,6, Q; =
B"(r;0), j = 1,...,1. Consider the following inequality,

l
ZAj(E]’ < b,Vx]- S Qj.

Jj=1

(40)
The maximum value 6 for which (40) holds is given by

b;

N2
Shea iy i (A%)
This allows solving (38) explicitly with minimal extra cost.
After computing 6,,,, offline, the optimization adds the
constraint 70 < 62, to ensure stability and feasibility,
turning the problem into a convex QCQP. Approximating
the constraint on |6| with a polytope simplifies the MPC
to a QP with linear constraints, making it more practical.
A single polytope can include both the LOS constraint
and the maximum norm for #, approximating with a few
extra linear inequalities. Specifically, the limit sphere for 6
is approximated as the X Z plane in body axes, with y?
bounded by

. (VEle — 6 - &)

emaz =

min
1€NN[1,m]

(41)

Ymaz = CzCz (42)
€3
where
51 = Cng(‘T% + Z(Q)) + (CZZO + Carl.())2 (43)
52 = Cg20 + C:X9 (44)
& = cicz + ci + Cg- 45)

The constraint (17) for the artificial reference is then
[0 1 0] 0 < yﬁax'

For the rendezvous conditions in [13], 6,4 = 3.597 m
ensures control feasibility and stability, assuming initial

conditions within this region Importantly, 60,,,, represents
the maximum distance the algorithm can adjust 6 in a given
iteration, not the maximum initial distance. This suggests
a potentially larger region of attraction, depending on the
control horizon.

V. IMPLEMENTATION AND PROPERTIES OF THE
CONTROLLER

This section shows that the controller designed in Sec-
tion IV is stable, recursively feasible to infinite horizon and
computationally efficient. Let Uy, be a feasible solution of
(8)—(17) at some time k. Due to the structure of the virtual
controller, Uy, predicts an infinite sequence of control inputs
such as

T
Umpc(klk+ N.—1)

ULQR(k + Nc|k‘ + N, — 2)
Upp(k + N, — 1]o0)

U, = (46)

Assume that at least one feasible solution such as Uj
exists, this is, the optimization problem is feasible at k.
Furthermore, let the control input at k be given by u(k|k),
this is, the solution proposed by the MPC policy. Let the
candidate control input at k£ 4+ 1 given by

Unpclk+1k+ N, —1)\ "

ULQR(]C + Nc|/€ + Np — 1)
Upg(k + Np|oo)

Upsr = @7)

The construction of this candidate feasible solution is shown
in Fig. 3. The following result holds (see [17]).

k MPC LQR DB
k+1 MPC LQR DB

Fig. 3: Finding a feasible solution at k£ + 1 from k.

Lemma 3: Let a solution Uy of the QP problem in (8)—
(17) that is feasible, for an initial state z(k|k) and a number
of iterations N within the LQR that satisfy ||z(k + N. +
N|k) = xe(k + Ne + Nk)lgoont KT RLorkr < 1. In the
next iteration, there is at least one solution such as Uy that
is feasible, hence leading to recursive feasibility.

A Lyapunov stability analysis of (8) (see [21]) confirms
that the controller is asymptotically stable if feasible. The
optimization problem (8)—(17) reduces to a QP problem,
minimizing a quadratic cost with linear constraints. Using the
linear propagation equation (11) and known A(k) and B(k),
state propagation over the horizon is efficiently handled with
a single linear transformation. Both LQR and dead-beat
controllers are explicit linear functions of the state, allowing
for a high LQR horizon N with minimal computational
cost, while maintaining a low N, as done here, without
compromising performance.

VI. CASE STUDY AND SIMULATION RESULTS

We follow [13] and consider for simulation a near ren-
dezvous with the Envisat spacecraft, a relevant scenario typ-
ical in ADR. The simulation initial conditions are included
in Table I. As for the state and control constraints, the
corresponding parameters are ¢, = ¢, = 1, Tymin = Zmin =
0.1 m, Upmaz = Umin = 0.075 m/s.
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rB (1.5,2.5,1.5)T m
vl (0,0,00T7 m/s
Pq (1,0,0,0)T
B,,B

Bw (0,3.53,3.53)T deg/s

TABLE I: Simulation initial conditions.

For the controller design, a sampling period of 7' =1 s is
selected, a standard for final rendezvous phases. The MPC
phase uses N. = 3 control inputs, while the final LQR has a
larger horizon of N = 30. Both are heuristically tuned, with
a total of 35 iterations. Feasibility conditions are imposed per
Section VI, using a simplified dead-beat constraint, resulting
in Ymazr = 2.008 m. Simulation results are shown in Figs.

Chaser path in LVLH axes

Continuous trajectory
Discrete trajectory

Z[m

0.5 \
\\\—
e
0- oo
15 \ s 0
05 — 15
0 25 2
X [m] Y [m]

Fig. 4: Chaser controlled rendezvous path in LVLH axes.

0.06 [-

0.04 uy|

0.02 - 4

————

(k) [m/s]

= -0.02
-0.04
-0.06

10 15 20 25 30 35

Fig. 5: Control signal evolution for the controlled approach.

4-5. Since C’s initial state lies within the controller’s feasible
polytope, successful rendezvous is guaranteed. The proposed
controller expands the domain of attraction, especially with
MPCT. To ensure a fair comparison, the structure of (8)—(17)
is retained, with @ = 0 to simplify optimization. The problem
becomes infeasible until N, = 35, whereas the proposed
MPCT strategy uses an equivalent horizon of N, + 1 = 4.
This approach reduces decision variables while improving
feasibility.

VII. CONCLUSIONS AND FUTURE LINES OF WORK

As shown in simulation, the controller steers the chaser
to the rotating target respecting highly restrictive actuator
constraints by making use of the orbit and target’s rotation
dynamics. Moreover, the controller is asymptotically stable,
locally optimal, provides recursive feasibility by design, and

is computationally efficient. Future work includes robustify-
ing the controller by using e.g. tube-based MPC, including
uncertainties in the estimation of the target’s rotational state
and inertia tensor, extending the result to elliptic orbits or
including 6DOF chaser’s dynamics.
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