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Abstract— Lyapunov-based control is a common method to
enforce closed-loop stability of nonlinear systems, where the
choice of a control-Lyapunov function has a strong impact on
the resulting performance. In this paper, we propose a generic
semi-infinite stochastic programming formulation for the opti-
mal control-Lyapunov function design problem and discuss its
various specializations. Specifically, the expected performance
evaluated on simulated trajectories under different scenarios
is optimized subject to infinite constraints on stability and
performance specifications. A stochastic proximal primal-dual
algorithm is introduced to find a stationary solution of such
a semi-infinite stochastic programming problem. The proposed
method is illustrated by a chemical reactor case study.

I. INTRODUCTION

For the stability of nonlinear control systems, Lyapunov
stability analysis [1] is the canonical approach, aiming at
finding a Lyapunov function and establishing its descent
property. To enforce closed-loop stability proactively with
a controller, one can assign a control-Lyapunov function
and construct a Lyapunov-based controller that guarantees
its descent [2]. For example, Lin and Sontag [3] gave an
explicit control law that guarantees the Lyapunov function
descent at a specified rate. In model predictive control (MPC)
[4] where inputs are determined from the recursive solution
of an optimal control problem, closed-loop stability can be
established with the cost function as a control-Lyapunov
function. Also, the Lyapunov function descent can be directly
incorporated as a constraint in MPC formulations to enforce
closed-loop stability [5]. This idea has been extensively
used in Lyapunov-based MPC, EMPC, and Lyapunov barrier
function-based methods [6]–[8].

However, developing systematic and generic approaches to
the design of control-Lyapunov functions is a fundamentally
challenging problem. Typically, special forms or restrictive
conditions satisfied by the system dynamics are needed to
construct control-Lyapunov functions [9]. For polynomial
systems, sum-of-squares (SOS) programming approaches
[10] and especially Lasserre hierarchy algorithms [11], [12]
have been proposed, which usually require a simple objective
of control-Lyapunov function design, e.g., to maximize the
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volume of an estimated domain of attraction. More gener-
ally, control-Lyapunov functions can be found by solving
optimal control problems in the form of Hamilton-Jacobi-
Bellman (HJB) equations [13] or alternatively, according to
Rantzer’s duality of Lyapunov stability [14], formulated as
an optimization problem over Lyapunov measures [15], [16].
Finally, as universal approximators, neural networks can be
used to learn the Lyapunov functions; on the other hands,
neural networks typically involve an excessive number of
parameters to tune and are subject to convergence issues and
often difficult to guarantee global properties [17]–[19].

In this paper, we aim at providing a generic formulation
for the control-Lyapunov function design as a semi-infinite
stochastic programming problem. This formulation has the
following technical features and practical advantages.

1) The control-Lyapunov function, or its indirect rep-
resentation by the MPC cost function, are linearly
parameterized, and the parameters become the deci-
sion variables in the optimization problem. Therefore,
the dimension of the decision variables is dependent
on the choice of the parameterization structure (e.g.,
quadratic or SOS) and the procedure is in principle
more scalable with increasing dimension of the state
space (than numerical approaches for the solution of
optimal control problems [16]) as fewer parameters
need to be determined.

2) Requirements on the rate of the Lyapunov function
descent and/or the disturbance effect in the closed-loop
system, as characterized by a gain function, are consid-
ered as an infinite number of inequality constraints to
be satisfied for all states on a state space region. Hence,
the user has the flexibility to specify the gain from
disturbances and the rate of the Lyapunov function
descent as any desired functions (as long as feasibility
is retained), including the typical exponential decay,
without being restricted to specific function structures
(as in SOS programming [10]).

3) The objective function is postulated as the expecta-
tion of a performance cost function evaluated under
a finite or infinite set of simulation scenarios. The
user may choose scenarios that reflect the typical
operating conditions of the system, and therefore give
a direct and practical assessment of the quality of the
control-Lyapunov function design according to user
specifications. Moreover, in contrast to the typical
quadratic cost used in optimal control problems [13],
such a simulation-based objective function can account
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for a variety of dynamic performance characteristics,
such as state and input magnitudes, smoothness, and
overshooting.

The proposed formulation is largely motivated by the chem-
ical engineering literature on the analysis and design of
flexible plants that remain operable under uncertainty while
achieving optimal economic performance. A review was
given by Grossmann et al. [20]. Such a conceptual connec-
tion was drawn in our previous works [21], [22].

We refer the readers to [23] and [24] for tutorials on
stochastic and semi-infinite programming, respectively. In
this work, to handle the stochastic, simulation-based ob-
jective function and semi-infinite constraints involved in
the control-Lyapunov function design problem, we propose
to use a stochastic proximal primal-dual algorithm slightly
modified from [25]. The algorithm is essentially driven by
the data samples drawn from the probability distributions
defining the semi-infinite programming problem throughout
the iterations, and will be explained in §IV and demonstrated
by a case study on a chemical reactor example in §V.
Next, we introduce some preliminaries of Lyapunov stability
theory (§II) that are needed for the proposed semi-infinite
programming formulation (§III).

II. PRELIMINARIES

We consider a continuous-time nonlinear control system:

ẋ(t) = f(x(t)) + g(x(t))u(t) + b(x(t))d(t) (1)

in which x(t) ∈ Rnx , u(t) ∈ Rnu and d(t) ∈ Rnd

represent the states, control inputs, and exogenous inputs
(disturbances) respectively. We assume that f, g, b are con-
tinuously differentiable and f(0) = 0.

A. Lyapunov stability

In the absence of exogenous inputs, for any control policy
u = κ(x), assuming continuous, the closed-loop stability is
related to the existence of a Lyapunov function [2, §4.5].

Fact 1. Let X ⊆ Rn be a closed set whose interior contains
the origin, and κ be a given continuous control policy on X .
If there exists a continuously differentiable function, called
a Lyapunov function, V : X → R, such that

w1(∥x∥) ≤ V (∥x∥) ≤ w2(∥x∥) (2)

and

V̇ (x) = ∇V (x)⊤(f(x) + g(x)κ(x)) ≤ −σ(∥x∥) (3)

hold for some K-class functions w1, w2 and σ for all x ∈ X ,
then x = 0 is asymptotically stable.

If X is furthermore a (forward-)invariant set, then X
is a domain of attraction under κ; otherwise, the domain
of attraction can be estimated as the largest sublevel set
contained in X , i.e., SV (v) = {x|V (x) ≤ v} where v is
the largest among all such choices. On the other hand, if
one needs any trajectory starting on any subset X0 of X to
be attracted to the origin, then it suffices to let the above

Lyapunov descent condition hold on the smallest sublevel
set SV (v) ⊇ X0.

When the control law κ needs to be designed, a function
V : X → [0,∞), called control-Lyapunov function, can be
artificially assigned, with a given rate of its descent σ(∥x∥)
imposed on the control law:

∇V (x)⊤(f(x) + g(x)κ(x)) ≤ −σ(∥x∥). (4)

In this way, for any control policy κ, as long as (4) remains
feasible for all t > 0 (i.e., is recursively feasible), the
closed-loop stability is guaranteed with V being a Lyapunov
function. Such a method is called Lyapunov-based control.

In the presence of exogenous inputs d, it is desirable that
under the controller κ, the effect of d on the states x is small
for the closed-loop system

ẋ(t) = f(x(t)) + g(x(t))κ(x(t)) + b(x(t))d(t). (5)

This property is known as input-to-state stability and char-
acterized with a Lyapunov function (also called an input-to-
state Lyapunov function) according to the following result
of Sontag and Wang [26].

Fact 2. Let X ⊆ Rn be a closed set containing the origin,
and κ be a given continuous control policy on X . Suppose
that there exists a continuously differentiable function V :
X → R, satisfying

w1(∥x∥) ≤ V (x) ≤ w2(∥x∥) (6)

for some K-class functions w1, w2 and

V̇ (x) = ∇V (x)⊤(f(x) + g(x)κ(x) + b(x)d)

≤ −σ(∥x∥) whenever ∥x∥ ≥ ζ(∥d∥)
(7)

for some K-class functions σ and ζ. Then the closed-loop
system (5) is input-to-state stable, i.e., on any trajectory in
X ,

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ

(
max
0≤τ≤t

∥d(τ)∥
)
, (8)

where β and γ belong to the KL and K classes, respectively.

As such, assuming that the exogenous disturbances d lie in
a bounded set D, the Lyapunov function is decreasing outside
of {x|∥x∥ ≤ M}, in which M = maxd∈D ζ(∥d∥). If there
is a sublevel set of the Lyapunov function V , SV (v), with
v ≥ w2(M), then SV (v) is an invariant set and hence any
trajectory starting on SV (v) is attracted into SV (w2(M)).

The condition of Fact 2 is stronger than, and in the case
of ∥d∥ = 0, implies the conditions in Fact 1. To achieve both
asymptotic stability and (exogenous) input-to-state stability
under control, one needs to design the controller which
allows such a corresponding V that the two inequalities in
Fact 2 are satisfied. Next we consider two classical examples
for such Lyapunov-based controllers.
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B. Lin-Sontag controller and MPC

We assume that the control inputs are constrained in U =
{u| ∥u∥p ≤ 1}, where p ∈ [1,∞]. Given a control-Lyapunov
function V , the “universal” control law of Lin and Sontag
[3] is written as:

κ(x) =

{
−κ0(x)(LgV (x))⊤, LgV (x) ̸= 0

0, LgV (x) = 0
(9)

in which

κ0(x) =
L∗
fV (x) +

√
(L∗
fV (x))2 + ∥LgV (x)∥4q

∥LgV (x)∥22
[
1 +

√
1 + ∥LgV (x)∥2q

]
with L∗

fV (x) = ∇V (x)⊤f(x) + ρV for some ρ > 0,
LgV (x) = ∇V (x)⊤g(x), and q ∈ [1,∞] such that 1/p +
1/q = 1. Consider X = {x|L∗

fV (x) ≤ ∥LgV (x)∥q}. Then,
V̇ (x) ≤ −ρV (x) holds for all x ∈ X , and therefore the
largest sublevel set of V contained in X is guaranteed to
be a domain of attraction under κ, on which the control-
Lyapunov function is guaranteed to decay exponentially with
rate ρ [5]. In the presence of exogenous disturbances, we
should redefine L∗

fV (x) by appending an additional term of
∥LbV (x)∥ζ−1(∥x∥) and rewrite the input-to-state stability
condition into

∀x ∈ X,LfV (x)− ∥LgV (x)∥q
+ ∥LbV (x)∥ζ−1(∥x∥) + ρV (x) ≤ 0.

(10)

Hence, V̇ ≤ −ρV − ∥LbV (x)∥ζ−1(∥x∥) + LbV (x)d does
not exceed −ρV when ∥x∥ ≥ ζ(∥d∥), thus satisfying the
inequality in Fact 2.

In contrast to the explicitness of the Lin-Sontag formula,
in MPC the control law u = κ(x) is implicitly determined
by the quantity û(0) as a part of the solution to the following
optimal control problem:

V (x) = min
û(·),x̂(·)

∫ T

0

ℓ(x̂(t), û(t))dt+ ℓf(x̂(T ))

s.t. ˙̂x(t) = f(x̂(t)) + g(x̂(t))û(t), t ∈ [0, T ]

x̂(t) ∈ X, û(t) ∈ U, x̂(0) = x, x̂(T ) ∈ Xf .

(11)

Here, x̂ and û are the predicted state and control input tra-
jectories, ℓ, ℓf are the stage cost and terminal cost functions
(assumed to be continuous), T is the length of the prediction
horizon, and X , U , Xf are state, control input and terminal
state constraints, respectively. We assume for convenience
that the optimal control problems can be solved in continuous
time without any error induced from discretization and
numerical errors. We assume that the following regularity
conditions are satisfied: (i) U , X and Xf ⊆ X are compact
sets containing zero in their interiors; (ii) ℓ(0, 0) = 0,
ℓf(0) = 0; (iii) ∀x ∈ X,∀u ∈ U , ℓ(x, u) ≥ w(x) and
ℓf(x) ≤ wf(x) for some K-class functions w,wf .

The asymptotic and input-to-state stability conditions of
MPC [4] are implicitly related to a control-Lyapunov func-
tion, namely the optimal objective value V (x) as a function
of x. Specifically, if there exists an auxiliary control law

κf : Xf → U such that Lf+gκf
ℓf(x) ≤ −ℓ(x, κf(x)),

then starting from any initial point x such that (11) is
feasible, asymptotic stability is achieved with V̇ (x) < 0
whenever x ̸= 0. The MPC achieves (exogenous) input-to-
state stability if we further have

Lf+gκf
ℓf(x)+∥Lbℓf(x)∥ζ−1(∥x∥)+ ℓ(x, κf(x)) ≤ 0. (12)

As such, the requirement on the control-Lyapunov function
V (x) for MPC is implicitly contained in the conditions for
the stage cost function ℓ and terminal cost function ℓf .

III. OPTIMAL CONTROL-LYAPUNOV FUNCTION DESIGN

A. General formulation

Now we provide a general formulation for optimally
designing control-Lyapunov functions. We first parameterize
the control-Lyapunov function to be designed, V : X →
[0,∞), linearly with a vector of parameters θ ∈ Rnθ , i.e.,

V (x) = ω(x)⊤θ (13)

for some function ω : X → Rnθ , so that the optimization of
function V is performed on finite dimensions. In MPC where
the control-Lyapunov function is reflected by the stage cost
ℓ and terminal cost ℓf , we consider

ℓ(x) = ω(x)⊤θ, ℓf(x) = ωf(x)
⊤θ. (14)

The parameters θ can be constrained with an a priori range
Θ ⊆ Rnθ , which specifies the shape that the control-
Lyapunov function can have. For simplicity, we assume that
the conditions on the control-Lyapunov function specified
by the bounding functions w1, w2, w, wf as well as the
conditions that ℓ(0, 0) = 0, ℓf(0) = 0 can be translated into
θ ∈ Θ. Such a range Θ is also assumed to be simple in
the sense that the projection operator projΘ : Rnθ → Θ,
θ 7→ argminθ′∈Θ ∥θ − θ′∥22 can be evaluated exactly.

The constraint on the control-Lyapunov function has been
discussed previously in §II-B as (10) and (12). Both of these
conditions can be compactly written as

ψ(x, θ) ≤ 0, ∀x ∈ X (15)

with a continuous function ψ : X × Rnθ → R, which form
an infinite number of constraints on θ indexed by x ∈ X . We
note that, however, since ψ(x, θ) is not necessarily concave
in x, the typical bilevel programming approach of rewriting
the constraint as maxx∈X ψ(x, θ) ≤ 0 and using the Karush-
Kuhn-Tucker (KKT) conditions [24] to convert it into a finite
number of constraints is not applicable here. In fact, as one
can observe from (10) with V (x) = ω(x)⊤θ, ψ(x, θ) is not
guaranteed to be convex in θ either.

Under this parameterization, the Lyapunov-based con-
troller is written as u = κ(x|θ). The performance of the
controller can be evaluated with a finite or infinite number
of simulation scenarios indexed by a random vector ξ, whose
probability distribution is supported on Ξ, which is an either
finite or bounded and closed set. Under scenario ξ, by solving
the following differential equations, the closed-loop system
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is simulated with corresponding initial point x0ξ , time span
Tξ > 0, and bounded exogenous disturbance signals dξ(·):

ẋξ(t) = f(xξ(t)) + g(xξ(t))uξ(t) + b(xξ(t))dξ(t)

uξ(t) = κ(xξ(t)|θ), xξ(0) = x0ξ .
(16)

Based on the simulated state and input trajectories, which
depend on θ and hence can be denoted as xξ(t|θ) and uξ(t|θ)
respectively, we can define a performance cost function cξ :
X × U → R, assumed to be continuously differentiable, for
each scenario ξ ∈ Ξ in the form of the following integral

ϕξ(θ) =

∫ Tξ

0

cξ(xξ(t|θ), uξ(t|θ))dt. (17)

The objective function is then defined as the expectation of
ϕξ(·) under the distribution of ξ on Ξ.

Based on the above discussion, the optimal control-
Lyapunov function design problem of interest is now formu-
lated as the following semi-infinite stochastic programming
problem:

min
θ∈Θ

ϕ(θ) = Eξ [ϕξ(θ)]

s.t. ψ(x, θ) ≤ 0,∀x ∈ X.
(18)

In the following subsection, we will show some different
specializations of the above generic formulation under dif-
ferent parameterizations, choice of simulation scenarios, and
control strategies (Lin-Sontag and MPC).

B. Specialized formulations

1) Linear parameterization: A typical choice of linear
parameterization can be a quadratic form, i.e.,

V (x) = θ11x
2
1 + θ12x1x2 + · · ·+ θnxnxx

2
nx
. (19)

If the corresponding bounding functions for V , w1 and w2,
are chosen also as quadratic functions, wi(∥x∥) = ai∥x∥2,
i = 1, 2, then the condition w1(∥x∥) ≤ V (x) ≤ w2(∥x∥)
can be easily translated to

θ ∈ Θ = {θ|a1I ⪯ mat(θ) ⪯ a2I}. (20)

where mat : Rn2
x → Rnx×nx maps the vector θ into a

corresponding matrix. By specifying a1 and a2, the control-
Lyapunov function is required to have an elliptic contour
on which the ratio between the longest axis length and the
shortest axis length does not exceed

√
a2/a1.

A more complicated option is to restrict V on the collec-
tion of sum-of-squares (SOS) polynomials of x, i.e., V (x) =∑
i pi(x)

2 with each pi being a polynomial of degree not
exceeding d. It is known [10] that such a function V can be
expressed as

V (x) = m(x)⊤Hm(x) (21)

where m : X → Rnb (nb =
(
nx+dp
nx

)
−1), whose components

comprise all non-constant nx-variate monomials of degrees
not exceeding dp, and H is a matrix such that there is an L ∈
Rnb×nb satisfying m(x)Lm(x) ≡ 0 and making H+L ⪰ 0.
Now, denoting ω(x) = m(x) ⊗ m(x) where ⊗ stands for
Kronecker product, we have V (x) = ω(x)⊤θ, θ ∈ Θ, with

Θ = {θ|mat(θ + l) ⪰ 0, ω(x)⊤l ≡ 0}. (22)

Here ω(x)⊤l ≡ 0 can be converted to explicit linear equality
constraints on l. For example, when nx = 1, dp = 2, we have
m(x) = [1, x, x2]⊤, ω(x) = [1, x, x2, x, x2, x3, x2, x3, x4]⊤,
and hence l should satisfy l2 + l4 = 0, l3 + l5 + l7 = 0 and
l6+l8 = 0. Hence we may denote these algebraic constraints
on l as l ∈ Λ.

If w1 and w2 are also chosen as SOS polynomials, i.e.,
wi(∥x∥) = ω(x)⊤hi, i = 1, 2, then the condition w1(∥x∥) ≤
V (x) ≤ w2(∥x∥) can be met by requiring w2(∥x∥)− V (x)
and V (x)− w1(∥x∥) both be SOS. That is,

Θ = {θ|mat(θ − h1 − l1) ⪰ 0,

mat(h2 + l2 − θ) ⪰ 0, l1, l2 ∈ Λ}.
(23)

2) Scenarios and performance evaluation: The scenarios
indexed by ξ ∈ Ξ to evaluate the performance of the
controller κ(·|θ) can be chosen or designed by the user,
based on the understanding of typical operating conditions
of the system and the purpose of deploying the controller.
Such considerations can include (i) initialization at any
randomized state on X (i.e., the main goal of the controller
is to attract the states), (ii) initialization at any point on X
that is an equilibrium under a different input value (i.e.,
the controller is used for transitioning the system between
setpoints), and (iii) induction of exogenous disturbance sig-
nals dξ(·) as random noises, steps or oscillations (i.e., the
controller needs to reject common disturbances of some
typical magnitude). As such, the objective function directly
and practically evaluates the controller performance under
the circumstances that the user anticipates to encounter. The
number of simulation scenarios can be finite or infinite.

Based on the simulation scenarios, the performance cost
function c(x, u) can be flexibly defined. Such a cost can
penalize various undesirable dynamic behaviors and can be
expressed as a weighted sum of the corresponding terms.
These penalization terms can include (i) the squared errors
of states x2i , i = 1, . . . , nx or outputs y2i (y = h(x) for
some defined output mapping h) and control inputs ui,
i = 1, . . . , nu, (ii) large deviations from the origin, e.g.,
(|xi| − ai)

2 if |xi| ≥ ai, (iii) large rate of changes, which
aims to guarantee that the state trajectories are smooth,
e.g., ∥ẋ∥2 = ∥f(x) + g(x)u∥2, and (iv) overshooting in
the direction opposite to the initial condition, e.g., x2i if
xix

0
i < 0.

3) Stochastic gradient oracles: To solve a stochastic
programming problem, it is needed to evaluate or estimate
the gradient of ϕ(θ). For the Lin-Sontag controller, the
sensitivity analysis of the differential equation in (16) gives
the following differential equation for ∂x/∂θ, i.e., the de-
pendence of state trajectory on the parameters:

d

dt

(
∂x

∂θ

)
=
∂F

∂x

∂x

∂θ
+
∂F

∂θ
(24)

which has the initial condition ∂x/∂θ = 0. Here F
refers to the right-hand side of the state equation, i.e.,
f(x) + g(x)κ(x|θ) + b(x)w. To derive (24), we assume
that ∥Lb(ω(x)⊤θ)∥ζ−1(∥x∥) is continuously differentiable
for any x ∈ X and θ ∈ Θ. The explicit dependence of κ(·|θ)
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on θ allows the computation of ∂κ/∂x and ∂κ/∂θ using
the Leibniz rule through the partial derivatives with respect
to LfV (x), LgV (x), V (x) and ∥Lb(ω(x)⊤θ)∥ζ−1(∥x∥).
Hence, the partial derivatives of the right-hand side of the
first equation in (16) are given by

∂F

∂x
=
df

dx
+
dg

dx
κ+ g

∂κ

∂x
+
db

dx
w,

∂F

∂θ
= g

∂κ

∂θ
. (25)

Solving (24) for ∂x/∂θ under any given scenario ξ, then
we can subsequently compute

∇ϕξ(θ) =
∫ Tξ

0

[(
∂cξ
∂x

+
∂cξ
∂u

∂κ

∂x

)
∂x

∂θ
+
∂cξ
∂u

∂κ

∂θ

]
dt.

(26)
Therefore it is possible to directly compute ∇ϕξ by doing
a sensitivity simulation along with the state simulation.
Assuming that ∇ϕξ as a random vector is integrable under
the probability measure of ξ for any θ ∈ Θ, then we have
Eξ[∇ϕξ] = ∇ϕ. In other words, we have a stochastic first-
order oracle that is computationally available.

For MPC, we can not analytically obtain the dependence
of the simulated trajectories on the parameters θ. Never-
theless, we assume that for any ξ ∈ Ξ, θ ∈ Θ, (11) is
recursively feasible and the partial derivatives exist, although
they not readily computable, so that ∇ϕξ and hence ∇ϕ still
exist. Further assuming that the gradient of ϕ is Lipschitz
continuous with constant Lϕ > 0, we can adopt the Nesterov
smoothing technique [27], where a random direction η ∈ Rnθ

under the standard normal distribution is used:

∇̂ϕµξ (θ, η) = µ−1 (ϕξ(θ + µη)− ϕξ(θ)) η. (27)

Here µ > 0 is called the smoothing constant. The construc-
tion in (27) is an unbiased gradient estimate for the smoothed
function ϕµ(θ) = Eη[ϕ(θ + µη)] (i.e., Eξ,η[∇̂ϕµξ (θ, η)] =
∇ϕµ(θ)). The gradient of the smoothed function has a
difference from that of ϕ linearly bounded by µ: ∥∇ϕµ −
∇ϕ∥ ≤ µLϕ(nθ + 3)3/2/2. Hence as µ → 0, the error
induced by smoothing vanishes. The estimate (27) is said
to be a stochastic zeroth-order oracle for ∇ϕ [28].

IV. A STOCHASTIC PROXIMAL PRIMAL-DUAL
ALGORITHM

The algorithms for stochastic programming problems with
semi-infinite constraints in generic nonconvex settings have
not been well studied so far. The algorithm recently devel-
oped in Boob et al. [25] provides a theoretically established
approach applicable to (18). Although the algorithm seems
to have a high complexity and its practical numerical per-
formance has not been reported to a wide range of bench-
mark problems, we adopt it nevertheless to demonstrate the
application of our proposed method, without excluding the
possibility that other more efficient algorithms may appear.
Next, we review the basic properties of this algorithm. For
this, we let

ψ+(x, θ) = max (ψ(x, θ), 0) (28)

and assign a distribution of x supported on X (e.g., a
uniform distribution). Then the infinite constraints become
an expectation constraint, i.e., (18) is reformulated as

min
θ∈Θ

ϕ(θ) = Eξ [ϕξ(θ)]

s.t. ψ(θ) := Ex [ψ+(x, θ)] ≤ 0.
(29)

The following assumptions are needed for the algorithm:
• ∇ϕ is Lipschitz continuous with constant Lϕ > 0, and

∀θ, θ′ ∈ Θ, ∀s ∈ ∂ψ(θ) (∂ is the subgradient set),
∃Lψ > 0, such that

ψ(θ′)− ψ(θ)− s⊤(θ′ − θ) ≤ (Lψ/2)∥θ′ − θ∥2. (30)

• ∃M > 0, such that ∀θ, θ′ ∈ Θ,

|ψ(θ′)− ψ(θ)| ≤M∥θ′ − θ∥. (31)

• ∀θ ∈ Θ, ∃σϕ, σψ, σ∇ϕ, σ∂ψ > 0, such that

Eξ [ϕξ(θ)] = ϕ(θ), Varξ [ϕξ(θ)] ≤ σ2
ϕ,

Eξ [∇ϕξ(θ)] = ∇ϕ(θ), Varξ [∇ϕξ(θ)] ≤ σ2
∇ϕ,

Ex [ψ+(x, θ)] = ψ(θ), Varx [ψ+(x, θ)] ≤ σ2
ψ,

∀s ∈ ∂ψ+(x, θ), Ex [s] ∈ ∂ψ(θ),Varx [s] ≤ σ2
∂ψ.

(32)
Under the above assumptions, for any fixed θ̄ ∈ Θ, define

ϕ̄(θ|θ̄) := ϕ(θ) + Lϕ∥θ − θ̄∥2, ψ̄+(x, θ|θ̄) := ψ+(x, θ) +
Lψ∥θ − θ̄∥2, which are strongly convex functions of θ, and
consider the following proximal point problem:

min
θ∈Θ

ϕ̄(θ|θ̄)

s.t. ψ̄(θ|θ̄) := Ex
[
ψ̄+(x, θ|θ̄)

]
≤ 0.

(33)

(For practical implementation, we need to estimate the
Lipschitz constants Lϕ and Lψ , e.g., by sampling ξ and x
on a grid of θ and using numerical differentiation.) Letting
the dual variable (Lagrangian multiplier) associated with
the constraint be υ ≥ 0, the Lagrangian of the problem
(29) is ϕ̄(θ|θ̄) + υψ̄(x|θ̄), which, in a stochastic setting and
linearized at a point θ̃, can be approximated by

Λ̃θ̄,θ̃ξ,x(θ, υ) :=
[
ϕ̄ξ(θ̃|θ̄) +∇ϕ̄ξ(θ̃|θ̄)⊤(θ − θ̃)

]
+υ

[
ψ̄+(x, θ̃|θ̄) +∇ψ̄+(x, θ̃|θ̄)⊤(θ − θ̃)

]
.

(34)

Algorithm 1, called the constrained extrapolation method,
is a stochastic and linearized Lagrangian-based algorithm
for solving (33). In Algorithm 1, Line 2 is an extrapolation
of constraint violation using the recent two iterations (βt
is the step size of extrapolation, usually fixed at 1; ςt is
the extrapolated value of violation). Line 3 is a subgradient
ascent step of the dual variable with (inverse) step size τt.
Line 4 is the primal update by minimizing the stochastic
linearized Lagrangian, regularized by the distance from the
previous iteration. Line 6 returns the solution based on
intermediate iterations, where γt is the relative weight for the
tth iteration. The convergence and complexity of Algorithm
1 is ensured by the following algorithm [25, Theorem 2.3].

Theorem 1. Suppose that the assumptions in (30), (31),
and (32) hold. Setting γt = βt = 1, and ηt and
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1 for t = 0, 1, . . . , T − 1 do
2 ςt ∈ −βtψ+(xt−1, θt−1|θ̄) + (1 + βt) ·

[ψ̄+(xt−1, θt−1|θ̄) + ∂ψ̄+(xt−1, θt−1|θ̄)(θt −
θt−1)];

3 υt+1 := [υt + ςt/τt]+;
4 θt+1 ∈ argminθ∈Θ Λ̃θ̄,θtξt,xt

(θ, υt+1) +
ηt
2 ∥θ− θt∥2;

5 end

6 Return: θ =
(∑T−1

t=0 γt

)−1 (∑T−1
t=0 γtθt+1

)
;

Algorithm 1: Constraint extrapolation method.

1 for k = 1, 2, . . . ,K do
2 θk := θ∗(θk−1, ϵk, ϵ

∗
k) using Algorithm 1;

3 end
4 Randomly choose κ ∈ {1, 2, . . . ,K};
5 return θκ;
Algorithm 2: Semi-infinite stochastic programming
based on an inexact proximal point method.

τt as sufficiently large constant values, the number of
iterations Tϵ to reach a stochastic (ϵ, ϵ′)-optimal solu-
tion when ϵ′ ∼ O(ϵ) is of the order O(ϵ−2). Here
a stochastic (ϵ, ϵ′)-optimal solution refers to a θ∗ ∈
Θ such that Eξ

[
ϕ̄ξ(θ

∗|θ̄)−minθ∈Θ ϕ̄(θ|θ̄)
]

≤ ϵ and
Ex

[
ψ̄+(x, θ

∗|θ̄)
]
≤ ϵ′.

Since given any θ̄ ∈ Θ and stochastic errors ϵ, ϵ′ > 0,
Algorithm 1 returns an inexact optimal solution to (33) in
a stochastic sense, which we may denote as θ∗(θ̄, ϵ, ϵ′), an
outer loop of iterations (indexed by k) can be applied, as
summarized in Algorithm 2. The convergence and complex-
ity properties are given below [25, Theorem 3.17].

Theorem 2. Suppose that the assumptions for Theorem 1
hold and further assume that the Mangasarian-Fromovitz
constraint qualification (MFCQ) is satisfied at all limit points
of the sequence {θt}Tt=1 in Algorithm 1 under θ̄ = θk for
k = 1, . . . ,K. Then under Algorithm 2,

• all the dual variables during the iterations are bounded,
i.e., ∃B > 0 such that |υt| ≤ B, and

• the returned θκ is a stochastic (ε, ε′)-optimal solution,
in which

ε =
2Γ

K
max(1, 4(Lϕ +BLψ)), ε

′ =
2Ω

LϕK
,

Ω =

K∑
k=1

(ϵk +Bϵ′k) , Γ = c+Ω for some c > 0.

(35)
The latter point implies that for any desirable final error
ε > 0, to obtain a stochastic (ε, ε)-optimal solution, if setting
all ϵk, ϵ′k ∼ O(ε), then O(ε−1) outer loops of iterations
will be needed, each of which uses O(ε−2) inner iterations.
Therefore the overall complexity becomes O(ε−3).

Remark 1. For the proximal point problem (33), MFCQ
at a point θ∗ means that if the constraint is active here

(ψ̄(θ∗|θ̄) = 0), there must exist ν ∈ NΘ(θ
∗), where

NΘ(θ
∗) = {ν|ν⊤(θ − θ∗) ≤ 0,∀θ ∈ Θ} is the normal cone

of Θ at θ∗, such that mins∈∂ψ̄(θ∗|θ̄) s
⊤ν > 0.

Remark 2. In our implementation of the above-mentioned
algorithm we make the following three modifications.

• First, in each inner iteration, instead of using only one
scenario for ξ ∈ Ξ and one sample for x ∈ X , we adopt
minibatches to reduce the variances of the stochastic
quantities in (34), thus reducing the number of iter-
ations needed. Specifically, using multiple scenarios
ξ1, . . . , ξSξ

, we replace the stochastic gradient ∇ϕξ(θ)
by 1

Sξ

∑Sξ

s=1 ∇ϕξs(θ), whose variance is reduced by a
factor of Sξ. Analogously, a minibatch sampling with
size Sx can be used to evaluate ψ̄+(xt, θt|θ̄).

• We also note that the stochastic optimality solution is
unverifiable by definition, since the true optimum can
not be known a priori. Instead, we check primal and
dual residuals, i.e., r = ∂Λ̃/∂θ and r′ = ∂Λ̃/∂υ. In de-
terministic optimization problems, one can calculate the
residuals directly for all the intermediate solutions and
terminate the iterations when the residuals are below
their tolerances. However, for stochastic problems such
a direct calculation is not possible. Hence, for every
period of ∆ iterations, we approximate the residuals by{

rt = 1
∆

∥∥∥∑t−1
t′=t−∆ ηt′(θt′+1 − θt′)

∥∥∥
r′t = 1

∆

∑t
t′=t−∆+1 ψ̄+(xt′ , θt′ |θ̄)

. (36)

When these residuals are below their corresponding
thresholds, the inner iterations are terminated.

• Finally, upon termination of inner iterations, instead
of assigning an equal weight γ = 1 to all t, we
only average the last ∆ solutions since the incipient
iterations should be far away from convergence. Also for
the outer iterations (Algorithm 2), instead of randomly
choosing a κ ∈ {1, 2, . . . ,K}, we simply set final
tolerances on the residuals and choose the solution from
the last outer iteration.

V. CASE STUDY

For illustration, we now apply the proposed method on a
continuously stirred tank reactor system modeled by [29]:

Ċ =1− C − 0.0637C exp
[
37.7

(
1− T−1

)]
+ 0.1d

Ṫ =1− T + 0.0106C exp
[
37.7

(
1− T−1

)]
+ 0.1356(Q− T ).

(37)

d is an exogenous disturbance in the feed concentration. The
steady state Qss = 1.048, Css = 0.5196, T ss = 1.0764 is
open-loop unstable. The system equations (37) are translated
and scaled by x1 := (C −Css)/0.20, x2 := (T − T ss)/0.03
and u := (Q − Qss)/0.40 to obtain a form of ẋ = f(x) +
g(x)u with f(0) = 0.

The optimal design of a control-Lyapunov function is
formulated specifically as follows. First, we parameterize V
in a quadratic form with x1 and x2 equally weighted, i.e.,

V (x) =
1

2

(
x21 + 2θx1x2 + x22

)
(38)
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Fig. 1. Estimated ϕ and ψ functions.

and require θ ∈ Θ = [−4/5, 4/5] so that on the ellipsoidal
contour of V (x), the length of the long axis does not
exceed 3 times of that of short axis. Consider the Lin-Sontag
controller subject to u ∈ U = [−1, 1]. Set ρ = 0.5 so
that V (x) decays exponentially with a time constant of 2
without exogenous disturbance, and ζ(|d|) = 3|d|. We let
X = {x|∥x∥ ≤ 1}, and a uniform distribution is used for
x ∈ X in (29). The control performance under each scenario
ξ is simply evaluated by cξ(x, u) = (x21 + x22)/2 + u2. For
all the scenarios, we fix x0ξ = 0 and Tξ = 10, while the
exogenous disturbance d is a constant signal that can be
nonzero on t ∈ [0, 5], with its magnitude D sampled from a
probability density function p(D) = 3(1−D2)/4 supported
on [−1, 1].

We sample 21 points for θ ∈ [−0.8, 0.8] with equal
distances and obtain 20 scenarios for ξ ∈ Ξ and 200 samples
for x ∈ X to approximate ϕ(θ) and ψ+(θ). The graphs
for the approximated ϕ and ψ+ are plotted in Fig. 1, from
which we estimate the Lipschitz constants as Lϕ = 0.0292
and Lψ = 0.0871, implying that ψ and ϕ are slightly
nonconvex. We also observe from the plot of ϕ that the
control performance becomes better with smaller values of
θ. However, as seen in the plot of ψ, the semi-infinite
constraints are satisfied only on an interval in (0, 4/5].

We implement Algorithm 2 to solve for the optimal θ
value. In each inner iteration, the minibatch sizes are Sξ = 1
and Sx = 200. The step sizes are set as ηt = 0.1 · 2k−1

and τt = 0.5 for k ≤ 5 and τt = 5 · 2k−5 for k ≥ 6.
The residuals are set as rk = max(10−4, 10−3/2k−1) and
r′k = max(10−4, 10−2/2k−2). The size of the memory for
evaluating residuals and averaging solutions is set as ∆ = 20.
With K = 9 outer iterations, both primal and dual residuals
converge to below 10−4, which we consider as satisfactory.

Fig. 2. Trajectory of primal and dual variable throughout iterations.

The trajectories of the primal variable θ and dual variable υ
throughout the iterations are shown in Fig. 2. The obtained
optimal value is found to be θ∗ = 0.4622.

To verify the result, we plot the image of ψ(x, θ∗) over
x ∈ X in Fig. 3. It can be observed that the plotted surface
is below 0, i.e., the semi-infinite input-to-state stability
constraints are satisfied, except on a small corner of X due to
the nonzero tolerance of the dual residual in the optimization
algorithm.

VI. CONCLUSIONS

In this paper, we have proposed a generic semi-infinite
stochastic programming formulation for the problem of
optimally designing control-Lyapunov functions for nonlin-
ear systems under an explicit Lin-Sontag Lyapunov-based
controller or MPC. Specifically, the formulation uses (i) a
linear parameterization of the control-Lyapunov function,
(ii) constraints indexed by all states on a given region that
specifies an exogenous input-to-state stability condition, and
(iii) a cost function defined based on closed-loop trajecto-
ries under simulation scenarios. The problem formulation
is scalable with increasing state dimensions, flexible for
user specifications and oriented towards a practically optimal
control performance.

We have also discussed a stochastic proximal primal-dual
algorithm for semi-infinite stochastic programming, where
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Fig. 3. Image of ψ(x, θ∗) in surface plot (upper) and heat map (below).

the primal and dual variables are updated with minibatch
stochastic gradient descent and ascent, respectively, in an
outer iteration with proximal convexification. The algorithm
is essentially driven by the collection of simulation trajectory
data and the iterative evaluation of such data. A case study
on a chemical reactor system is used for demonstration. To
this end, the complexity of the algorithm in its practical im-
plementation for problems of higher dimensions, especially
in the steps of estimating Lipschitz parameters and sampling
random scenarios, will be of critical importance and needs
further investigation.
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