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Abstract— Safety is critical to a wide range of cyber-physical
systems (CPS). Safety violations may damage CPS and cause
harm to humans that co-exist in the operating environment.
However, it is nontrivial to guarantee safety of complex CPS
whose computation and control workload are shifted to the
cloud. The reason is that the system states which evolve
continuously are sampled periodically and quantized before
being sent to the controller to compute control inputs. Moreover,
the controller may operate with finite precision, making the
coefficients involved in computation different from those of the
actual system. Consequently, the synthesized control inputs to
the system may lead to safety violations. In this paper, we
study the co-design of quantizer and control inputs for such
CPS. We construct a control barrier function (CBF) constraint
for the digital controller and analyze how it differs from the
CBF constraint formulated using the actual system states and
dynamics. We observe that this difference is dependent on the
sampling error, quantization error, and error induced by finite
precision of the controller. We derive upper bounds of these
errors and use the bounds to design a state quantizer. We show
that the problem of designing a quantizer can be converted
to a facility location problem. We prove the submodularity of
the quantizer design problem, and leverage the submodularity
property to develop an efficient greedy algorithm to construct
the quantizer. Given the quantized states calculated by the
quantizer, we modify the CBF constraint used by the controller
to synthesize control inputs for the system at each sampling
interval. We show that the synthesized inputs guarantee the
system safety. We demonstrate the proposed approach using a
numerical case study on a batch reactor system.

I. INTRODUCTION

Safety is critical to multiple application domains of cyber-
physical systems (CPS) such as autonomous driving and
critical infrastructures [1], [2]. Safety is normally formulated
as a forward invariance property of a given safety region [3].
Safety violations may damage the system and cause catas-
trophic harm to human operators. Control barrier function
(CBF)-based approaches [3] are widely-used to synthesize
controllers with safety guarantees.

However, the safety guarantees provided by CBF-based
controllers may become invalid for complex CPS whose
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computing and control workload are shifted to cloud and
hence are not co-located with the system [4]–[6]. The reason
is that while the system states evolve in a continuous manner,
the controller are normally implemented in a digital manner.
This continuous-digital mismatch leads to the following
discrepancies between the system and controller. First, the
controller treats the system as a sampled-data system [7]–
[9]. The system states are sampled periodically and sent to
the controller for computing control inputs, which will be
applied to the system in a zero-order hold manner. Moreover,
the sampled system states are quantized to accommodate
limited network bandwidth and computation resource of the
controller [10]–[12]. Finally, the controller may operate with
finite precision, and thus the coefficients involved in any
computation by the controller (e.g., system dynamics) may
not exactly match those of the actual system.

At present, the effects of sampling and quantization have
been investigated separately. Safety guarantees for sampled-
data systems have been investigated in [7]–[9]. Quantizer
design and feedback quantized control have been studied
in [10]–[12] to ensure system stability. However, how to
design a quantizer and synthesize control inputs for complex
CPS that encounter continuous-digital mismatch to guarantee
safety have been less studied.

In this paper, we study the problem of designing a quan-
tizer and synthesizing control inputs to guarantee safety of
CPS. We formulate the continuous-digital mismatch for such
systems by comparing the CBF constraint formulated using
the actual system dynamics and states and that formulated
using the sampled and quantized states perceived by the
controller that operates with finite precision. Here a CBF
constraint is an inequality imposed on the control input to
guarantee forward invariance of the safety region [3]. The
difference between these two CBF constraints captures the
effects of sampling and quantization errors, as well as finite
precision representation of coefficients. To address these
effects, we develop a quantizer for the system and bound
the sampling and quantization errors. We modify the CBF
constraint used by the controller to incorporate these errors
and synthesize control inputs with safety guarantees. To
summarize, this paper makes the following contributions.

• We bound the difference between those two CBF
constraints. We derive a sufficient condition such that
satisfying the CBF constraint formulated for controllers
that operate with finite precision using quantized states
at each sampling interval implies satisfying the other
one formulated using actual system dynamics and states.

• We develop a quantizer for the system to quantize the
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sampled states. We show that the quantizer design can
be formulated as a submodular maximization problem.
We develop a greedy algorithm to efficiently solve
the submodular maximization problem and hence the
quantizer design.

• We establish the safety guarantee of control inputs
synthesized using our formulated CBF constraint for
the controller. We empirically evaluate our approach to
demonstrate its effectiveness.

The remainder of this paper is organized as follows.
Related work is reviewed in Section II. We present the system
model and problem formulation in Section III. Our solution
approach is described in Section IV Section V demonstrates
the proposed approach using a numerical case study. Section
VI concludes this paper.

II. RELATED WORK

A wide range of methods has been proposed to synthesize
control inputs to guarantee safety of CPS. Typical exam-
ples include Hamilton-Jacobi-Bellman-Isaccs (HJI) equation
[13], mixed-integer program (MIP) [14], and control bar-
rier function (CBF) as well as control Lyapunov function
(CLF)-based approaches [1]–[3]. In particular, CBF-based
approaches formulate a CBF constraint on the control input
such that the safety region remains forward invariant. CBF-
based approaches have been extended to systems operating
under different scenarios such as in the presence stochastic
noises [15], [16]. CBF-based approaches have also been
extended to address the sampling errors and applied to
sampled-data systems [7]–[9]. Different from our work, these
approaches are not applicable to CPS whose controllers are
subject to finite precision and quantization errors.

Quantization has been shown to result in performance
degradation and lead to unstable system behaviors [17]. To
address the effect of quantization, non-uniform quantizers
such as logarithm quantizers have been proposed [10]. In
[18], the problem of designing state quantizers for control
systems is converted to the multicenter problem from compu-
tational geometry [19]. This paper develops a similar insight
as from [18] to map the problem of designing quantizers
to the facility location problem [20]. Different from [18],
we show the submodularity property of the quantizer design
problem, and develop a greedy algorithm to efficiently con-
struct the quantizer.

In addition to quantizer design, quantized feedback control
with stability guarantees have been studied in [10], [21],
[22]. However, these approaches are not readily applicable
to ensure safety of CPS since they ignore the effects of
sampling and finite precision of controllers. In this paper, we
characterize the errors induced by sampling and quantization,
and develop a CBF-based approach to synthesize control
inputs to guarantee system safety.

III. PROBLEM FORMULATION

We consider a continuous-time control-affine system

ẋt = f(xt) + g(xt)ut (1)

where xt ∈ X ⊆ Rn is the system state at time t ≥ 0 and
ut ∈ U ⊆ Rm is the input provided by the controller. We
assume that the admissible control input set U is compact
and convex. Specifically, each dimension j of ut, denoted as
ut[j], is bounded as umin[j] ≤ ut[j] ≤ umax[j]. We denote
umin, umax ∈ Rm as umin = [umin[1], . . . , umin[m]]T and
umax = [umax[1], . . . , umax[m]]T . In Eq. (1), f(xt) ∈ Rn

is a vector-valued function and g(xt) ∈ Rn×m is a matrix-
valued function.

Assumption 1. We assume that each entry of function
f(xt), denoted as fj(xt), is locally Lipschitz with Lipschitz
coefficient Lfj . We also assume that each entry of function
g(xt), denoted as gij(xt), is locally Lipschitz with Lipschitz
coefficient Lgij .

We note that Assumption 1 is commonly made for reach-
ability and safety analysis [1], [23], [24]. We consider that
the dynamical system (1) is subject to a safety constraint

xt ∈ C, ∀t ≥ 0. (2)

where the safety set C is compact and defined as

C = {x ∈ X : h(x) ≥ 0}, (3)

and h : X → R is a continuously differentiable function. We
say the system in Eq. (1) is safe with respect to C if Eq. (2)
holds. Since function h is continuously differentiable, it must
be locally Lipschitz. We denote the Lipschitz coefficient of
the i-entry of ∂h

∂x (x) as Ldhi for i = 1, . . . , n.
In this paper, we consider that the system (1) is controlled

by a controller that may not be co-located with the dynamical
system [4]–[6]. The controller is designed to ensure safety
subject to two constraints. First, the controller may have
limited memory and computation power, and thus operates
with finite precision. Second, if the controller is not co-
located with the dynamical system, the communication chan-
nel between the controller and system has limited bandwidth.

To accommodate these two constraints, the state of the
system is sampled and quantized before being sent to the
controller. Specifically, the system state xt is sampled with
a sampling period τ as xs

k = xkτ for k = 0, 1, . . .. The
sampled system state xs

k is then quantized via a quantizer
q : Rn → Y, where Y ⊂ Rn is a finite set. The controller
receives the quantized sample state xq

k = q(xs
k) for each

k = 0, 1, . . .. In the remainder of this paper, we refer to xs
k

and xq
k as the sampled state and quantized state, respectively.

The quantized state xq
k is sent to the controller to compute

a control input so that system (1) is safe with respect to
C. Since the controller operates with finite precision, the
quantized state xq

k may be rounded as x̃q
k. Without loss

of generality, we consider that xq
k can be represented by

the finite precision adopted by the controller. This condition
is not restrictive since we can always adapt the design of
quantizer to meet this requirement. Similarly, coefficients of
functions f , g, and h are represented using finite precision,
leading to functions f̃ , g̃, and h̃ used by the controller if they
are involved in any computation. The controller invokes a
function µ : Y→ Sm to compute a control input uk for each
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sampling period [kτ, (k + 1)τ), where S ⊂ R is the set of
values that can be represented using the precision adopted by
the controller. We consider that uk can be transmitted to the
system without requiring further quantization. The system
applies control input uk in a zero-order hold manner, i.e.,
ut = uk for all t ∈ [kτ, (k + 1)τ), where k = 0, 1, . . ..

We summarize the problem of interest as follows.

Problem 1. Consider a dynamical system in the form of Eq.
(1). Design a quantizer q and synthesize a controller µ such
that the system is safe with respect to set C given in Eq. (3).

IV. SOLUTION APPROACH

In this section, we first present preliminary background
and necessary notations used in our solution approach to
Problem 1. We next describe an overview of our solution ap-
proach. Then we quantify the error incurred when sampling
and quantizing the system states, and leverage the derived
error to design a quantizer. We finally present the control
synthesis to ensure safety of the system.

A. Notations and Preliminary Background

A continuous function α : [0, a)→ [0,∞) belongs to class
K if it is strictly increasing and α(0) = 0 [24]. A continuous
function α : [−b, a) → (−∞,∞) belongs to extended class
K if it is strictly increasing and α(0) = 0 for some a, b > 0.
We use x[j] to denote the j-th entry of a vector x.

Control barrier functions (CBFs) [3] have been widely
used to verify safety or synthesize controllers with provable
safety guarantees. A CBF is defined as follows.

Definition 1 (Control Barrier Function (CBF) [3]). Consider
the system (1) and a continuously differentiable function h :
X → R. If there exists an extended class K function α such
that for all x ∈ X the following inequality holds

sup
u∈U

{
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x))

}
≥ 0,

then function h is a CBF.

Given Definition 1, one can compute the control input at
each time t using the following quadratic program [3] to
guarantee the safety of Eq. (1):

min
u∈U

uTu (4a)

s.t.
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u+ α(h(x)) ≥ 0 (4b)

When there exist no sampling and quantization errors, the
control input obtained using Eq. (4) provides the following
safety guarantee.

Lemma 1 ( [3]). Given the system (1) and a safe set (3)
defined by some continuously differentiable function h : X →
R, if h is a CBF defined on X and x0 ∈ C, then the control
input obtained by Eq. (4) guarantees that xt ∈ C,∀t ≥ 0.

As we will show in subsequent sections, when the con-
troller operates with finite precision and there exist sampling
and quantization errors, the safety guarantee in Lemma 1
may become invalid.

B. Solution Overview

In this paper, we assume that function h in Eq. (3) is a
CBF for system (1). We consider a CBF-based controller.
When the controller operates with finite precision and the
system states are sampled and quantized, the constraint in
Eq. (4b) is represented in the following form to compute
control input uk:

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k)) ≥ 0. (5)

We observe that the discrepancies between Eq. (4b) and Eq.
(5) are raised by two reasons. First, the actual system state
xt becomes the quantized state xq

k. Furthermore, functions
f , g, h, and α become f̃ , g̃, h̃, and α̃ since the controller
operates with finite precision. Consequently, a control input
uk that satisfies Eq. (5) may not necessarily satisfy Eq. (4b).

Example 1. Consider an LTI system ẋt = Axt + But,

where A =

[
0 1
0 0

]
and B = [0, 1]T . Suppose the safety

set is defined as C = {x : h(x) = 1.01 − ∥x∥2 ≥ 0} and
the controller uses 8-bit floats. When x = [0.8, 0.6]T and
α(h(x)) = 10h(x), one can verify that although there exists
a feasible control input u = −0.716 ∈ [−1, 1] that satisfies
Eq. (4b), the solution u = −0.3 ∈ [−1, 1] to Eq. (5) fails to
guarantee safety.

To address the discrepancy between (4b) and Eq. (5), for
any state xt within any sampling interval [kτ, (k + 1)τ),
quantized state xq

k = q(xs
k), and control input uk ∈ U , we

define the following error

e(xt, x
q
k, uk) =

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]

− ∂h

∂x
(xt)[f(xt) + g(xt)uk]. (6)

Using Eq. (6), the following relation holds for any state
xt, t ∈ [kτ, (k + 1)τ), quantized state xq

k = q(xs
k), and

control input uk ∈ U

∂h

∂x
(xt)[f(xt) + g(xt)uk]

=
∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]− e(xt, x
q
k, uk)

≥∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]− max
xt,t∈[kτ,(k+1)τ)
xq
k=q(xs

k),uk∈U

e(xt, x
q
k, uk).

Therefore, if there exist some extended class K functions
α(h(xt)) and α̃(h̃(xq

k)) satisfying α(h(xt)) ≥ α̃(h̃(xq
k)),

then

∂h

∂x
(xt)[f(xt) + g(xt)uk] + α(h(xt))

≥∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]

+ α̃(h̃(xq
k))− max

xt,t∈[kτ,(k+1)τ)
xq
k=q(xs

k),uk∈U

e(xt, x
q
k, uk). (7)
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Based on Eq. (7), we modify the CBF constraint used by the
controller as follows:

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]

+ α̃(h̃(xq
k))− max

xt,t∈[kτ,(k+1)τ)
xq
k=q(xs

k),uk∈U

e(xt, x
q
k, uk) ≥ 0. (8)

We have that if a control input uk satisfies Eq. (8), then
Eq. (4b) must hold using uk, and thus the system is safe
according to Lemma 1. We note that evaluating the modified
CBF constraint in Eq. (8) and computing control input uk

requires quantifying and bounding the error e(xt, x
q
k, uk) in

Eq. (6). In the next subsection, we will bound this error and
use this bound to design quantizer q.

C. Quantification of Sampling and Quantization Errors

In this subsection, we characterize and bound the error
e(xt, x

q
k, uk) defined in Eq. (6). We first analyze the devia-

tion between the quantized state xq
k and actual system state

xt within one sampling period in the following lemma.

Lemma 2. Let Θ and β be given as

θ(u) =

√√√√ n∑
j=1

(
Lfj +

m∑
s=1

Lgj,s |u[s]|

)2

, Θ = max
u∈U

θ(u),

(9)
β = sup

x∈C,u∈U
(∥f(x) + g(x)u∥2). (10)

Consider a sampling interval [kτ, (k + 1)τ). Let δ(xq
k) =

∥xs
k − xq

k∥2 be the quatization error incurred by quantizer
q satisfying xq

k = q(xs
k). If xt is within a neighborhood of

xs
k such that f and g are Lipschitz over this neighborhood,

then

∥xq
k − xt∥2 ≤

∥β∥2
Θ

(eΘτ − 1) + δ(xq
k)

holds for all t ∈ [kτ, (k + 1)τ).

Proof. Consider the quantized state xq
k = q(xs

k) and actual
state xt for t ∈ [kτ, (k + 1)τ). We have that

∥xq
k − xt∥2 = ∥xq

k − xs
k + xs

k − xt∥2
≤ ∥xq

k − xs
k∥2 + ∥xs

k − xt∥2

≤ δ(xq
k) +

∥β∥2
Θ

(eΘτ − 1)

where the first inequality holds by triangle inequality, and
the second inequality holds by [7, Proposition 1] and the
definition of δ(xq

k).

Lemma 2 shows that ∥xq
k − xt∥2 can be bounded by

the error δ(xq
k) introduced by quantization and the error

∥β∥2

Θ (eΘτ − 1) introduced by sampling. For any quantized
state xq

k, we denote B(xq
k) as

B(xq
k) = {x : ∥xq

k − x∥2 ≤ δ(xq
k) +

∥β∥2
Θ

(eΘτ − 1)}. (11)

In what follows, we decompose the error e(xt, x
q
k, uk) in Eq.

(6) into those induced by sampling, quantization, and finite
precision of controller. Specifically, we have

e(xt, x
q
k, uk)

=
∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]−
∂h

∂x
(xt)[f(xt) + g(xt)uk]

=
∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk]−
∂h

∂x
(xt)[f(x

q
k) + g(xq

k)uk]

+
∂h

∂x
(xt)[f(x

q
k) + g(xq

k)uk]−
∂h

∂x
(xt)[f(xt) + g(xt)uk]

=[
∂h̃

∂x
(xq

k)−
∂h̃

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk]

+ [
∂h̃

∂x
(xt)−

∂h

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk]

+
∂h

∂x
(xt)[f̃(x

q
k) + g̃(xq

k)uk − f(xq
k)− g(xq

k)uk]

+
∂h

∂x
(xt)[f(x

q
k)− f(xt) + g(xq

k)uk − g(xt)uk] (12)

where the first equality holds by the definition in Eq.
(6), the second equality holds by subtracting and adding
∂h
∂x (xt)[f(x

q
k) + g(xq

k)uk], and the last equality holds by
subtracting and adding ∂h̃

∂x (xt)[f̃(x
q
k) + g̃(xq

k)uk].
By inspecting Eq. (12), we have that the first term en-

codes the error induced when evaluating ∂h̃
∂x (x) using the

quantized state xq
k instead of the actual state xt. The second

term depends on the error induced by the finite precision
representation of ∂h̃

∂x (xt). The third term is dependent on the
error induced by using finite precision to represent the system
dynamics in Eq. (1). The last term captures the difference
between the system dynamics evaluated using the actual state
xt and quantized state xq

k.
We denote the last two terms of e(xt, x

q
k, uk) as follows:

ϵ(xt, x
q
k, ut) =

∂h

∂x
(xt)[f̃(x

q
k) + g̃(xq

k)uk − f(xq
k)

−g(xq
k)uk]+

∂h

∂x
(xt)[f(x

q
k)−f(xt)+g(xq

k)uk−g(xt)uk].

(13)

Let ∆g(x
q
k) = ∥g̃(xq

k) − g(xq
k)∥F be the Frobenius norm

of matrix g̃(xq
k)− g(xq

k) and ∆f (x
q
k) = ∥f̃(x

q
k)− f(xq

k)∥2.
We further define γ(xq

k) := supx∈B(xq
k)
∥∂h∂x (x)∥2. Then the

error in Eq. (13) can be bounded as follows.

Proposition 1. The error in Eq. (13) is bounded as

∥ϵ(xt, x
q
k, uk)∥2 ≤ E(xq

k), (14)

where E(xq
k) is given as

E(xq
k) = γ(xq

k)

[
∆f (x

q
k) + ∆g(x

q
k)U

+(

√√√√ n∑
i=1

L2
fi
+

√√√√ n∑
i=1

m∑
j=1

L2
gijU)(

∥β∥2
Θ

(eΘτ−1)+δ(xq
k))

]
(15)

1640



where U is the upper bound of ∥uk∥2, i.e., ∥uk∥2 ≤ U .

Proof. The proof is deferred to Appendix.

Using Proposition 1 and Eq. (12), a sufficient condition
for Eq. (8) to hold is as follows:

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))

− max
xt,t∈[kτ,(k+1)τ)
xq
k=q(xs

k),uk∈U

e(xt, x
q
k, uk)

≥∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))− E(xq

k)

− [
∂h̃

∂x
(xq

k)−
∂h̃

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk]

− [
∂h̃

∂x
(xt)−

∂h

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk]

=
∂h

∂x
(xt)[f̃(x

q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))− E(xq

k)

≥0. (16)

Based on Eq. (8), we note that any control input uk that
satisfies Eq. (16) ensures that Eq. (4b) holds, and hence
system (1) is safe. The existence of such a control input
uk satisfying Eq. (16) relies on the quantized state xq

k and
design of quantizer q, which will be described in the next
subsection.

D. Quantizer Design
In this subsection, we describe how to design a quantizer

q to guarantee safety. We have that a control input uk that
satisfies Eq. (16) must exist if the following inequality holds

∂h

∂x
(xt)f̃(x

q
k) +

[
∂h

∂x
(xt)g̃(x

q
k)

]+
umax

+

[
∂h

∂x
(xt)g̃(x

q
k)

]−
umin + α̃(h̃(xq

k))− E(xq
k) ≥ 0 (17)

for any system state xt ∈ B(xq
k) within sampling interval

[kτ, (k+1)τ), where [v]+ and [v]− replaces the non-negative
and negative entries of a vector v with zero, respectively.
We observe that the satisfaction of Eq. (17) depends on the
quantized state xq

k. Therefore, Eq. (17) can be leveraged as
a design criterion of quantizer design.

Inspired by [18], we cast the problem of quantizer design
as a facility location problem [20]. Specifically, a facility
location problem focuses on selecting locations of facilities
to optimize certain performance metrics such as average
distance to demanding points and maximal coverage of all
facilities. Here, a quantized state can be viewed as a facility
and all other states xt ∈ C can be interpreted as demanding
points that need to be covered by at least one facility. For
any state xt ∈ C, it can be covered by a quantized state xq

k

if Eq. (17) is satisfied. We denote the finite set of quantized
states V . Then the problem of designing a quantizer can be
formulated as follows:

min
V

|V| (18a)

s.t. C ⊆ ∪x′∈VD(x′) (18b)

where |V| is the cardinality of V and set D(x′) is defined as

D(x′) = {x : x ∈ B(x′) and Eq. (17) holds} ∩ C. (19)

The objective function in Eq. (18a) minimizes the cardinality
of set V , i.e., the number of quantized states. The constraint
in Eq. (18b) guarantees the quantizer to be capable of
quantizing all states in the safety set C. In the context of
facility location problem, Eq. (18a) minimizes the number
of facilities and Eq. (18b) ensures all demanding points are
covered by at least one facility.

We note that directly solving Eq. (18) is challenging
because of the following reasons. First, the safety set C is
an infinite and uncountable set while we can only choose a
discrete finite set V . Furthermore, it is difficult to evaluate
the function Vol(∪x′∈VD(x′)). We address these challenges
by first relaxing the constrained optimization problem as an
unconstrained optimization problem, and then developing a
sampling-based approach to derive an approximate solution.

We relax the constrained optimization in Eq. (18) as the
following unconstrained problem

min
V⊂C
|V|+ λ(Vol(C)− Vol(∪x′∈VD(x′))), (20)

where Vol(·) denotes the volume of a set and λ > 0 is
a hyper-parameter. The term λ(Vol(C) − Vol(∪x′∈VD(x′)))
converts constraint (18b) to a penalty scaled by λ.

We then develop a sampling-based approach to approxi-
mately solve Eq. (20). We first sample a countable finite set
of states, denoted as S, from the safety set C. We constrain
V as V ⊂ S . Given the samples in S, we approximate the
function Vol(D(x′)) by counting the number of samples in S
that satisfies Eq. (19). We characterize this sampling-based
approach as follows.

Proposition 2. Let V∗ be the optimal solution to Eq. (18)
and V be the solution to Eq. (20) obtained using the
sampling-based approach. For any ε > 0 and ϕ ∈ [0, 1],
if |S| ≥ − 1

ε ln(ϕ), then with probability at least 1 − ϕ,
|Vol(∪x′∈VD(x′))− Vol(∪x′∈V∗D(x′))| ≤ ε holds.

Proof. Suppose that there exists a set of states T ⊂ C defined
as T = C\∪x′∈VD(x′). When T ≠ ∅, we have that Vol(C)−
Vol(∪x′∈VD(x′)) > 0. We denote the probability mass of T
as ε. Then we have that

|Vol(∪x′∈VD(x′))− Vol(∪x′∈V∗D(x′))|
=|Vol(C)− Vol(∪x′∈VD(x′))

− (Vol(C)− Vol(∪x′∈V∗D(x′)))| (21a)
≤0 + |Vol(C)− Vol(∪x′∈VD(x′))| (21b)

where Eq. (21a) holds by adding and subtracting Vol(C), and
Eq. (21b) follows from Eq. (19), triangle inequality, and the
fact that V∗ is the optimal solution to Eq. (18).

When the samples in S are drawn independently, we have
that the probability that T ∩ S = ∅ is (1 − ε)|S| ≤ e−ε|S|,
where the inequality holds by the fact that 1 − a ≤ e−a.
Therefore, if e−ε|S| ≤ ϕ, we have that |S| ≥ − 1

ε ln(ϕ),
completing our proof.
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We note that implementing the sampling-based approach
is still computationally expensive due to the combinatorial
nature of Eq. (20). In what follows, we characterize the
formulation in Eq. (20) by showing its equivalence to a sub-
modular maximization problem, which leads to an efficient
greedy algorithm to obtain an approximate solution.

Theorem 1. The objective function in Eq. (20) is monotone
supermodular in V .

Proof. We consider V ⊂ V ′ ⊂ C, where V and V ′

are finite. We first prove the monotonicity of Eq. (20).
Note that Vol(D(x′)) ≥ 0. Therefore, Vol(∪x′∈VD(x′)) ≤
Vol(∪x′∈V′D(x′)) must hold for any V ⊂ V ′. Hence, we
have that

Vol(C)− Vol(∪x′∈VD(x′)) ≥ Vol(C)− Vol(∪x′∈V′D(x′)),

and Eq. (20) is monotone nonincreasing in V .
In what follows, we prove the supermodularity of Eq.

(20). Let x′′ /∈ V ′. We consider two possible cases. First,
if D(x′′) ∩ D(x′) = ∅ for all x′ ∈ V ′, then

Vol(∪x′∈V∪{x′′}D(x′))− Vol(∪x′∈VD(x′))

= Vol(∪x′∈V′∪{x′′}D(x′))− Vol(∪x′∈V′D(x′)). (22)

In the second case, we consider that there exists some y ∈ V ′

such that D(x′′) ∩ D(y) ̸= ∅. Note that y may or may not
belong to set V . Hence, we have that

Vol(∪x′∈V∪{x′′}D(x′))− Vol(∪x′∈VD(x′))

≥ Vol(∪x′∈V′∪{x′′}D(x′))− Vol(∪x′∈V′D(x′)). (23)

Combining Eq. (22) and (23), we have that

Vol(∪x′∈V∪{x′′}D(x′))− Vol(∪x′∈VD(x′))

≥ Vol(∪x′∈V′∪{x′′}D(x′))− Vol(∪x′∈V′D(x′))

holds for all V ⊂ V ′. Hence, Vol(∪x′∈VD(x′)) is submodular
in V , indicating that −Vol(∪x′∈VD(x′)) is supermodular.

Noting that |V| is a modular function in V , we have that
Eq. (20) is supermodular in V by definition.

Algorithm 1 Greedy Algorithm for Quantizer Design
1: Initialize κ← 0, V0 ← ∅, η > 0, and
2: repeat
3: x∗ = argmaxx′′∈S\Vκ{Vol(∪x′∈Vκ∪{x′′}D(x′)) −

Vol(∪x′∈VκD(x′))}
4: Vκ+1 ← Vκ ∪ {x∗}
5: κ← κ+ 1
6: until Vol(∪x′∈Vκ∪{x′}D(x′))− Vol(∪x′∈VκD(x′)) < η
7: return Vκ−1

If a function f(·) is supermodular, then −f(·) is sub-
modular. Hence, Theorem 1 indicates that the optimization
problem in Eq. (20) is a submodular maximization problem,
which is NP-hard to solve [25]. Given Theorem 1 and the
sampling-based approach, we develop a greedy algorithm
presented in Algorithm 1 to efficiently compute V . The

algorithm initializes the iteration index κ as zero and set
V0 at iteration zero as an empty set. Then the algorithm
greedily searches for a state x′′ ∈ S \ Vκ that maxi-
mizes Vol(∪x′∈Vκ∪{x′′}D(x′)) − Vol(∪x′∈VκD(x′)). This
step repeats until there is no such x′′ ∈ S \ Vκ such that
Vol(∪x′∈Vκ∪{x′′}D(x′)) − Vol(∪x′∈VκD(x′)) ≥ η, where
η is a tunable parameter. As shown in [25], the greedy
algorithm provides us a provable optimality guarantee.

Let V be the set of quantized states given by Algorithm 1.
Then the quantizer works as follows. For any state xt ∈ C,
the quantizer finds a state x ∈ S as x = argminx′∈S ∥x′ −
xt∥2. Let xq

k be the quantized state associated with x, i.e.,
x ∈ D(xq

k). Then state xt is quantized as xq
k.

E. Control Synthesis and Safety Guarantee

In what follows, we describe how to compute a control
input uk given the quantized state xq

k for each sampling
interval. After receiving the the quantized state xq

k, the
controller computes a control input uk ∈ U such that the
following constraint is satisfied

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))−W (xq

k, uk) ≥ 0,

(24)
where

W (xq
k, uk) = E(xq

k) +

[√√√√ n∑
i=1

L2
dhi

(
∥β∥2
Θ

(eΘτ − 1)

+ δ(xq
k)) + ∆dh(x

q
k)

]
∥f̃(xq

k) + g̃(xq
k)uk∥2 (25)

and ∆dh(x
q
k) = supxt∈B(xq

k)
∥∂h̃∂x (xt)− ∂h

∂x (xt)∥2. Note that
constraint (24) can be converted to a quadratic constraint in
uk when xq

k is given. Thus the controller can compute the
control input by solving a quadratically constrained quadratic
program. The synthesized control input uk provides the
following safety guarantee.

Theorem 2. Suppose V satisfies constraint (18b). Assume
that there exist some extended class K function α(h(xt))
such that α(h(xt)) ≥ α̃(h̃(xq

k)) for all xt ∈ D(xq
k). If

x0, x
q
0 ∈ C and there exists a control input uk at each

sampling interval satisfying Eq. (24), then the system given
in Eq. (1) is safe.

Proof. We prove the theorem by showing that uk guarantees
that Eq. (4b) holds true. Based on Lemma 2 and the fact that
h̃ is continuously differentiable, we have that

[
∂h̃

∂x
(xq

k)−
∂h̃

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk] ≤

√√√√ n∑
i=1

L2
dhi

· (∥β∥2
Θ

(eΘτ − 1) + δ(xq
k))∥f̃(x

q
k) + g̃(xq

k)uk∥2. (26)
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Furthermore, the definition of ∆dh(x
q
k) yields that

[
∂h̃

∂x
(xt)−

∂h

∂x
(xt)][f̃(x

q
k) + g̃(xq

k)uk]

≤ ∆dh(x
q
k)∥f̃(x

q
k) + g̃(xq

k)uk∥2. (27)

Using Proposition 1 and Eq. (26) - (27), we bound the error
e(xt, x

q
k, uk) as

∥e(xt, x
q
k, uk)∥2 ≤W (xq

k, uk). (28)

We can thus rewrite Eq. (8) as

∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))

− max
xt,t∈[kτ,(k+1)τ)
xq
k=q(xs

k),uk∈U

e(xt, x
q
k, uk)

≥∂h̃

∂x
(xq

k)[f̃(x
q
k) + g̃(xq

k)uk] + α̃(h̃(xq
k))−W (xq

k). (29)

Using Eq. (7) and α(h(xt)) ≥ α̃(h̃(xq
k)) holds, Eq. (4b)

must hold when uk satisfies Eq. (24). Therefore, the system
is safe when x0 ∈ C according to Lemma 1.

V. NUMERICAL CASE STUDY

Consider a batch reactor system [26] whose dynamics are
given as ẋt = Axt +But, where

A =


1.38 0.2077 6.715 5.676
0.5814 4.29 0 0.675
1.067 4.273 6.654 5.893
0.048 4.273 1.343 2.104

 ,

B =


0 0

5.679 0
1.136 −3.146
1.136 0

 .

We consider a safety constraint requiring the system to stay
within a safety set C = {x : h(x) := 25 − x[3]2 ≥ 0}. The
dynamical system uses sampling period τ = 0.1. The system
adopts a logarithm quantizer [10] defined as

q(v) =


li, if 1

1+ρ li < v ≤ 1
1−ρ li, v > 0

0, if v = 0

−q(−v) if v < 0

, (30)

where ρ = 1−ρ̂
1+ρ̂ , ρ̂ ∈ (0, 1), and L = {±li, li = ρ̂il0, i =

±1,±2, . . .}∪{0}∪{±l0} is the set of quantization intervals.
We set the initial state x0 = [2, 1,−1, 1]T and ρ̂ =

0.5. When sampling and quantization error are ignored, we
depict the trajectory of x[3] in Fig. 1 using dashed line.
We have that the system violates the safety constraint at
the sampling interval k = 6. Particularly, the system state
becomes x0.6 = [17.5952, 0.1452, 5.4564, 7.2049]T using a
CBF-based controller. We observe that x[3] > 5, and thus
the safety constraint is violated.

We next simulate our approach. We set η = 1 and
uniformly sample 500 states as set S to compute the set of
quantized states V . The controller uses Eq. (24) to compute
the control input at each sampling interval. We simulate

2 4 6 8 10 12 14 16 18 20 22

Index of Sampling Interval

-6

-4

-2

0

2

4

6

Baseline

Proposed Approach

Safety Boundary

Fig. 1: This figure presents the trajectories of x[3] obtained
using a CBF-based controller that ignores sampling and
quantization error (dashed curve) and using our proposed
approach (solid curve). The boundaries of the safety set
C = {x : 25 − x[3]2 ≥ 0} are shown using red lines.
The CBF-based controller violates the safety constraint at
sampling interval 6, while our approach guarantees safety.

the trajectory of x[3] using the synthesized control input,
as shown by the solid curve in Figure 1. We observe that
state x[3] ∈ [−5, 5] for all sampling intervals, and hence the
system is safe.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the co-design of quantizer and
control input for cyber-physical systems to guarantee safety.
We formulated a control barrier function (CBF) constraint
for the controller that operates with finite precision using
quantized states at each sampling interval. We compared this
CBF constraint with the one formulated using actual system
dynamics and states, and derived an upper bound for their
difference. We leveraged the upper bound to develop a quan-
tizer for the system to quantize the states. We synthesized a
control input for the controller with finite precision using the
quantized states at each sampling interval. We proved that
the synthesized control inputs guaranteed that the system
to be safe. We demonstrated the proposed approach using
a numerical case study. Our future work will investigate
the co-design of quantizer and controller for hybrid and
interconnected CPS.
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APPENDIX

In this section, we present the proof of Proposition 1.
We first consider the first term, ∂h

∂x (xt)[f̃(x
q
k) + g̃(xq

k)uk −

f(xq
k)− g(xq

k)uk], in ϵ(xt, x
q
k, uk). We have

∥∂h
∂x

(xt)[f̃(x
q
k) + g̃(xq

k)uk − f(xq
k)− g(xq

k)uk]∥2

≤ ∆f (x
q
k)∥

∂h

∂x
(xt)∥2 +∆g(x

q
k)∥

∂h

∂x
(xt)∥2∥uk∥2, (31)

where the inequality holds by Cauchy-Schwarz inequality
and the definitions of ∆f (x

q
k) and ∆g(x

q
k). Here ∆f (x

q
k)

and ∆g(x
q
k) capture the error induced by finite precision

when representing f(xq
k) and g(xq

k), respectively.
We next consider the second term ∂h

∂x (xt)[f(x
q
k)−f(xt)+

g(xq
k)uk − g(xt)uk] in ϵ(xt, x

q
k, uk). We have that

∥∂h
∂x

(xt)[f(x
q
k)− f(xt) + g(xq

k)uk − g(xt)uk]∥2 (32a)

≤∥∂h
∂x

(xt)[f(x
q
k)− f(xt)]∥2

+ ∥∂h
∂x

(xt)[g(x
q
k)uk − g(xt)uk]∥2 (32b)

≤

√√√√ n∑
i=1

L2
fi
∥∂h
∂x

(xt)∥2∥xq
k − xt∥2

+

√√√√ n∑
i=1

m∑
j=1

L2
gij∥

∂h

∂x
(xt)∥2∥xq

k − xt∥2∥uk∥2, (32c)

where the first inequality holds by triangle inequality, and
the second inequality holds by Cauchy-Schwarz inequality
and Assumption 1.

Using triangle inequality, we then have that

∥ϵ(xt, x
q
k, uk)∥2 ≤ ∆f (x

q
k)∥

∂h

∂x
(xt)∥2

+∆g(x
q
k)∥

∂h

∂x
(xt)∥2∥uk∥2+

√√√√ n∑
i=1

L2
fi
∥∂h
∂x

(xt)∥2∥xq
k−xt∥2

+

√√√√ n∑
i=1

m∑
j=1

L2
gij∥

∂h

∂x
(xt)∥2∥xq

k − xt∥2∥uk∥2. (33)

Using Lemma 2, we have that

∥xq
k − xt∥2 ≤

∥β∥2
Θ

(eΘτ − 1) + δ(xq
k). (34)

Moreover, for any state xq
k, we have that

∥∂h
∂x

(xt)∥2 ≤ γ(xq
k) := sup

x∈B(xq
k)

∥∂h
∂x

(x)∥2. (35)

We further note that ∥uk∥2 ≤ U . Then Eq. (33) can be
written as

∥ϵ(xt, x
q
k, uk)∥2 ≤ γ(xq

k)

[
∆f (x

q
k) + ∆g(x

q
k)U

+(

√√√√ n∑
i=1

L2
fi
+

√√√√ n∑
i=1

m∑
j=1

L2
gijU)(

∥β∥2
Θ

(eΘτ−1)+δ(xq
k))

]
,

which completes our proof.
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