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Abstract— In this paper, we address the problem of steering
the distribution of oscillators all receiving the same control
input to a given desired distribution. In a large population limit,
the distribution of oscillators can be described by a probability
density. Then, our problem can be seen as an ensemble control
problem with a constraint on the steady-state density. In
particular, we consider the case where oscillators are subjected
to stochastic noise. One of the difficulties of this problem is that
due to the stochasticity, it is generally impossible to design a
control law under which oscillators converge to a target density
exactly. To avoid this issue, we first give an alternative target
density that is close enough to the original target. The modified
target is carefully designed via a periodic input so that the
distribution of oscillators can converge to it by an appropriate
control strategy. Next, we construct a controller that decreases
the Kullback–Leibler divergence between the distribution of
oscillators and the modified target combining a periodic input
and feedback control. We exhibit some convergence results for
our proposed method. The effectiveness of the proposed method
is demonstrated by a numerical example.

I. INTRODUCTION

A population of oscillators is useful for modeling vari-
ous phenomena such as in neuronal ensembles, pedestrian
crowds, and firefly swarms. For example in neuroscience,
many diseases such as Parkinson’s disease, Alzheimer’s
disease, and sleep disorders can be explained as pathological
behavior of oscillator populations [1]–[3]. Treating these
diseases with external stimuli via medicine or electrical
signals can be modeled as controlling the population of
oscillators as desired by an external input so that they
behave normally. One of the difficulties of this control
problem is that oscillators receive the same input because
it is impossible to apply different inputs to each cell.

This kind of control problem has been studied as an
ensemble control problem. In [4], an ensemble of systems
is represented by a parameterized family of control systems
driven by the same control, and the associated controllability
condition is derived. In [5], multi-agent coordination by
broadcasting the same signal to all agents is considered, and
it is revealed that randomness of a local controller of each
agent is essential for achieving given motion-coordination
tasks. As a dual problem of ensemble control, [6], [7] studied
state estimation problems of ensembles that are expressed by
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probability distributions and characterized the observability
of ensembles.

The framework of ensemble control has attracted attention
in the study of oscillators [8], [9]. In [10], the control
problem of deterministic oscillators is formulated as an
ensemble control problem, which describes the distribution
of oscillators as a probability density function. Then the
authors proposed a control law that decreases the L2 distance
between the density of oscillators and a given target density.
Moreover, [10] revealed that Fourier coefficients of the so-
called phase sensitivity function of oscillators play a crucial
role in the convergence of the distribution of oscillators to a
target under the proposed controller.

In the above deterministic case, once the distribution of
oscillators is transferred to a desired density, then the distri-
bution keeps the desired shape without any control. However,
when taking into account random fluctuations of oscillators,
the situation is quite different. Especially when oscillators
are driven by Wiener processes, there is not, in general, an
input that keeps the distribution of the oscillators equal to a
target density. Moreover, even if the distribution is steered
close to a target, the stochastic oscillators mix to the uniform
distribution without control. Thus, we need to use an appro-
priate control input continually to keep the oscillators close
to the target density. For the ensemble control of stochastic
oscillators, [11] considered the approximated dynamics of
their distribution obtained by the averaging method. Then,
the authors formulated an optimization problem which yields
a periodic input that makes the stationary distribution of the
approximated dynamics close to a desired density. However,
the transient response of oscillators cannot be taken into
account here because the optimization is only based on the
stationary distribution.

To circumvent the issue for stochastic oscillators, in this
paper, we take a two-stage process: first we design an alterna-
tive target density that is close enough to the original target.
Second, we develop a control law that steers oscillators to the
modified target rather than the original one. As a result, the
distribution of oscillators is transferred close to the original
target. The key point here is how to choose a modified
target that enables to ensure oscillators converge to it by
an appropriate controller. That is, the above two stages are
closely connected. Then, we reveal that such an alternative
target can be given via a periodic feedforward input obtained
by the previous work [11]. Next, we propose a controller that
decreases the Kullback–Leibler (KL) divergence between the
distribution of oscillators and a modified target combining a
periodic input and feedback control. Moreover, we derive the
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convergence properties of the proposed controller. Lastly, our
work can also be seen as improving the transient behavior
of the previous method [11].

Organization: The remainder of this paper is organized
as follows. In Section II, we briefly introduce an oscillator
model and explain the difficulty of ensemble control of
oscillators due to stochastic noise. In Section III, we design
a modified target by an appropriate feedforward input. In
Section IV, we propose a controller to steer oscillators to
a modified target based on the KL divergence, and then
derive its convergence properties. In Section V, a numerical
example illustrates the effectiveness of the proposed method.
Some concluding remarks are given in Section VI.

Notation: Let R denote the set of real numbers. The
unit circle is denoted by S1. The inner product of real-
valued functions f, g on S1 is defined by ⟨f, g⟩ :=∫
S1 f(θ)g(θ)dθ provided that it is finite. The L2-norm and

the L1-norm of f are defined by ∥f∥2 :=
√
⟨f, f⟩, ∥f∥1 :=∫

S1 |f(θ)|dθ, respectively. The set of all k-times continu-
ously differentiable functions on S1 is denoted by Ck(S1).
Denote ∂f(θ)/∂θ, ∂2f(θ)/∂θ2 by ∂θf(θ), ∂

2
θf(θ), respec-

tively. When no confusion can arise, we will omit arguments
of functions.

II. OSCILLATOR MODEL IN A LARGE POPULATION LIMIT

In this section, we briefly introduce an oscillator model
in a large population limit. To this end, we first consider
identical, uncoupled N oscillators following the phase model
driven by an external input [12], [13]:

dθi(t) = (ω + Z(θi(t))u(t)) dt+
√
2DdWi(t), (1)

i ∈ {1, . . . , N},

where θi(t) ∈ S1 denotes the phase of the i-th oscillator,
ω ∈ R denotes the natural frequency, u(t) ∈ R denotes
a control input, and {Wi}i denotes independent standard
Wiener processes wrapped around S1. The noise intensity
is denoted by D > 0. The function Z : S1 → R is called
the phase sensitivity function, which quantifies the linear
response of the phase to an input u. We emphasize that all
the oscillators are driven by the same input u. Without the
input and the noise (u ≡ 0, D = 0), the oscillators rotate
with the constant angular velocity ω. The model (1) appears
for example in neuroscience [8], [10], where it is difficult to
apply different control inputs to each oscillator.

In a large population limit N → ∞, the distribution of
oscillators following (1) can be represented by a probability
density function ρ : [0,∞)×S1 → R (see Fig. 1) satisfying
the Fokker–Planck equation:

∂tρ(t, θ) = −∂θ [(ω + Z(θ)u(t))ρ(t, θ)] +D∂2θρ(t, θ)

=: Lu(t)ρ(t, θ), (2)
ρ(0, θ) = ρ0(θ). (3)

Here, the situation where all the oscillators receive the same
input means that u is not allowed to depend on θ. Throughout
this paper, we assume the existence of a unique solution to
(2). Then, our goal is to steer the distribution of oscillators

Fig. 1: Distribution of an infinitely large number of oscil-
lators can be represented as a density function (solid, red).
Each oscillator is regarded as an independent sample drawn
from the density. As the number of oscillators tends to in-
finity, their empirical distribution (blue histogram) converges
to the density.

ρ to a given target distribution. In [10], [14], the target
distribution ρf is given by

∂tρf (t, θ) = −ω∂θρf (t, θ),
ρf (0, θ) = ρf,0(θ),

(4)

where the solution ρf rotates on S1 at the angular velocity
ω maintaining the shape of the initial density ρf,0. Espe-
cially in the deterministic case (D = 0), [10] designed a
population-level feedback control law that decreases the L2

distance between ρ and ρf . Here, “population-level” means
that the distribution ρ(t, ·) is available for determining u(t).
Moreover, it is revealed that if all Fourier coefficients of Z
are non-zero, then ρ converges to ρf under the proposed
control law.

However, when D > 0, the convergence to ρf cannot be
achieved in general. This can be seen by considering the
evolution of the error ∆ := ρ− ρf :

∂t∆ = −ω∂θ∆− ∂θ (Z(θ)ρ(t, θ))u(t) +D∂2θρ(t, θ). (5)

That is, in order to make ∆ = 0 an equilibrium of (5), u
must satisfy

∂θ(Z(θ)ρf (t, θ))u(t) = D∂2θρf (t, θ), ∀t ≥ t′

for some t′ ≥ 0. However, this condition cannot be fulfilled
by u which does not depend on θ except for special cases
such as the uniform distribution ρf ≡ 1/(2π). Even when
D > 0, the control law in [10] decreases the L2 distance
between ρ and ρf to some extent. Indeed, the time derivative
of the squared L2-norm V (∆(t, ·)) := 1

2∥∆(t, ·)∥22 along (5)
is given by

dV (∆)

dt
= ⟨∆,−ω∂θ∆− ∂θ(Zρ)u+D∂2θρ⟩

= ⟨∂θ∆, Zρ⟩u+D⟨∆, ∂2θρ⟩, (6)

where the argument t is omitted. When D = 0, the control
law

u(t) = −⟨∂θ∆(t, ·), Zρ(t, ·)⟩ (7)

proposed in [10] monotonically decreases V . In the presence
of the diffusion term (D > 0), while D

⟨
∆, ∂2θρ

⟩
≤
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⟨∂θ∆, Zρ⟩2 holds, the proposed control law (7) decreases V .
The resulting deviation of ρ from ρf may be small. However,
it is difficult to estimate the deviation beforehand.

Instead, in this work, we first provide a modified target
distribution fluctuating around ρf , and then design the con-
trol law steering oscillators to the modified target exactly. An
advantage of this approach is that if the deviation between the
modified and original targets is small, the resulting stationary
deviation between ρ and the original target ρf is ensured to
be small. In the next section, we explain how to design such
a modified target. Lastly, we mention the previous work [14],
which proposed the control law

u(t) = −⟨∂θ∆, Zρ⟩ −
D⟨∆, ∂2θρ⟩
⟨∂θ∆, Zρ⟩

, (8)

whose second term cancels the second term of (6). The
authors assert that this control law decreases the L2 distance
between ρ and ρf until ρ becomes equal to ρf . However,
this is obviously not the case in general since there is not an
input under which ρ converges to ρf as already observed in
(5). The L2 distance converges to a strictly positive constant
under the assumption ⟨∂θ∆(t, ·), Zρ(t, ·)⟩ ̸= 0,∀t, which
ensures the well-definedness of the control law (8).

III. DESIGN OF A MODIFIED TARGET DISTRIBUTION

In the previous section, we observed that the distribution of
stochastic oscillators cannot be stabilized to the target density
given by (4). Then, it is reasonable to use an alternative target
density which is close to ρf and to which the distribution of
oscillators can be kept equal by an appropriate control. In
view of this, we consider a density ρd evolving as

∂tρd(t, θ) = −∂θ [(ω + Z(θ)uFF(t))ρd(t, θ)] +D∂2θρd(t, θ)

= LuFF(t)ρd(t, θ), (9)
ρd(0, θ) = ρd,0(θ), (10)

where uFF is a given feedforward control input. If ρ(t′, ·) =
ρd(t

′, ·) holds for some t′, then the equality ρ(t, ·) = ρd(t, ·)
is maintained for t ≥ t′ under the control u(t) = uFF(t).
Thus, if uFF that makes ρd close to ρf is available before
designing u, ρd is a promising candidate for a modified target
density.

In what follows, focusing on 2π/ω-periodic inputs, we
explain how to obtain such uFF based on the previous
work [11]. Applying the coordinate transformation θ 7→
θ − ωt with t 7→ t to (9) yields

∂tρd(t, θ) = −∂θ [(Z(θ + ωt)uFF(t))ρd(t, θ)]

+D∂2θρd(t, θ). (11)

In addition, by the averaging method, we obtain

∂tρ̄d(t, θ) = −∂θ [Γ(θ, uFF)ρ̄d(t, θ)] +D∂2θ ρ̄d(t, θ), (12)

Γ(θ, uFF) :=
ω

2π

∫ 2π/ω

0

Z(θ + ωt)uFF(t)dt,

which approximates (11) by averaging the periodic drift
coefficient Z(θ + ωt)uFF(t). It is known that when uFF is

small, (11) is well approximated by (12) [15]. The Fokker–
Planck equation (12) is time-invariant and has the stationary
distribution

ρ̄st(θ) :=
1

C

∫ θ+2π

θ

exp

(
−
∫ ψ
θ
Γ(ϕ, uFF)dϕ

D

)
dψ, (13)

where C > 0 is the normalizing constant. In order to find
uFF that makes ρ̄st close to the desired shape ρf,0, we
consider the following optimization problem:

minimize
uFF

∥ρ̄st − ρf,0∥22 + σ∥uFF(·/ω)∥22 (14)

s.t. c(uFF) ≤ 0, (15)

where σ > 0, c is a real-valued function, and (15) is a
constraint to keep uFF small. This problem can then be
solved numerically by approximating it to a finite dimen-
sional problem by a finite difference method and truncating
Fourier series. We must note that in [11], there is no formal
analysis to show convergence of ρ under u = uFF. Our result
to be shown next includes such a result, that is, ρ converges
to the designed target ρd.

Now, we formulate the problem to be addressed in the
remainder of the paper as follows.

Problem 1: Given a feedforward input uFF, find a control
input u that achieves ρ(t, ·) → ρd(t, ·) as t → ∞ in some
sense. ◁

IV. DESIGN OF A CONTROLLER AND CONVERGENCE
ANALYSIS

In this section, given a feedforward (typically periodic)
input uFF, we develop a control law steering the distribution
of oscillators to the modified target density ρd. In [10], [14],
a control law is designed by using the L2 distance as a Lya-
punov functional. On the other hand, it is known that the KL
divergence is useful for the convergence analysis of Fokker–
Planck equations to their stationary distributions [16]. In-
spired by this, we construct a control law based on the KL
divergence rather than the L2 distance, and moreover, we
reveal its convergence properties to the modified target.

A. Design of a Controller

The KL divergence between probability densities ρ1, ρ2
on S1 is defined by

Hρ2 [ρ1] :=

∫
S1

ρ1(θ) log
ρ1(θ)

ρ2(θ)
dθ =

⟨
ρ1, log

ρ1
ρ2

⟩
,

provided that it is finite. The KL divergence is nonnegative
and takes the value 0 if and only if ρ1 = ρ2. Therefore,
we design a controller which decreases the KL divergence
between the distribution of oscillators ρ and the modified
target ρd. In what follows, we assume that ρd(t, ·) is strictly
positive for any t > 0 to guarantee the finiteness of
Hρd(t,·)[ρ(t, ·)].

A lengthy calculation shows that the derivative of
Hρd(t,·)[ρ(t, ·)] along the trajectories of (2), (9) is given by

dHρd [ρ]

dt
= −

⟨ ρ
ρd
, ∂θ(Zρd)

⟩
(u− uFF)−DJρd [ρ], (16)
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where the time t is omitted for notational simplicity, and

Jρd [ρ] :=

∫
S1

ρ(θ)

(
∂θ log

ρ(θ)

ρd(θ)

)2

dθ

is called the relative Fisher information of ρ with respect
to ρd [17]. The relative Fisher information is a nonnegative
functional and takes the value 0 if and only if ρ = ρd. Based
on (16), we obtain the following result.

Proposition 1: Assume that ρd(t, ·) following (9) is
strictly positive for any t > 0, and uFB : [0,∞) → R
satisfies⟨

ρ(t, ·)
ρd(t, ·)

, ∂θ(Zρd(t, ·))
⟩
uFB(t) ≥ 0, ∀t > 0. (17)

Then, under u = uFF + uFB, Jρd(t,·)[ρ(t, ·)] converges to 0
as t→ ∞ for any initial densities ρ0, ρd,0 and any uFF. ◁

By the above result, under a control input u = uFF +
uFB with uFB satisfying (17), the density ρ converges to the
modified target ρd in the sense that Jρd [ρ] → 0. Note that
uFF need not be periodic. The condition (17) is satisfied for
example by the population-level feedback control

uFB(t) = uρd [ρ(t, ·)]

:= k

⟨
ρ(t, ·)
ρd(t, ·)

, ∂θ(Zρd(t, ·))
⟩
, k > 0. (18)

Moreover, when considering a constraint on the amplitude
of the input u(t) ≤ u(t) ≤ u(t), the following control law
also decreases Jρd [ρ] to zero because (17) is a condition on
the sign of uFB.

u(t) = sat
u(t)
u(t) (uFF(t) + uρd [ρ(t, ·)]) , (19)

satba(u) :=


a, u < a,

u, a ≤ u ≤ b,

b, u > b,

(20)

u(t) ≤ uFF(t) ≤ u(t), ∀t > 0. (21)

In summary, we propose to use (19) combining the feedfor-
ward input uFF and the feedback control uFB = uρd .

B. Convergence Analysis

Next, we present the convergence result for the proposed
method in the sense of the KL divergence rather than the
relative Fisher information and derive its consequences. A
key ingredient for the analysis is the logarithmic Sobolev
inequality.

Definition 1: A density function ρ2 ∈ C1(S1) is said to
satisfy the logarithmic Sobolev inequality (LSI(λ)) with λ >
0 if for any density ρ1 ∈ C1(S1), it holds

Jρ2 [ρ1] ≥ 2λHρ2 [ρ1]. (22)

◁
If for some λ > 0, the modified target ρd(t, ·) satisfies

LSI(λ) for any t > 0, then Jρd [ρ] → 0 means Hρd [ρ] → 0.
Indeed, under the uniform boundedness and positivity of ρd,
we can show that ρd satisfies LSI(λ) for some λ. Due to
space limitations, we omit the proof.

Now, we are ready to state the main result of this pa-
per. Let W2(ρ1, ρ2) be the 2-Wasserstein distance between
densities ρ1, ρ2 on S1 endowed with a distance [17]. The
proof is based on the LSI (22), the Csiszár–Kullback–
Pinsker inequality [17], [18], and Talagrand’s inequality [19,
Theorem 1], and is omitted.

Theorem 1: Suppose that ρd(t, ·) following (9) is uni-
formly bounded in t and satisfies inft,θ{ρd(t, θ)} > 0. Then,
under a control input u = uFF + uFB whose uFB satisfies
(17), the following hold for any initial densities ρ0, ρd,0 and
any uFF:

1) Hρd(t,·)[ρ(t, ·)] converges exponentially to 0 as t→ ∞.
2) ρ converges exponentially to ρd in the L1-norm as t→

∞.
3) W2(ρ(t, ·), ρd(t, ·)) converges exponentially to 0 as

t→ ∞. ◁
The exponential convergence rate of ρ depends on the

noise intensity D and the parameter λ of the LSI (22) used
in the proof of Theorem 1. For larger D, the convergence
becomes faster. In addition, the smaller the up-down swings
of ρd, the larger λ and the faster ρ converges.

V. NUMERICAL EXAMPLE

In this section, we illustrate the effectiveness of the
proposed method by a numerical example. We consider
the FitzHugh–Nagumo model used to describe the action
potential of a neuron [11], [20], [21]:

dx

dt
= x− ax3 − y + u,

dy

dt
= η(x+ b),

where we set a = 1/3, b = 1/4, η = 1/4. Then by using
the phase reduction method (see e.g., [22, Subsection 3.4]),
we obtain ω = 0.4034 and the corresponding Z as shown
in Fig. 2. Set the noise intensity as D = 0.01. As a desired
shape of the distribution of oscillators, we employ a wrapped
Cauchy distribution on S1 [23]:

w(θ, µ, γ) :=
1

2π

sinh(γ)

cosh(γ)− cos(θ − µ)
, (23)

where µ ∈ S1 is a location parameter, and γ > 0 is a
scale parameter. Fig. 3(a) illustrates two cases w(θ, 0, 1) and
w(3θ, 0, 1). As can be seen, ρf,0(θ) = w(3θ, 0, 1) divides
oscillators into three clusters. For designing a periodic input
uFF, we solved the optimization problem (14) with σ = 0.4
without the constraint (15). Fig. 3(b) shows that the shape of
the resulting modified target ρd is close to ρf,0. The initial
densities are set to ρ0(θ) = w(θ, π, 0.5), ρd,0 = ρf,0 =
w(3θ, 0, 1).

Then, we apply the proposed control law (19) with the
obtained ρd to (2). In Figs. 4(a), (b), (e), (f), we plot
snapshots of ρ, the KL divergence between ρ, ρd, and the
control input u for different k without an input constraint,
i.e., u(t) ≡ ∞, u(t) ≡ −∞. As can be seen, larger k leads
to the faster convergence of ρ. Note that k = 0 corresponds
to the case where only a periodic feedforward input uFF
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Fig. 2: Phase sensitivity function Z(θ) for the FitzHugh–
Nagumo model.

is present, and the condition (17) for Proposition 1 and
Theorem 1 is satisfied even for k = 0. Hence, ρ converges to
ρd irrespective of the initial densities ρ0, ρd,0 by using only
the periodic feedforward input u = uFF; as explained earlier,
this control input is based on the previous work [11], but
convergence to the desired density has not been established
there. In addition to the convergence, the proposed controller
with k > 0 improves the transient response of ρ compared
to [11].

Next, in Figs. 4(c), (d), we also show the result obtained
by the proposed controller (19) with the input constraint
u(t) ≡ 0.1, u(t) ≡ −0.1. In this case, the convergence
of Hρd [ρ] hardly deteriorates compared to the case without
the constraint and improves upon the previous work [11]
(k = 0).

VI. CONCLUSIONS

In this paper, we developed a control method composed
of a periodic feedforward input and a feedback control to
transfer the distribution of stochastic oscillators close to a
given target. The periodic input plays a role in designing an
appropriate alternative target instead of the given target. The
feedback control accelerates the convergence of oscillators
to the alternative target. We revealed the convergence prop-
erties of the proposed method based on the KL divergence.
Numerical simulations demonstrated the effectiveness of the
proposed method. An important future direction for the
current work is to generalize our idea to coupled oscillators.
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cellular oscillators,” IEEE Control Systems Letters, vol. 3, no. 2, pp.
296–301, 2018.

[11] Y. Kato, A. Zlotnik, J.-S. Li, and H. Nakao, “Optimization of periodic
input waveforms for global entrainment of weakly forced limit-cycle
oscillators,” Nonlinear Dynamics, vol. 105, no. 3, pp. 2247–2263,
2021.

[12] A. T. Winfree, The Geometry of Biological Time, ser. Interdisciplinary
Applied Mathematics. Springer, 1980, vol. 12.

[13] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence.
Springer, 1984.

[14] B. Monga and J. Moehlis, “Phase distribution control of a population
of oscillators,” Physica D: Nonlinear Phenomena, vol. 398, pp. 115–
129, 2019.

[15] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural
Networks, ser. Applied Mathematical Sciences. Springer, 1997, vol.
126.

[16] H. Risken, Fokker–Planck Equation. Springer, 1996.

6392



(a) (c) (e)

(b) (d) (f)

Fig. 4: (a,c) KL divergence between the distribution of oscillators ρ and the modified target ρd (a) without and (c) with the
constraint u(t) ≡ 0.1, u(t) ≡ −0.1, respectively. (b,d) Control input u given by (19) (b) without and (d) with the constraint.
(e,f) Snapshots of ρ without the constraint (solid) and the original target ρf (dashed) under the coordinate transformation
θ 7→ θ − ωt.

[17] C. Villani, Topics in Optimal Transportation. American Mathematical
Soc., 2003, vol. 58.

[18] G. L. Gilardoni, “On Pinsker’s and Vajda’s type inequalities for
Csiszár’s f -divergences,” IEEE Transactions on Information Theory,
vol. 56, no. 11, pp. 5377–5386, 2010.

[19] F. Otto and C. Villani, “Generalization of an inequality by Talagrand
and links with the logarithmic Sobolev inequality,” Journal of Func-
tional Analysis, vol. 173, no. 2, pp. 361–400, 2000.

[20] R. FitzHugh, “Impulses and physiological states in theoretical models
of nerve membrane,” Biophysical Journal, vol. 1, no. 6, pp. 445–466,
1961.

[21] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse trans-
mission line simulating nerve axon,” Proceedings of the IRE, vol. 50,
no. 10, pp. 2061–2070, 1962.

[22] H. Nakao, “Phase reduction approach to synchronisation of nonlinear
oscillators,” Contemporary Physics, vol. 57, no. 2, pp. 188–214, 2016.

[23] K. V. Mardia, P. E. Jupp, and K. Mardia, Directional Statistics, ser.
Wiley Series in Probability and Statistics. Wiley Online Library,
1999, vol. 2.

6393


