
Asymptotic Stability Preservation of Input Delayed Nonlinear Systems under

Sampled-Data Feedback

Xin Yu and Wei Lin

Abstract— We study the problem of global asymptotic stabil-
ity preservation (GASP) for C

0 non-smoothly stabilizable sys-
tems with input delay under sampled-data feedback. With the
aid of Halanay inequality and the notion of homogeneity, the
following sampled-data control results are established under a
fast sampling: 1) GAS is preservable if the nonlinear system
is homogeneous of degree zero and globally asymptotically
stabilizable by homogeneous feedback; 2) As a consequence,
GAS via sampled-data feedback is achieved for a class of
non-smoothly stabilizable systems with input delay in a lower-
triangular or upper-triangular form.

I. INTRODUCTION AND PROBLEM STATEMENT

In [29], the stability preservation problem was studied for

the nonlinear system

ẋ(t) = f(x(t), u(t)), f(0, 0) = 0, (1.1)

under sampled-delayed input, where x ∈ IRn and u ∈ IRm

are the state and input, respectively.

The main outcomes of [29] are two-fold: i) GASP under

sampled-delayed input is possible if the nonlinear system

(1.1) is globally Lipschitz continuous (GLC) and globally

exponentially stabilizable (GES) by smooth state feedback;

ii) Semi-GASP is possible if the C1 nonlinear system (1.1)

is globally asymptotically locally exponentially stabilizable

(GALES) by smooth feedback, under a fast sampling and

limited input delay.

Following the development of [29], we address in this

paper the problem of GASP under sampled-delayed input

for the C0 non-smoothly stabilizable system (1.1). For

technical convenience, the GASP problem is recalled below.

Assume that u = α(x) with α(0) = 0 is a C0

globally asymptotically stabilizing (GAS) controller for the

C0 system (1.1). That is, the continuous-time closed-loop

system ẋ = f(x, α(x)) is GAS at x = 0. When taking

into account a delay in the input, the closed-loop system

becomes ẋ(t) = f(x(t), α(x(t − d))). In practice, the

control action is often implemented by digital computer or

by “sample and hold” signals x(tk) at the sampling time

tk = kT for k = 0, 1, 2, · · ·, where T > 0 is a sampling

period. In this case, the feedback controller is generated by

u(t) = u(tk) = α(x(tk)), t ∈ [tk, tk+1). This, combined

with the factor of input delay, yields

u(t− d) = α(x(tk)), t− d ∈ [tk, tk+1). (1.2)
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Consequently, the resulting hybrid closed-loop system with

delay is described by

ẋ(t) = f(x(t), α(x(tk))), t ∈ [tk + d, tk+1 + d). (1.3)

With the help of (1.3) and discussions above, the GASP

problem under sampled-delayed input can be formally for-

mulated as follows.

Definition 1.1: The C0 non-smoothly stabilizable sys-

tem (1.1) is called global asymptotic stability preservable

(GASP) under sampled-delayed input if there is a real

constant δ∗ > 0 such that the hybrid closed-loop system

(1.3) with delay is GAS at x = 0 for (T + d) ∈ (0, δ∗] and

any initial condition x0 = µ ∈ C([−(d+ T ), 0], IRn).
To the literature we are aware of, various interesting

and important results have been obtained for sampled-data

control of time-delay nonlinear systems over the years,

as documented, e.g., in [1], [2], [7], [8], [16], [17], [19],

[14], [15], and [3], [12], [18], [4], [10], [13], [26], [27]

as well as the references therein. One of effective methods

for the design of sampled-data feedback controllers is the

so-called emulation technique. Roughly speaking, one de-

signs sampled-data feedback controllers by discretizing the

corresponding continuous-time controllers with appropriate

sampling periods, to achieve local, semi-global and global

stability for time-delay nonlinear systems [7], [17], [16],

[19], [10]. Both memorized and memoryless sampled-data

control schemes have been developed so far.

For example, predictor based sampled-data control strate-

gies were developed in [7], [17] to deal with linear systems

or forward complete nonlinear systems with input delay,

while the problem of global asymptotic stabilization (GAS)

of nonlinear systems with affine input was addressed in

[16], using sampled-data memory state feedback. It was

showed that, with the aid of some restrictive assumptions,

the property of GAS is preservable if the sampling period

and input are limited. For time-delay nonlinear systems

with the global Lipschitz continuity (GLC), the GAS prop-

erty was also proved to be preservable via sampled-data

feedback with a fast sampling [19]. This was obtained

under the very demanding condition that the time-delay

systems are globally exponentially stabilizable by memory

GLC state feedback in continuous-time. Recently, semi-

global exponential stability (SGES) of locally Lipschitz

nonlinear systems with state delay has been established by

memory sampled-data feedback [1], [2], under a time-delay

type (infinite-dimensional or FDE version) of the global

asymptotic local exponential stabilizability (GALES) char-

acterized in [10] for finite-dimensional systems described
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by nonlinear ODE.

In contrast to the previous works [10], [28], [2], [29]

which concentrated primarily on the semi-global asymptotic

stabilization (SGAS) via sampled-data feedback or semi-

global input delay tolerance of nonlinear systems, the focus

of this paper is on the problem of GAS preservation

for non-smoothly stabilizable nonlinear systems subject to

sampled-delay input. A Halanay inequality approach is

presented for the nonsmooth analysis and synthesis of the

GAS property of the time-delay hybrid closed-loop sys-

tem. Specifically, following the idea of [29], together with

the nonsmooth analysis tools, homogeneity, and Halanay

inequality, we prove that the time-delay hybrid closed-

loop nonlinear system induced by sampled-delayed actuator

maintains the GAS property under a fast sampling and

limited input delay. The main conclusion is that global

asymptotic stability is preserved if the nonlinear system has

a dominated homogeneity with zero degree. As a byproduct,

global asymptotic stabilization of non-smoothly stabilizable

systems with input delay in a lower-triangular or upper-

triangular form is shown to be possible by sampled-data

feedback with a fast sampling.

II. PRELIMINARY AND TOOLS

This section review briefly some tools to be used in

this research, including the notions of homogeneity with

respect to a family of dilations, homogeneous function

and homogeneous vector field, and related properties. The

reader is referred to the papers [6], [9], [25], [22], [23],

[32], [31], the survey papers [5], [24], the book [34] and

the references therein for further details.

Consider the autonomous system ẋ = f(x), f(0) = 0,
with f : IRn → IRn being a continuous vector field. The fol-

lowing concepts are fundamental in studying homogeneous

systems [34], [6], [9], [23], [24], [32], [31].

(a) For ri > 0, i = 1, · · · , n and x = (x1, · · · , xn) ∈
IRn, the dilation ∆r

ε is defined by ∆r
ε(x) =

(εr1x1, · · · , ε
rnxn), ∀ε > 0, where ri is the weight

of xi and r = (r1, · · · , rn) is a dilation weight.

(b) A vector field f : IRn → IRn is homogeneous of degree

τ if there is a real constant τ , such that ∀x ∈ IRn\{0},

fi(∆
r
ε(x)) = ετ+rifi(x), for i = 1, · · · , n.

(c) ẋ = f(x) = [f1(x) · · · fn(x)]
T is a homogeneous

system of degree τ if the vector field f is homogeneous

of degree τ with respect to the dilation ∆r
ε(x).

(d) For a real number p ≥ max{ri, i = 1, · · · , n},

a homogeneous p−norm is defined by ‖x‖∆,p =
(
∑n

i=1 |xi|
p/ri)1/p, ∀x ∈ IRn. For simplicity, ‖x‖∆

stands for ‖x‖∆,p in this paper.

(e) A function V : IRn → IR is homogeneous of degree k
if there is a real constant k, such that ∀x ∈ IRn\{0},

V (∆r
ε(x)) = εkV (x).

A homogeneous Lyapunov function has the following

important properties.

Lemma 2.1: ([34], [6], [23], [24], [32], [31]) Assume that

V : IRn → IR is a C1 homogeneous function of degree k
with respect to the dilation ∆r

ε(x) and V (0) = 0. Then,

i) ∂V/∂xi is homogeneous of degree k − ri;
ii) ∂V

∂x f(x) is homogeneous of degree k + τ ;

iii) There is a constant c2 > 0 such that V (x) ≤ c2
∥

∥x
∥

∥

k

∆
;

iv) If V (x) is positive definite, there is a constant c1 > 0

such that c1
∥

∥x
∥

∥

k

∆
≤ V (x);

v) Let V1(x) and V2(x) be homogeneous functions of

degree k1 and k2 with respect to the dilation ∆r
ε(x).

Then, V1(x)V2(x) is homogeneous of degree k1 + k2
with respect to the same dilation.

The following lemmas are very useful in addressing

sampled-data control of nonlinear systems with input delay.

Lemma 2.2: [31] Let g : IR → IRn be a continuous map-

ping on the interval [a, b]. Then for any p > max1≤i≤n{ri},

there exists a positive constant p0 < p such that

∥

∥

∥

∫ b

a

g(s)ds
∥

∥

∥

p

∆r,p
≤ (b− a)

p−p0
p0

∫ b

a

∥

∥g(s)
∥

∥

p

∆r,p
ds. (2.4)

Lemma 2.3: [31] If ri > 0, i = 1, · · · , n, the homo-

geneous p-norm satisfies ‖x + z‖∆r,p ≤ c3(‖x‖∆r,p +
‖z‖∆r,p), ∀x, z ∈ IRn, where c3 ≥ 1 is a constant.

Lemma 2.4: [31] Let f : IRn → IRn be a C0 homo-

geneous vector field of degree τ = 0 with respect to the

dilation ∆r
ε(x) = (εr1x1, · · · , ε

rnxn). Then, for any ρ > 0,

there is a constant L > 0, such that ∀x, x̃ ∈ IRn,

‖f(x)− f(x̃)‖∆r,p ≤ L‖x− x̃‖∆r,p + ρ‖x‖∆r,p. (2.5)

Lemma 2.5: (Halanay inequality [19]) Let a, b, r be

positive real constants with a > b, and t0 be a real number.

Assume that z : [t0 − r,+∞) → IR+ is a continuous

function satisfying the inequality

D+z(t) ≤ −az(t) + b sup
θ∈[−r,0]

z(t+ θ), ∀t ≥ t0.

Then, z(t) ≤ supθ∈[t0−r,t0] z(θ)e
−λt, where D+ denotes

the upper right-hand Dini derivative, λ > 0 is a real solution

of the equation λ+ beλr = a.

III. MAIN RESULT

The main result of this paper is presented in this section,

which addresses the GASP problem for the input delayed

nonlinear system (1.1) under sampled-data feedback via

zero-order holder. The class of nonlinear systems under

consideration is characterized by the following conditions.

Assumption 3.1: The vector field f(x, u) is homoge-

neous of degree τ = 0 with respect to the dilation

∆r̄
ε(x, u)=(εr1x1, · · · , ε

rnxn, ε
rn+1u1, · · · , ε

rn+mum), i.e.,

fi(ε
r1x1, · · · , ε

rnxn, ε
rn+1u1, · · · , ε

rn+mum)

= εrif(x1, · · · , xn, u1, · · · , um), i = 1, 2, · · · , n (3.6)

∀x ∈ IRn, u ∈ IRm and ε > 0.

Assumption 3.2: For the nonlinear system (1.1), there is

a C0 GAS controller u = α(x) = [α1(x) · · · αm(x)]T ∈
IRm with α(0) = 0, and αj , j = 1, · · · ,m, which is
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homogeneous of degree rn+j with respect to the dilation

∆r
ε(x) = (εr1x1, · · · , ε

rnxn), i.e.,

αj(ε
r1x1, · · · , ε

rnxn) = εrn+jαj(x1, · · · , xn), (3.7)

∀x ∈ IRn and ε > 0, such that the C0 closed-loop system

ẋ = f(x, α(x)) is GAS at x = 0.

Clearly, Assumptions 3.1-3.2 imply that the vector fields

f(x, α(x)) and f(x, α(z)) are homogeneous of degree zero.

With the help of the notion of homogeneity and its prop-

erties related to homogeneous vector field, homogeneous

function and homogeneous norm, the following result on

sampled-data control of the input delayed nonlinear system

(1.1) can be proved.

Theorem 3.3: Under the Assumptions 3.1 and 3.2, global

asymptotic stabilizabiliy of the nonlinear system (1.1) is

preservable under input delay and sampled-data state feed-

back. More precisely, there exists a constant δ∗ > 0 such

that the sampled-data feedback controller

u(t) = u(tk) = α(x(tk)), ∀t ∈ [tk, tk+1), (3.8)

with tk = kT, k = 0, 1, . . ., globally asymptotically

stabilizs the nonlinear system (1.1) with input delay, if

d+ T < δ∗.

Proof: The proof is divided into two steps. In the first

step, we establish the following result.

Claim 1: For any initial state x0(s) = φ(s) ∈ C([−(d+
T ), 0], IRn), there exists a constant c0 > 0 such that
∥

∥x(t)
∥

∥

κ

∆r,κ
≤ c0

∥

∥φ
∥

∥

κ

∆r,κ
, ∀t ∈ [0, d).

The claim is proved by considering two cases.

Case A) — When d ≤ T : In this case, it is clear that t ∈
[−T +d, d) for t ∈ [0, d). Thus, ẋ(t) = f(x(t), α(x(−T )))
when t ∈ [0, d). By Lemmas 2.2 and 2.3, we have

∥

∥x(t)
∥

∥

κ

∆r,κ
=

∥

∥x(0) +

∫ t

0

f(x(s), α(x(−T )))ds
∥

∥

κ

∆r,κ

≤ c1
∥

∥x(0)
∥

∥

κ

∆r,κ
+ c1

∥

∥

∫ t

0

f(x(s), α(x(−T )))ds
∥

∥

κ

∆r,κ

≤ c1
∥

∥x(0)
∥

∥

κ

∆r,κ
+ c1d

µ1

∫ t

0

∥

∥f(x(s), α(x(−T )))
∥

∥

κ

∆r,κ
ds

≤ (c1 + c2d
µ1+1)

∥

∥φ
∥

∥

κ

∆r,κ
+ c2d

µ1

∫ t

0

∥

∥x(s)
∥

∥

κ

∆r,κ
ds, (3.9)

where c1, c2 and µ1 are some positive constants.

It follows from (3.9) and Gronwall-Bellman inequality

that ∀t ∈ [0, d),

∥

∥x(t)
∥

∥

κ

∆r,κ
≤ (c1 + c2d

µ1+1)ec2d
µ1+1∥

∥φ
∥

∥

κ

∆r,κ
. (3.10)

Case B) — When d > T : For t ∈ [0, d), there is an

integer N ≥ 1 such that (N − 1)T < d ≤ NT and [0, d) ⊆
[−NT+d,−(N−1)T+d)∪[−(N−1)T+d,−(N−2)T+
d)∪· · ·∪[−T+d, d). As a result, there must exist a positive

integer N ′ ≤ N such that t ∈ [−N ′T + d,−N ′T +T + d).

By Lemma 2.2 and Lemma 2.3, we have
∥

∥x(t)
∥

∥

κ

∆r,κ

=
∥

∥

∥
x(0) +

∫ −(N−1)T+d

0

f(x(s), α(x(−NT )))ds

+

∫ −(N−2)T+d

−(N−1)T+d

f(x(s), α(x(−(N − 1)T )))ds

+ · · ·+

∫ t

−N ′T+d

f(x(s), α(x(−N ′T )))ds
∥

∥

∥

κ

∆r,κ

≤ c3
∥

∥x(0)
∥

∥

κ

∆r,κ

+c3

∥

∥

∥

∫ −(N−1)T+d

0

f(x(s), α(x(−NT )))ds
∥

∥

∥

κ

∆r,κ

+c3

∥

∥

∥

∫ −(N−2)T+d

−(N−1)T+d

f(x(s), α(x(−(N − 1)T )))ds
∥

∥

∥

κ

∆r,κ

+ · · ·+ c3

∥

∥

∥

∫ t

−N ′T+d

f(x(s), α(x(−N ′T )))ds
∥

∥

∥

κ

∆r,κ

≤ (c3 + c5d
µ2+1)

∥

∥φ
∥

∥

κ

∆r,κ
+ c4d

µ2

∫ t

0

∥

∥x(s)
∥

∥

κ

∆r,κ
ds(3.11)

where c3, c4, c5 and µ2 are some positive constants.

Using (3.11) and Gronwall-Bellman inequality, we de-

duce that ∀t ∈ [0, d),
∥

∥x(t)
∥

∥

κ

∆r,κ
≤ (c3 + c5d

µ2+1)
∥

∥φ
∥

∥

κ

∆r,κ
ec4d

µ2 t

≤ (c3 + c5d
µ2+1)ec4d

µ2+1∥

∥φ
∥

∥

κ

∆r,κ
.(3.12)

Then, from (3.10) and (3.12), the Claim 1 is true.

Using Claim 1, the continuity of the solution trajectory

x(t) of (1.1)-(3.8), and a derivation akin to (3.9), we obtain
∥

∥x(t)
∥

∥

κ

∆r,κ
≤ c6

∥

∥x(d)
∥

∥

κ

∆r,κ

+c6

∥

∥

∥

∫ t

d

f(x(s), α(x(0)))ds
∥

∥

∥

κ

∆r,κ

≤ (c7+c7T
µ3+1)

∥

∥φ
∥

∥

κ

∆r,κ
+c7T

µ3

∫ t

d

∥

∥x(s)
∥

∥

κ

∆r,κ
ds, (3.13)

where c6, c7 and µ3 are some positive constants.

By (3.13) and Gronwall-Bellman inequality, one has
∥

∥x(t)
∥

∥

κ

∆r,κ
≤ c8

∥

∥φ
∥

∥

κ

∆r,κ
, ∀t ∈ [d, T + d), (3.14)

where c8 = (c7 + c7T
µ3+1)ec7T

µ3+1

.

From Claim 1, (3.14), and the continuity of the solution

trajectory x(t) of the hybrid closed-loop system (1.1)-(3.8),

it is concluded that
∥

∥x(t)
∥

∥

κ

∆r,κ
≤ c9

∥

∥φ
∥

∥

κ

∆r,κ
, ∀t ∈ [0, T + d], (3.15)

where c9 = max{c0, c8}.

In the second step, we consider the case when t ≥ T +d
and prove that the hybrid closed-loop system (1.1) and (3.8)

is GAS at x = 0 by the Halanay inequality.

By Assumptions 3.1-3.2, the continuous-time closed-

loop system ẋ = f(x, α(x)) is GAS and homogeneous

of degree τ = 0 with respect to the dilation ∆r
ε(x) =
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(εr1x1, · · · , ε
rnxn). In view of the converse Lyapunov the-

orem of homogeneous systems [25], there is a C1 positive

definite and proper Lyapunov function V : IRn → IR, which

is homogeneous of degree κ > max1≤i≤n{ri}, such that

a1
∥

∥x
∥

∥

κ

∆r,κ
≤ V (x) ≤ a2

∥

∥x
∥

∥

κ

∆r,κ
(3.16)

∂V

∂x
f(x, α(x)) ≤ −a3

∥

∥x
∥

∥

κ

∆r,κ
(3.17)

where a1, a2 and a3 are positive constants, and the homo-

geneous p-norm with p = κ is adopted for brevity.

Along the solution trajectories of the hybrid closed-loop

system (1.1) and (3.8), It is deduced from (3.17), Lemma

2.1 and Young inequality that for t ≥ T + d (without loss

of generality, let tk + d ≤ t < tk+1 + d for some k ≥ 1),

V̇ (x(t)) ≤ −a3
∥

∥x(t)
∥

∥

κ

∆r,κ

+

n
∑

i=1

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

∣fi(x(t), α(x(t))) − fi(x(t), α(x(tk)))
∣

∣

≤ −a3
∥

∥x(t)
∥

∥

κ

∆r,κ

+b1

n
∑

i=1

∥

∥x(t)
∥

∥

κ−ri

∆r,κ
·
∣

∣fi(x(t), α(x(t))) − fi(x(t), α(x(tk)))
∣

∣

≤ −
3

4
a3
∥

∥x(t)
∥

∥

κ

∆r,κ

+b2
∥

∥f(x(t), α(x(t))) − f(x(t), α(x(tk)))
∥

∥

κ

∆r,κ
, (3.18)

where b1 and b2 are positive constants.

Note that f(x, α(z)) is homogeneous of degree

τ = 0 with respect to the dilation ∆¯̄r
ε(x, z) =

(εr1x1, · · · , ε
rnxn, ε

r1z1, · · · , ε
rnzn). By Lemma 2.4, that

there is a constant b3 > 0 such that

b2
∥

∥f(x(t), α(x(t))) − f(x(t), α(x(tk)))
∥

∥

κ

∆r,κ

≤
1

4
a3
∥

∥x(t)
∥

∥

κ

∆r,κ
+ b3

∥

∥x(t)− x(tk)
∥

∥

κ

∆r,κ
.(3.19)

Substituting (3.19) into (3.18) yields

V̇ (x(t)) ≤ −
1

2
a3
∥

∥x(t)
∥

∥

κ

∆r,κ
+ b3

∥

∥x(t)− x(tk)
∥

∥

κ

∆r,κ
.(3.20)

Because κ > max1≤i≤n{ri}, it is deduced from Lemma

2.2 the existence of constant µ > 0 such that

b3
∥

∥x(t)− x(tk)
∥

∥

κ

∆r,κ
= b3

∥

∥

∥

∫ t

tk

D+x(s)ds
∥

∥

∥

κ

∆r,κ

≤ b3(d+ T )µ
∫ t

tk

∥

∥D+x(s)
∥

∥

κ

∆r,κ
ds. (3.21)

Putting (3.21) and (3.20) together results in ∀t ≥ d+ T ,

V̇ (x(t)) ≤ −
1

2
a3
∥

∥x(t)
∥

∥

κ

∆r,κ

+b3(d+ T )µ
∫ t

tk

∥

∥D+x(s)
∥

∥

κ

∆r,κ
ds. (3.22)

For any d, T > 0, there always exists an integer j < k such

that tk ∈ [tj+d, tj+1+d), where tj = jT . Then, it follows

from Lemma 2.4 that
∫ t

tk

∥

∥D+x(s)
∥

∥

κ

∆r,κ
ds

≤

∫ tj+1+d

tj+d

∥

∥ẋ(s)
∥

∥

κ

∆r,κ
ds+

∫ tj+2+d

tj+1+d

∥

∥ẋ(s)
∥

∥

κ

∆r,κ
ds

+ · · ·+

∫ tk+d

tk−1+d

∥

∥ẋ(s)
∥

∥

κ

∆r,κ
ds+

∫ t

tk+d

∥

∥ẋ(s)
∥

∥

κ

∆r,κ
ds

≤ 2b4(d+ T ) sup
θ∈[−2(d+T ),0]

∥

∥x(t+ θ)
∥

∥

κ

∆r,κ
, (3.23)

where b4 > 0 is a constant and is independent on d, T .

By (3.16), (3.22) and (3.23), one has

D+V (x(t)) ≤ −a4V (x(t)) + b5(d+ T )µ+1

· sup
θ∈[−2(d+T ),0]

V (x(t + θ)), ∀t ≥ T + d (3.24)

where a4, b5 are positive constants and independent on d, T .

Pick δ∗ = (a4

b5
)

1
µ+1 . In view of (3.24) and Lemma 2.5,

there exists a constant λ > 0 such that

V (x(t)) ≤ sup
θ∈[−d−T,d+T ]

V (x(θ))e−λt, ∀d+ T < δ∗.(3.25)

Using (3.16) and (3.15), we arrive at

sup
θ∈[−(d+T ),d+T ]

V (x(θ)) ≤ c10
∥

∥φ
∥

∥

κ

∆r,κ
(3.26)

for some constant c10 > 0.

Substituting (3.25) and (3.26) into (3.16) yields
∥

∥x(t)
∥

∥

∆r,κ
≤ ( c10a1

)
1
κ

∥

∥φ
∥

∥

∆r,κ
e−

λ
κ
t. This, in turn, implies

that the hybrid closed-loop system (1.1)-(3.8) is GAS.

As a consequence of Theorem 3.3, the following global

stabilization results can be obtained immediately.

Corollary 3.4: Under Assumptions 3.1 and 3.2, the

nonlinear system (1.1) with d = 0 is GAS by sampled-

data state feedback. In particular, there exists a T ∗ > 0,

such that the sampled-data state feedback control law

u(t) = u(tk) = α(x(tk)), ∀t ∈ [tk, tk+1), (3.27)

with tk = kT, k = 0, 1, . . ., renders the system (1.1) with

d = 0 GAS, if the sampling period T ∈ (0, T ∗].
Corollary 3.5: Under Assumptions 3.1 and 3.2, there

is a d∗ > 0, such that the memoryless state feedback

controller u(t) = α(x(t)) globally asymptotically stabilizes

the nonlinear system (1.1) with input delay if d ∈ (0, d∗].

IV. SOME APPLICATIONS

We now apply Theorem 3.3 to derive some impor-

tant sampled-data feedback control results for input de-

layed nonlinear systems in a lower-triangular or an upper-

triangular form, without local exponential stabilizability

(LES). In each case, an explicit formula is given for the

design of sampled-data state feedback controllers.

One of the applications of Theorem 3.3 is devoted to a

class of nonlinear systems with input delay described by

ẋi(t) = xpi

i+1(t) + φi(x1(t), · · · , xi(t)), i = 1, · · · , n− 1

ẋn(t) = u(t− d) + φn(x1(t), · · · , xn(t)), (4.28)

7881



where d > 0 is the input delay, p1, · · · , pn−1 are positive

odd integers, and the functions φi, i = 1, · · · , n, are C0

with φi(0, · · · , 0) = 0, and are homogeneous of degree ri
with respect to the dilation ∆r

ε(x) = (εr1x1, · · · , ε
rnxn),

with r1 = 1 and ri =
1

p1p2···pi−1
, i = 2, · · · , n.

Corollary 4.1: There is a constant δ∗ > 0 such that

the lower-triangular system (4.28) is GAS by sampled-data

feedback if d + T < δ∗, where T > 0 is the sampling

period. In particular, a sampled-data controller is given by

u(t) = u(tk) = −L
λn+1

1 βn

(

L
−λn/rn
1 x

1
rn
n (tk) + · · ·

+β2

(

L
−λ2/r2
1 x

1
r2

2 (tk) + β1x1(tk)
)

. . .
)rn

,

t ∈ [tk, tk+1), tk = kT, k = 0, 1, 2, · · · , (4.29)

where λ1 = 0, λi =
1+λi−1

pi−1
for i = 2, · · · , n + 1, pn = 1,

L1 ≥ 1 and β1, · · · , βn are positive constants that can be

determined explicitly.

Proof: By assumption, the function φi(x1, · · · , xi) is

homogeneous of degree ri with respect to the dilation

∆r
ε(x) = (εr1x1, · · · , ε

rnxn), for i = 1, · · · , n. By Lemma

2.1-ii), there is a constant c > 0 such that |φi(x1, · · · , xi)| ≤

c
∑i

j=1 |xj |
ri
rj , i = 1, · · · , n. With this in mind, we can

apply the adding a power integrator (AAPI) technique [11],

[21], [22], [30], [32], [31] to design a Hölder continuous

controller of the form

u = L
λn+1

1 v = −L
λn+1

1 βn

(

L
−λn/rn
1 x

1
rn
n + · · ·

+β2

(

L
−λ2/r2
1 x

1
r2

2 + β1x1

)

. . .
)rn

, (4.30)

globally stabilizing the nonlinear system (4.28) when d = 0.

In addition, it is also easy to check that for

fi(x1, · · · , xi) = xpi

i+1 + φi(x1, · · · , xi), i = 1, · · · , n −
1, fn(x, u) = u + φn(x), the vector field f(x, u) =
[f1(·) · · · fn(·)]

T is homogeneous of degree τ = 0 with re-

spect to the dilation ∆r̃
ε(x, u) = (εr1x1, · · · , ε

rnxn, ε
rnu),

where r1 = 1 and ri = 1
p1p2···pi−1

, i = 2, · · · , n.

Thus, the lower-trioangular system (4.28) with d = 0
is homogeneous of degree zero with respect to the dila-

tion ∆r̃
ε(x, u). Finally, the designed controller (4.30) sat-

isfies u(εr1x1, · · · , ε
rnxn) = εrnu(x1, · · · , xn), with rn =

1
p1p2···pn−1

, and hence is homogeneous of degree rn.

In conclusion, Assumptions 3.1 and 3.2 hold for the

lower-triangular system (4.28) with d = 0. By Theorem

3.3, there is a constant δ∗ > 0 such that the nonlinear

system (4.28) with input delay is GAS by the sampled-data

feedback (4.29), as long as d+ T < δ∗.

The following example illustrates the application of

Corollary 4.1.

Example 4.2: Consider the input delayed system

ẋ1(t) = x3
2(t) + x1(t), ẋ2(t) = u(t− d) + 5x2(t) (4.31)

which is of the form (4.28) with p1 = 3, φ1(x1) = x1 and

φ2(x1, x2) = 5x2.

Note that even when d = 0, the planar system (4.31) with

strong nonlinearity is difficult to be controlled. Indeed, it

is neither locally nor globally stabilizable by any smooth

nonlinear feedback, as the uncontrollable mode of the

linearization has a positive eigenvalue 1.

On the other hand, it is straightforward to check that the

planar system (4.31) is homogeneous of degree zero with

respect to the dilation ∆r
ε(x) = (εx1, ε

1
3x2). By Corollary

4.1, there is a sampled-data controller (4.29), i.e.,

u(t) = u(tk)=−L
4
3

1 β2

(

L−1
1 x3

2(tk)+β1x1(tk)
)

1
3 , (4.32)

∀t ∈ [tk, tk+1) with tk = kT, k = 0, 1, 2, · · ·, rendering the

planar system (4.31) GAS, provided that d+ T is limited.

Applying the AAPI technique [11], [22], [20], [24], [32],

we find explicitly a set of controller gains L1 = 2 and

β1 = 2, β2 = 5 in (4.32), which do the job.

The other application of Theorem 3.3 is devoted to a dual

class of nonlinear systems (4.28) with input delay, namely,

upper-triangular systems of the form

ẋ1(t) = xp1

2 (t) + φ1(x3(t), · · · , xn(t), u(t− d))

...

ẋn−1 = xpn−1

n (t) + φn−1(u(t− d))

ẋn(t) = u(t− d), (4.33)

where d > 0 is the input delay, p1, · · · , pn−1 are odd

positive integers, the functions φi, i = 1, · · · , n, are C0 with

φi(0) = 0, and are homogeneous of degree ri with respect

to the dilation ∆r̃
ε(x, u) = (εr1x1, · · · , ε

rnxn, ε
rnu), with

r1 = 1 and ri =
1

p1p2···pi−1
, i = 2, · · · , n.

Corollary 4.3: There is constant δ∗ > 0 such that system

(4.33) with input delay is GAS by sampled-data feedback

if d + T < δ∗, where T > 0 is the sampling period. In

particular, a sampled-data controller is given by

u(t) = u(tk) = −L
−λn+1

2 β̃n

(

L
λn
rn

2 x
1
rn
n (tk) + · · ·

+β̃2

(

L
λ2
r2

2 x
1
r2

2 (tk) + β̃1x1(tk)
)

. . .
)rn

t ∈ [tk, tk+1), tk = kT, k = 0, 1, 2, · · · , (4.34)

where λ1 = 0, λi = 1+λi−1

pi−1
with pn = 1, L2 ≥ 1 and

β̃1, · · · , β̃n > 0 are constants that can be designed explicitly.

Proof: By hypothesis, it is clear that the function

φi(xi+2, · · · , xn, u) is homogeneous of degree ri with re-

spect to the dilation ∆r̃
ε(x, u) = (εr1x1, · · · , ε

rnxn, ε
rnu),

for i = 1, · · · , n. Using Lemma 2.1-ii), one can show the

existence of a c > 0 such that |φi(xi+2, · · · , xn, u)| ≤

c(
∑n

j=i+2 |xj |
ri
rj + |u|

ri
rn ), i = 1, · · · , n. Using the AAPI

design method [22], [24], [31], [33], one can find a Hölder

continuous, state feedback controller

u = L
−λn+1

2 ṽ = −L
−λn+1

2 β̃n

(

L
λn
rn

2 x
1
rn
n + · · ·

+β̃2

(

L
λ2
r2

2 x
1
r2

2 + β̃1x1

)

. . .
)rn

, (4.35)

which GAS the nonlinear system (4.33) with d = 0.

Similar to the argument of Corollary 4.1, Corollary 4.3

follows from Theorem 3.3.
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Example 4.4: For the nonlinear system with input delay

ẋ1(t) = x2(t) + x3
3(t), ẋ2(t) = x3

3(t) + u3(t− d)

ẋ3(t) = u(t− d), (4.36)

it is of the form (4.33) with p1 = 1 and p2 = 3.

It is easy to verify that the nonlinear system (4.36) is

homogeneous of degree zero with respect to the dilation

(εx1, εx2, ε
1
3x3, ε

1
3 u). By Corollary 4.3 and the AAPI

technique [31], [33], we design the sampled-data controller

u(t) = u(tk) =
−β̃3

L
5
3

2

(L2
2x

3
3(tk)+β̃2(L2x2(tk)+β̃1x1(tk)))

1
3

t ∈ [tk, tk+1), tk = kT, k = 0, 1, 2, · · · ,

with the gains L2 = 10 and β̃1 = 0.3, β̃2 = 3, β̃3 = 7,

globally asymptotically stabilizing the nonlinear system

(4.36), as long as d+ T is limited.

V. CONCLUSION

In this paper, the problem of global asymptotic stabi-

lization by sampled-daat state feedback has been addressed

for possibly non-locally exponentially stabilizable or non-

smoothly stabilizable systems with input delay. It was

shown that sampled-data feedback stabilization is achiev-

able under a fast sampling if the nonlinear system has cer-

tain homogeneity and input delay is limited. The proof was

carried out by virtue of Halanay inequality, and the proper-

ties of homogeneity. As a consequence of this development,

globally stabilizing sampled-data controllers were obtained

for input-delayed lower-triangular and/or upper-triangular

nonlinear systems with uncontrollable linearization. For the

sake of space, the discussion on the relation between this

paper and finite-time stabilization is omitted (beyond the

scope), so is the simulation result of Example 4.2 or 4.4.
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