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Abstract— This paper presents an extension of the so-called
“Hansen scheme” for turning closed-loop system identification
into open-loop-like identification to a class of discrete-time
nonlinear systems with sector-bounded nonlinearities in the
state equation. In order to deploy the Hansen scheme, it
is necessary to know the existence of a dual Youla-Kucera
parametrization of all plants controlled by an observer-based
controller. We deduce the existence of such a parametrization
based on the solution of a pair of Linear Matrix Inequalities,
combined with some differential boundedness arguments. The
dual Youla-Kucera parameter may be identified in a number
of different ways; in the paper, two examples are presented.

Index Terms— Closed-loop Identification, Youla-Kucera
Parametrization, Coprime Factorization, Dynamic Mode De-
composition

I. INTRODUCTION

Identification of system models in closed loop is typically
much more difficult than identification of systems in open
loop. The reason for this is two-fold; firstly, when the plant
to be identified is placed in closed loop with a controller, the
measurement noise (which is usually assumed uncorrelated
with the input) is fed back via output measurements to the
controller, which means that the input cannot be assumed
uncorrelated with the noise. Secondly, a controller tends to
operate within a certain bandwidth, which also complicates
the identification process as the input is often not persistently
exciting.

Various methods for transforming the closed-loop iden-
tification problem into identification of (linear) models in
an open-loop setting on the basis of closed-loop data have
been proposed [1], [2]. These methods, which are sometimes
referred to as the “Hansen scheme” [3], commonly rely
on the fact that the set of all system models that can be
stabilized by a given controller, can be parametrized using
an arbitrary stable system in a particular feedback structure
with a nominal system and the controller. The controller
and nominal system model are separated into pairs of stable
factors, one of which is inverted, and a signal generated as the
output from one of these factors is used as input to the other
factor as well as to the parameter system. The parameter
system is known as the dual Youla-Kucera parameter [4],
[5]. See the survey papers [6] and [7] for an overview of
both theoretical and practical developments throughout the
last four decades.

In the Hansen scheme, the Youla-Kucera parametrization
is exploited to compute certain auxiliary signals representing
the in- and output to and from the dual Youla-Kucera
parameter, and the output from the parameter turns out to
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be unobservable from the input. Since the signals can then
also be assumed to be uncorrelated with the measurement
noise, the identification of the dual Youla-Kucera parameter
is an open-loop-like problem.

Various attempts at extending the Hansen scheme to non-
linear systems have been made; first, in [8], the nominal plant
and controller were assumed to be linear, but the dual Youla-
Kucera parameter was allowed to be nonlinear and time-
varying. Subsequently, in [9], [10], [11], it was shown that
the set of all nonlinear plants stabilized by some, possibly
nonlinear, controller can be parametrized by a stable (again,
possibly nonlinear) operator. These extensions rely on the
concept of differentially coprime fractional representations
of the nonlinear system in order to generate the input to the
Youla-Kucera parameter.

Unfortunately, in general it is not easy to find appropriate
coprime factors. All input-affine systems in principle have
right coprime factorizations; however, many such systems
do not have left coprime factorizations, because their asso-
ciated operators do not obey distributivity [12]. Results have
been presented on Youla-Kucera parameterizations of plants
and/or controllers for various classes of nonlinear systems,
such as [13], [12], [14], and [15], but none of these works
seem to address the identification aspect (and generally tend
to be abstract/non-constructive).

In this paper we propose a Hansen scheme for Luré-type
systems, which are linear systems with a sector-bounded
memoryless nonlinearity added to the state dynamics. We
deduce the existence of a dual Youla-Kucera parametrization
of all plants controlled by an observer-based controller based
on the solution of a pair of Linear Matrix Inequalities,
combined with some relatively mild differential boundedness
arguments. The identification scheme subsequently becomes
a straightforward extension of the linear case. The presented
scheme is constructive in the sense that we provide explicit
state space formulae for all the operators involved, which we
consider an improvement on previous efforts.

The outline of the rest of the paper is as follows. Section
II recalls some preliminary results that will be employed
throughout the rest of the paper. Section III then presents
the main results of the paper. Section IV illustrates the result
with a numerical simulation, and Section V rounds off the
paper.

II. PRELIMINARIES

This section states some notation and assumptions we
will employ throughout the rest of the paper. Most of the
notation is standard; ℓ𝑝2 denotes the normed vector space
of square summable sequences taking values in R𝑝 , with
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associated norm ∥𝑦∥2 =
∑∞

𝑡=0 𝑦
𝑇
𝑡 𝑦𝑡 < ∞, where 𝑡 is an index

denoting the sample number in the sequence 𝑦; 0 and 𝐼
denote zero and identity matrices of appropriate dimensions.
A function 𝛽1 : R+ → R+ is said to be of class K if it is
continuous, strictly increasing, and 𝛽1 (0) = 0. A function
𝛽2 : R+ × R+ → R+ is said to be of class KL if for each
fixed 𝑡, 𝛽2 (·, 𝑡) is of class K and for each fixed 𝜒, 𝛽2 (𝜒, 𝑡) is
nonincreasing and tends to 0 as 𝑡 → ∞. For easy distinction,
nonlinear operators are written in calligraphic script, while
linear operators and matrices are written with ordinary capital
letters. Also, subscript 𝑡 will often be suppressed in the
notation to save space.

A. System operators with sector-bounded dynamics

We consider discrete-time, causal, nonlinear operators G :
ℓ𝑚2 → ℓ𝑝2 mapping an input signal 𝑢𝑡 ∈ R𝑚 to an output
signal 𝑦𝑡 ∈ R𝑝 specified by an input-affine state space
realization of the form

G : 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝜙(𝑥𝑡 ) + 𝐵𝑢𝑡 (1)
𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 (2)

where 𝑡 ∈ Z+ denotes sample number and 𝑥𝑡 ∈ R𝑛 is the
state at sample 𝑡. The nonlinearity 𝜙 : R𝑛 → R𝑛 is a
smooth component-wise sector-bounded nonlinear function
satisfying the sector-bound inequality ∥𝜙(𝜉)∥ ≤ 𝛼∥𝜉∥ for all
𝜉 ∈ R𝑛 for some (known) 𝛼 > 0, as well as the component-
wise inequalities (𝜙𝑖 (𝜉𝑖)/𝛼 + 𝜉𝑖)(𝜙𝑖 (𝜉𝑖)/𝛼 − 𝜉𝑖) ≤ 0 for all
𝜉𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑛. Finally, 𝐴, 𝐵, 𝐶, and 𝐷 are real constant
matrices of appropriate dimensions, and the triplet (𝐴, 𝐵, 𝐶)
is assumed to be stabilizable and detectable.

It is easy to verify that operators of the class (1)–(2)
are closed under the standard interconnection operations.
Consider for instance two operators G1 : ℓ𝑚2 → ℓ𝑞2 and
G2 : ℓ𝑞2 → ℓ𝑝2 with state space realizations given by

G1 : 𝑥𝑡+1 = 𝐴1𝑥 + 𝜙1 (𝑥) + 𝐵1𝑢

𝑦𝑡 = 𝐶1𝑥 + 𝐷1𝑢

G2 : 𝜒𝑡+1 = 𝐴2𝜒 + 𝜙2 (𝜒) + 𝐵2𝑤

𝑣𝑡 = 𝐶2𝜒 + 𝐷2𝑤

where all the variables on the RHS are at sample 𝑡. Then
the series connection of G1 and G2, denoted G2G1, is the
operator[

𝑥𝑡+1
𝜒𝑡+1

]
=

[
𝐴1 0

𝐵2𝐶1 𝐴2

] [
𝑥
𝜒

]
+
[
𝜙1 (𝑥)
𝜙2 (𝜒)

]
+
[

𝐵1
𝐵2𝐷1

]
𝑢

𝑣𝑡 =
[
𝐷2𝐶1 𝐶2

] [𝑥
𝜒

]
+ 𝐷2𝐷1𝑢.

Similarly, the parallel connection of G1 and G2, G1 + G2, is
the operator[

𝑥𝑡+1
𝜒𝑡+1

]
=

[
𝐴1 0
0 𝐴2

] [
𝑥
𝜒

]
+
[
𝜙1 (𝑥)
𝜙2 (𝜒)

]
+
[
𝐵1
𝐵2

]
𝑢

𝑦 =
[
𝐶1 𝐶2

] [𝑥
𝜒

]
+ (𝐷2 + 𝐷1)𝑢

In the above expressions, it is important to note that the
concatenated nonlinear function [𝜙1 (𝑥)𝑇 𝜙2 (𝜒)𝑇 ]𝑇 also
satisfies the required sector-bound inequalities.

Perhaps a less obvious property is that, like their linear
counterparts, operators with state space realizations (1)–(2)
have left and right inverses if and only if the dimensions
of their inputs and outputs are equal and their direct feed-
through matrix 𝐷 is invertible:

Lemma 1: Consider the system G : ℓ𝑝2 → ℓ𝑝2 with state
space realization (1)–(2) and assume 𝐷 is invertible. Then
G−1 is given by

𝜒𝑡+1 = 𝐴𝜒 + 𝜙(𝜒) − 𝐵𝐷−1𝐶𝜒 + 𝐵𝐷−1𝑦 (3)
𝑢𝑡 = −𝐷−1𝐶𝜒 + 𝐷−1𝑦. (4)

Proof: Define 𝜉 = 𝑥−𝜒; combining (1)–(2) with (3)–(4)
then yields

𝜉𝑡+1 = 𝐴𝑥 + 𝜙(𝑥) + 𝐵𝑢 − 𝐴𝜒 − 𝜙(𝜒) + 𝐵𝐷−1𝐶𝜒 − 𝐵𝐷−1𝑦

= 𝐴𝜉 + 𝜙(𝑥) − 𝜙(𝜒) − 𝐵𝐷−1𝐶𝜉

𝑣𝑡 = −𝐷−1𝐶𝜒 + 𝐷−1 (𝐶𝑥 + 𝐷𝑢)
= 𝐷−1𝐶𝜉 + 𝑢

Hence, if 𝑥0 = 𝜒0 we must have 𝜉𝑡 ≡ 0 and thus 𝑣𝑡 = 𝑢𝑡 for
all 𝑡 ≥ 0.

B. Right coprime factorizations

It was demonstrated in [12] that if one can find feedback
laws 𝑢 = 𝐹 (𝑥)𝑥 and 𝜖 = 𝐿 (𝑥)(𝑦 − 𝐶𝑥) that stabilize the
autonomous systems 𝑥𝑡+1 = (𝐴 + 𝜙(𝑥) + 𝐵𝐹 (𝑥))𝑥 and 𝑥𝑡+1 =
(𝐴+𝜙(𝑥)+𝐿 (𝑥)𝐶)𝑥, respectively, then systems of the general
form (1)–(2) can be factorized as G = NM−1 with

M : 𝑥𝑡+1 = (𝐴 + 𝜙(𝑥) + 𝐵𝐹 (𝑥))𝑥 + 𝐵𝑣 (5)
𝑢𝑡 = 𝐹 (𝑥)𝑥 + 𝑣, (6)

N : 𝜒𝑡+1 = (𝐴 + 𝜙(𝜒) + 𝐵𝐹 (𝜒))𝜒 + 𝐵𝑣 (7)
𝑦𝑡 = (𝐶 + 𝐷𝐹 (𝜒))𝜒 + 𝐷𝑣. (8)

Furthermore, the operators

V : 𝑥𝑡+1 = (𝐴 + 𝜙(𝑥) + 𝐵𝐹 (𝑥))𝑥 − 𝐿 (𝑥)𝑤, (9)
𝑦𝑡 = (𝐶 + 𝐷𝐹 (𝑥))𝑥 + 𝑤 (10)

U : 𝜒̂𝑡+1 = (𝐴 + 𝜙( 𝜒̂) + 𝐵𝐹 ( 𝜒̂)) 𝜒̂ − 𝐿 ( 𝜒̂)𝑤, (11)
𝑢𝑡 = 𝐹 ( 𝜒̂) 𝜒̂ (12)

can be combined to form an observer-based controller

K = UV−1 (13)

that stabilizes G; these are commonly called right coprime
factorizations [10].

C. Stability

The next question is then to find the necessary feedback
laws to implement the plant/controller factors (5)–(12).

As mentioned, a system of the form (1)–(2) can be seen
as a type of Luré system. Because the nonlinear part of the
drift term is sector-bounded, it is possible to compute a static
feedback gain matrix that stabilizes the system provided the
sector bound is sufficiently small:
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Theorem 1: Consider the system (1)–(2) with 𝐷 = 0 and
𝜙(𝑥) = 𝐵𝜑𝜑(𝐶𝑞𝑥) satisfying

∥𝜑(𝜉)∥ ≤ 𝛼∥𝜉∥ and ∥𝜑(𝜉) − 𝜑(𝜉)∥ ≤ 𝜇∥𝜉 − 𝜉∥ (14)

for known constants 𝛼 > 0, 𝜇 > 0, along with the state
observer

𝑥𝑡+1 = 𝐴𝑥 − 𝐿 (𝑦 − 𝑦̂) + 𝐵𝜑𝜑(𝐶𝑞𝑥) + 𝐵𝐹𝑥 (15)
𝑦̂𝑡 = 𝐶𝑥. (16)

If there exist feasible solutions to the matrix inequalities

min
𝑄,𝑊

𝛾 s.t. (17)

0 < 𝑄 = 𝑄𝑇

0 >


−𝑄 0 𝑄𝐴𝑇 +𝑊𝑇𝐵𝑇 𝑄𝐶𝑇

𝑞

0 −𝐼 𝐵𝑇
𝜑 0

𝐴𝑄 + 𝐵𝑊 𝐵𝜑 −𝑄 0
𝐶𝑞𝑄 0 0 −𝛾𝐼


min
𝑃,𝑌

𝜆 s.t. (18)

0 < 𝑃 = 𝑃𝑇

0 >


−𝜆𝑃 0 𝐴𝑇 + 𝐶𝑇𝑌𝑇 𝐶𝑇

𝑞

0 −𝐼 𝐵𝑇
𝜑𝑃 0

𝑃𝐴 + 𝑌𝐶 𝑃𝐵𝜑 −𝑃 0
𝐶𝑞 0 0 −𝜇−2𝐼


then the closed-loop system described by Eqns. (1), (2),
(15), and (16) with 𝐹 = 𝑊𝑄−1, 𝐿 = 𝑃−1𝑌 , and 𝑢𝑡 = 𝐹𝑥𝑡 ,
is Bounded-Input-Bounded-Output (BIBO) stable for any 𝜑
such that 𝛾 ≤ 𝛼−2.

Proof: See [16].
Here, BIBO stability means that the controlled system (1)–

(2) with 𝑢𝑡 = 𝐹𝑥𝑡 admits a quadratic Lyapunov function
𝑉 (𝑥𝑡 ) = 𝑥𝑇𝑡 𝑄𝑥𝑡 satisfying 𝑉 (𝑥𝑡+1) < 𝑉 (𝑥𝑡 ) for all 𝑡 if 𝑥𝑡 =
𝑥𝑡 , while the state estimation error driven by the observer
dynamics (15) is bounded by a class KL function 𝛽(·, ·)
and a class K function 𝜌(·):

∥𝑥𝑡 − 𝑥𝑡 ∥ ≤ 𝛽(∥𝑥0 − 𝑥0∥, 𝑡) + 𝜌(𝛿0) ∀𝑡 ≥ 0

where 𝛿0 is the peak magnitude of some vanishing distur-
bance; for further details, see [16].

Remark 1 Problem (17) is a Linear Matrix Inequality
(LMI) and can thus be solved efficiently. Problem (18) is
strictly speaking not an LMI due to the presence of the
product 𝜆𝑃; however, one may simply fix consecutive values
of 𝜆 and check for feasibility, which is again straightforward
to handle. ◁

Remark 2 The original result in [16] includes an extra
observer gain in the argument of 𝜑 in (15) to eliminate any
estimation errors caused by the nonlinearity, thereby achiev-
ing global asymptotic stability of the controller-observer
interconnection for bounded and vanishing disturbances. We
do not include this extra term in the sequel, as we only
require BIBO stability in our coming arguments for existence
of left coprime factors. ◁

Remark 3 Finally, it is noted that it is of course possible
to have 𝜙(𝑥) = 𝜑(𝑥) by choosing 𝐵𝜙 = 𝐼, 𝐶𝑞 = 𝐼 in the
LMIs. ◁

III. CLOSED-LOOP SYSTEM IDENTIFICATION

With all preliminaries in place, we are now ready to
present the main contribution of the paper.

A. Left coprime factorization

As previously mentioned, the Hansen scheme is a strategy
for turning a closed-loop identification problem, which is
usually hard, into identification of a dual Youla-Kucera
parameter—an operator of the same structure as (1)–(2),
embedded within a right/left coprime factorization of the
plant model in closed loop with a controller, which can also
be factorized. The method relies crucially on the existence of
a Bezout Identity, which links together left and right coprime
plant/controller factorizations.

However, it must be noted that it is not at all common for
nonlinear systems to have left factorizations. This is because
nonlinear systems do not in general obey distributivity; that
is, for some P1 and (P2 +P3), the cascade P1 (P2 +P3) will
not equal P1P2 + P1P3.

Fortunately, some systems of the class considered here do
indeed possess left factorizations:

Proposition 1: Consider a system G of the form (1)–(2)
and suppose there exist matrices 𝑄, 𝑃,𝑊, and 𝑌 along with
scalars 0 < 𝜆 < 1 and 0 < 𝛾 < 𝛼−2 satisfying (17)–(18). Let
the associated observer-based controller be given by (13).

Then the operators

M̃ : 𝑥𝑡+1 = (𝐴 + 𝐿𝐶)𝑥 + 𝜙(𝑥) + 𝐿𝑣, (19)
𝑦𝑡 = 𝐶𝑥 + 𝑣 (20)

Ñ : 𝑥𝑡+1 = (𝐴 + 𝐿𝐶)𝑥 + 𝜙(𝑥) + (𝐵 + 𝐿𝐷)𝑢 (21)
𝑣𝑡 = 𝐶𝑥 + 𝐷𝑢 (22)

Ũ : 𝑥𝑡+1 = (𝐴 + 𝐿𝐶)𝑥 + 𝜙(𝑥) + 𝐿𝑦, (23)
𝑤𝑡 = −𝐹𝑥 (24)

Ṽ : 𝑥𝑡+1 = (𝐴 + 𝐿𝐶)𝑥 + 𝜙(𝑥) − (𝐵 + 𝐿𝐷)𝑢 (25)
𝑤𝑡 = 𝐹 (𝑥)𝑥 + 𝑢. (26)

constitute a right coprime factorization G = M̃−1Ñ , K =
Ṽ−1Ũ that satisfy the Bezout identity[

Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
= 𝐼 (27)

and all systems of the form (1)–(2) stabilized by K may be
written on the form

GS = (N + VS)(M +US)−1

= (M̃ + SŨ)−1 (Ñ + SṼ). (28)

where S is a dual Youla-Kucera parameter of the form (1)–
(2).

Proof: We base our claim on the following observa-
tions:

1) The state and observer state equations are well defined
and bounded for bounded initial conditions, and the
input/output maps of each operator is linear;

2) The controlled state equation 𝑥𝑡+1 = (𝐴 + 𝐵𝐹)𝑥 + 𝜙(𝑥)
is exponentially stable; and
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3) The observer dynamics 𝑥𝑡+1 = (𝐴 + 𝐿𝐶)𝑥 + 𝜙(𝑥) is
bounded by a class KL function.

These observations imply that all of the operators
M,N ,U,V, M̃, Ñ , Ũ, and Ṽ are differentially bounded,
i.e., there exist constants 𝜀1, 𝜀2 such that for any pair of
signals 𝑤1, 𝑤2 ∈ ℓ2 one has

∥𝑤1 − 𝑤2∥ < 𝜀1 ⇒ ∥F𝑤1 − F𝑤2∥ < 𝜀2

where F may be any the aforementioned operators.
Then we note that the fact that 𝑥𝑡+1 = (𝐴 + 𝐵𝐹)𝑥 + 𝜙(𝑥)

is exponentially stable is equivalent to the state equation

𝑥𝑡+1 = ( 𝐴̄(𝑥) + 𝐵𝐹)𝑥, 𝐴̄(𝑥) = 𝐴 + 𝜙(𝑥)diag{𝑥}−1

being exponentially stable.
Theorem 3 in [12] then guarantees the existence of the

desired Bezout identity along with the existence of the Youla-
Kucera parameterization with S as parameter.

This shows that if the observer/control design problems
(17), (18) are feasible, Youla-Kucera-like parametrizations
can be found for the class of systems considered here,
characterizing all systems stabilized by the controller (13).

B. Hansen Scheme

Consider next the problem of open-loop identification of
a system G𝜃 parameterized by some unknown parameter
vector 𝜃 as depicted in Figure 1 (top left). An input 𝑢
may be applied to the system, and corresponding output
measurements 𝑦 affected by noise 𝜈𝑦 are obtained. These
measurements are related to the input and noise through

𝑦𝑡 = G𝜃𝑢𝑡 + 𝜈𝑦,𝑡

and an unbiased estimate of G𝜃 can in principle be obtained
as long as 𝑢𝑡 and 𝜈𝑦,𝑡 are uncorrelated and 𝑢 is sufficiently
rich. Unfortunately, in a closed-loop setting 𝑢𝑡 is not uncor-
related with 𝜈𝑦,𝑡 because the noise is fed back through the
controller, as also shown in Figure 1 (top right). Furthermore,
the dynamics of the controller tend to limit the richness of the
excitation in closed-loop operation. To alleviate this problem,
we employ the dual Youla-Kucera factorization to recast the
closed-loop system identification problem into an open-loop-
like problem.

Assume a controller K that stabilizes a nominal plant G
has been found, as outlined in the previous two sections.
Then the set of all plants stabilized by K can be represented
as shown in the bottom block diagram of Figure 1. Here, 𝜈 =
(M̃ +SŨ)𝜈𝑦 is the measurement noise that would normally
affect the measurements 𝑦 at sample time 𝑡, relocated in
the block diagram to affect the output of the Youla-Kucera
parameter S instead, and 𝑟1 and 𝑟2 are external excitation
signals.

By manipulating the block diagram and using the Bezout
identity (27), it is possible to check that the block diagram
expresses the relation

𝑦𝑡 = (N + VS)(M +US)−1𝑢𝑡 + 𝜈𝑦,𝑡

𝑢G𝜃
𝑦

𝜈𝑦

𝑢G𝜃
𝑦

𝜈𝑦

K

𝑢

−N M−1𝜁

S

𝜈

V U𝑧

Ũ Ṽ−1

𝑦

𝑟1 𝑟2

Fig. 1. Top left: Open-loop identification. Top right: closed-loop identifica-
tion. Bottom: Hansen scheme; G = NM−1 and K = Ṽ−1Ũ are nominal
model and controller factorizations, respectively, while S is an unknown
Dual Youla-Kucera parameter.

where the dual Youla-Kucera parameter S appears as the
only unknown. Thus, the unknown parameter vector 𝜃 must
be embedded in S only.

Furthermore, it is possible to deduce, again using (27),
that

𝜁 = Ũ𝑟1 + Ṽ𝑟2 (29)
𝑧 = M̃𝑦 − Ñ𝑢 (30)
𝑧 = S𝜁 + 𝜈 (31)

As can be seen, 𝜁 and 𝑧 are available from measurements and
inputs filtered through stable operators. Furthermore, as long
as 𝜈𝑦 is independent of 𝑟1 and 𝑟2, then 𝜁 is independent of
𝜈 as well; and if 𝜈𝑦 is zero-mean, then so is 𝜈. Additionally,
S is known to be stable due to the dual Youla-Kucera theory
(cf. Section III-A). Thus, it can be seen that although 𝑢 and 𝑦
are measured in closed-loop, the identification of S becomes
equivalent to an open-loop identification problem.

IV. NUMERICAL EXAMPLE

To demonstrate the proposed scheme, we choose the
following modified version of the example system in [16]:

𝐴 =


0 1 0 0

−0.2702 −0.0124 0.2703 0
0 0 0 1

0.1075 0 0.0743 0


𝐵 =


0 0

0.216 0
0 0
0 0.2

 , 𝐵𝜑 =


0 0

0.2703 0
0 0

−0.1075 0.0332


𝐶𝑞 =

[
−1 0 1 0
0 0 1 0

]
𝐶 =

[
1 0 0 0
0 0 1 0

]
, 𝐷 = 0
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Fig. 2. Measurement data for system identification. Top: 𝑦 (—), 𝑟2 (- -);
bottom: 𝑢.

and 𝜑𝑖 (·) = tanh(·), 1 ≤ 𝑖 ≤ 2. For this system, it is
possible to solve the design LMIs to yield the stabilizing
state feedback and observer gains

𝐹 =

[
1.2509 0.0574 −1.2514 −1.3 × 10−6

−0.5375 −4 × 10−7 −0.3715 −1.0 × 10−6

]
𝐿 =


0.0078 2.7 × 10−8

0.2701 −0.2703
−0.0003 4.2 × 10−8

−0.1075 −0.0743

 .
The LMIs were solved for 𝜆 = 0.75, 𝜇 = 2.5 using the
popular YALMIP front-end for the MOSEK solver in Matlab
[17], [18]. The dual Youla-Kucera parameter S was chosen
semi-randomly as

𝑧𝑡+1 =

[
0.2277 0.2641
0.5104 0.4180

]
𝑧 +

[
0.2 0
0 0.2

]
𝜑 (𝑧) +

[
0.3 0
0 0.3

]
𝜁

while the inputs 𝑟1 and 𝑟2 were chosen as a random Gaussian
sequence with mean 0 and spread 0.5 and a series of steps
with random amplitude in the interval [−2, 2], respectively.
Since 𝑟2 enters as a standard reference, it was chosen to pre-
scale the signal with the steady-state gain of the linear part of
G to provide a visual illustration of the controller’s tracking
performance. The input-output data is shown in Figure 2; as
can be seen, the controller performs about as well as can be
expected without integral action and being perturbed by the
nonlinearity 𝜙(·).

The signals 𝑟1, 𝑟2, 𝑢, and 𝑦 are then filtered according
to (29) and (30), respectively. The filtered signals used for
identification of 𝑆 are shown in Figure 3.

Here, primarily for simplicity, it is chosen to identify the
nonlinear state space model for S using Dynamic Mode
Decomposition (DMD), see e.g., [19]. Although crude, the
DMD method has the advantage of being easy to implement
and is suitable for the model structure considered here. For
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Fig. 3. Filtered data for system identification. Top: 𝜁 ; bottom: 𝑧

comparison, we also employ Matlab’s nonlinear grey-box
estimation toolbox nlgreyest to identify S.

Sample pairs of (𝑧𝑡 , 𝜁𝑡 ), 𝑡 = 1, . . . 𝑁 = 500 are obtained
from the filtering processes (29)–(30) and the model order
is chosen as 𝑛S = 2. We define the matrices

𝑍+ =
[
𝑧2 𝑧3 . . . 𝑧𝑁

]
𝑍 =

[
𝑧1 𝑧2 . . . 𝑧𝑁−1

]
Φ =

[
𝜙(𝑧1) 𝜙(𝑧2) . . . 𝜙(𝑧𝑁−1)

]
Γ =

[
𝜁1 𝜁2 . . . 𝜁𝑁−1

]
Equation (31) can then be written as

𝑍+ = 𝐴S𝑍 + 𝐵𝜙,SΦ + 𝐵SΓ + 𝜈 = ΘΛ + 𝜈

where Λ contains the observations and nonlinear function
evaluations, and Θ contains the parameters to be estimated. A
truncated Singular Value Decomposition (SVD) is performed
on the observation matrix, resulting in Λ ≈ 𝑈̄Σ̄𝑉̄𝑇 where ·̄
represents rank-𝑟 truncation. The least-squares estimate of
the parameter matrices can then be found as

Θ̂ = 𝑍+𝑉̄ Σ̄−1𝑈̄. (32)

Figure 4 shows a comparison of the output response of
the estimated Ŝ (with rank 5 truncation) and actual S to
a series of random steps (top trace). The figure also shows
the corresponding estimation performance for nlgreyest
(bottom trace).

As can be seen, the estimated dual Youla-Kucera param-
eter is not identified perfectly by DMD; while the dynamics
are mostly captured reasonably, the steady-state gains are
clearly not very precise, which may be attributed to poor
estimation of 𝐵𝜑; nlgreyest, on the other hand, performs
considerably better.

When placed back into (28), however, the DMD estimate
is found to perform quite well; as seen in Figure 5, the
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Fig. 4. Comparison between S (—) and Ŝ (- -).
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Fig. 5. Simulation with 𝑦𝑡 = (N + VS) (M + US)−1𝑢𝑡 , 𝑦̂𝑡 = (N +
VŜ) (M + UŜ)−1𝑢𝑡 . Top: 𝑦𝑡 (—), 𝑦̂𝑡 (- -) bottom: zoom of the first 100
samples.

outputs (𝑦 and 𝑦̂) with S and Ŝ inserted in the Youla-
Kucera factorization are very nearly identical except in the
beginning of the simulation, which is due to differences in
initial conditions.

V. COMMENTS AND CONCLUSION

This paper presented an open-loop-like identification
scheme for discrete-time Luré-type systems. We deduced
the existence of a dual Youla-Kucera parameterization of
all plants controlled by an observer-based controller based
on the solution of a pair of Linear Matrix Inequalities,
combined with some relatively mild differential boundedness
arguments. The presented scheme is constructive in the sense
that we provide explicit state space formulae for all the

operators involved, which we consider an improvement on
previous efforts.

Two different identification schemes were tested on the
dual Youla-Kucera parameter, and it was found that the
more sophisticated nonlinear grey-box estimation method
performs better than DMD. However, this conclusion may
not necessarily be true in cases where the model structure
deviates from the ‘true’ structure of S, which is typically not
known in practical applications.

Future work involves determining optimal identification
methods for the dual Youla-Kucera parameter, as well as
incorporation of less conservative (nonlinear) control and
observer gain design methods.
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