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Abstract— We propose a Bayesian measurement masking
method for global navigation satellite system (GNSS) posi-
tioning to mitigate disturbances from multi-path biases and
modeling errors. The method removes erroneous GNSS ob-
servations to improve performance in downstream positioning
algorithms. The measurement masking is posed as a binary
classification problem, and solved by sequentially determining
the noise statistics of individual pseudo-range measurements in
the GNSS observations. Bayesian probabilities of mismatching
noise models inform when outlier events such as multipath or
non-line-of-sight (NLOS) events occur. We report a classification
F1-score of >0.99 when the modeling assumptions are satisfied,
and >0.97 when realistic modeling errors are included, both for
dynamic and static receiver motion models.

I. INTRODUCTION

High-precision Global Navigation Satellite System
(GNSS) positioning is a critical component in modern
infrastructure. However, in environments such as urban
canyons where accuracy is most needed, high buildings and
structures give rise to reflections of the GNSS signals, multi-
path (MP) effects [1]. This leads to measurement biases that
can be highly disruptive for positioning performance [2].
As a result, a vast body of literature has emerged on MP
mitigation since its first description in the 1970s [3].

In modern GNSS receivers, MP mitigation is done at the
lowest level of signal processing, in the delay-locked loops
(DLLs). Here, the correlator used to compute the observables
from the preudo-random noise (PRN) sequence is modified to
imptove robustness to MP effects. Some correlators include
the high resolution [4] and vision correlators [5].

In terms of hardware mitigation, there have been develop-
ments in antenna design, such as the “choke ring”, which is
commonplace in modern GNSS equipment [6], and the less
conventional dual- or multi-antenna array approaches [7], [8].
Such hardware modifications can further mitigate multi-path,
but will similarly not result in perfect mitigation.

The third element to multi-path mitigation is masking. This
includes studying signals from the GNSS chip set, such as
carrier-to-noise density ratios (CN0), signal-to-noise ratios
(SNRs) and how they vary with satellite elevation [9]. A
hard threshold is often implemented on these signals to
mitigate multipath [10], a method used in high-end posi-
tioning libraries such as RTKLib [11] and PPPLib [12].
Such heuristics emulate a binary classifier operating on a
set of inputs (or features). Prior work proposes to learning
this function by machine learning (ML) [13]. Our recent
work [14] demonstrated that an auto-encoder with simple
k-means clustering is well suited for the task, but requires

Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA.
∗Karl Berntorp. Email: karl.o.berntorp@ieee.org.

Mask Mask
Filter

(large SS)
Pk

Φk

CN0 Elevation

ˆ̄xk

BMM
(small SS)

Mask
Filter

(large SS)
Pk

Φk ˆ̄xk

x̂kCN0

Elevation

Bayesian mask, S̄k

Conventional masking

Proposed masking

Fig. 1. Comparison between conventional masking and the proposed
Bayesian masking. Top: In conventional masking, poor measurements (red)
are removed by applying a sequence of masks based on CN0 and satellite
elevation angles with the goal of producing a better estimate in a filter
operating with a relatively large state space (SS). Bottom: In the proposed
method, a subset of the measurements are used along with CN0 and satellite
elevation angles to sequentially compute a measurement mask by posing a
filtering problem with a smaller SS.

domain adaptation to specific receivers and environments.
When deploying receivers at scale, the thresholds in [10]
or neural networks in [14] need to be adapted to specific
devices (as the definition and quantization of CN0 and SNR
may differ between receivers), posing a significant challenge.

Contributions: We improve the masking by developing a
method inspired by consistency checking [15], which does
not rely on large amounts of training data as in typical
ML [14]. We introduce the concept of a Bayesian measure-
ment mask (BM), which optionally uses SNR and satellite
elevation information, and detail two implementations using
recursive estimation techniques: the interactive BM (IBM)
based on interactive mixtures and the variational BM (VBM)
using variational techniques. We compute a measurement
mask based on all measurements and prior knowledge
sequentially, instead of a classification based on features
(such as satellite elevation and CN0), or short sequences
of measurements [10], [13], [14]. The resulting mask can
be used as a noninvasive add-on to any GNSS positioning
algorithm operating with raw GNSS measurements. Fig. 1
shows a schematic of the setup.

Notation: Vectors are denoted by x ∈ RN with [x]i
being the ith element of x. Matrices are indicated in bold,
X , and the element on row i and column j of X is
[X]ij . The notation In means the n × n identity matrix
and 1n is a vector of ones with dimension n. The notation

¯
x ∼ N(x|m,P ) indicates that

¯
x is a Gaussian distributed

random variable with mean m and covariance P . The bar
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TABLE I
SUMMARY OF GNSS MODEL PARAMETERS.

Variable Functional dep. Description

ρsR – Euclidean distance from R to s
dtR, dts – Clock offset
DR, Ds Lj and {P,Φ} Inter-frequency bias

N Lj Integer ambiguity bias
λj Lj (= f−1

j ) Carrier wavelength
fj Lj (= λ−1

j ) Carrier frequency
T s
R – Tropospheric delay

IsR Lj Ionospheric delay
Ms

R Lj and {P,Φ} Multipath effects
ϵsR Lj and {P,Φ,Γ} Uncorrelated Gaussian noise

¯
(·) is used to indicate a random variable if necessary, but
often dropped to clarify the presentation. Similarly, the no-
tation

¯
Σ ∼ IW(Σ|ν,V ) indicates that

¯
Σ is Inverse-Wishart

distributed, with ν degrees of freedom and a scale matrix
V . Given the set of measurements y0:k = {y0, . . . ,yk}, we
let p(xk|y0:k) denote a marginal filtering posterior. Finally,
we write the expectation of a random variable

¯
x ∼ p(x) as

E
¯
x∼p(x)[¯

x] =
∫
xp(x)dx compactly as Ep[x]. In this nota-

tion, the Kullback-Leibler (KL) divergence of two densities
p(x) and q(x) is KL(p(x)||q(x)) = Ep[log(p(x)/q(x))].

II. BAYESIAN MEASUREMENT MASKS

A mask is an operator that selects a subset of mea-
surements to be used for filtering. For GNSS, this is a
binary classifier that determines the presence or absence of
modeling errors, true or false, respectively. With n satellites
S = {s ∈ N[1,n]}, we seek a function f :S 7→ S̄ where

S̄ = {s ∈ S|s is not affected by multipath} ⊆ S. (2)

In conventional methods, f is memoryless and operates
on single time instances of certain signals, such as satellite
elevation angles and CN0 ratios [10], or small batches of
measurement data [13]. In contrast, the Bayesian masks at
time step k compute the most likely mask to be true given the
previous measurements and prior knowledge of, for instance,
the dynamics of the receiver motion.

A. GNSS Measurements and Differencing

We consider standard GNSS measurements provided in the
RINEX format [16], where R denotes a receiver, B denotes a
base station, and the super-index s ∈ N>0 denotes a satellite.
The measurements include a pseudo-range P s

R ∈ R com-
puted by an auto-correlation on the pseudo-random code, the
phase-range Φs

R ∈ R containing the integer ambiguity, and
a Doppler measurement Γs

R ∈ R. The observation equations
are given in (1), defined by signals summarized in Table I.
Here, the functional dependency indicates channels on which
the signal differs. For instance, the noise between a satellite
and receiver is realized differently on every combination of
measurements {P,Φ,Γ} with a unique frequency band Lj .
On the other hand, the initial oscillator phases only depend
on the frequency band Lj , as they solely appear in the phase-
range measurements.

To simplify, we let pR, pB, and ps denote the positions of
the receiver, base station, and satellites, respectively. Without

loss of generality, we consider the L1 frequency band. We
let ρsR = ∥pR − ps∥2 and collect the distances between a
receiver R and the satellites in ρR = (ρ1R, ..., ρnR), with
analogous definitions for the observations PR, ΦR, ΓR
formed in P s

R, Φs
R, Γs

R, and the noise as ϵPR, ϵΓR, ϵΦR formed
in ϵP,s

R , ϵΦ,s
R , ϵΓ,sR . It is common to take differences of the

observations to improve robustness to modeling errors [17],
[18], and there are many ways of doing so. For simplicity,
we define a single-difference operator

SD(P ) = PR − PB. (3)

It is possible to take such differences without a base station

SD(PR) =
[
1n−1 −In−1

]
PR, (4)

or even take double differences (DD) SD(SD(P )). All of
these operations are linear, and give rise to different correla-
tion structures in the noise of the differenced observations.

B. The Large Filtering Problem and Conventional Masking

When posing filtering problems, it is common to assume
uncorrelated Gaussian noise, compensate for the ionospheric
and tropospheric delays using physical models, and take dif-
ferences of the {Pi,Φi,Γi}i∈{R,B} signals in (1) to remove
modeling errors. This results in a measurement model

p(ȳk|x̄k) = N(ȳk|h̄(x̄k), R̄k), (5)

where the state x̄k is high-dimensional (usually >100 states).
The state contains the dynamic states of the receiver, in-
cluding its position, as well as various real-valued biases.
The state also contains SD or DD integer-valued ambiguity
biases. This warrants special estimation algorithms, collec-
tively referred to as large filters (LFs). Here, accuracy is
contingent on fixating the integer ambiguities [17], [19].
The LFs typically include a subset of the measurements ȳk,
based on a set S̄ ⊂ S of the satellites. Determining S̄ is a
binary classification problem, commonly solved heuristically
by masking out satellites based on elevation angles and CN0

signals [10]. We let ϕs
k ∈ [0, π/2] denote the elevation angle

of satellite s, and define the mask to include all measure-
ments at a time step k formed with satellites satisfying
ϕs
k > ξ for some threshold ξ > 0.

C. Bayesian Measurement Masking

If we are only concerned with establishing a measurement
mask, then we can consider a small filter (SF) operating on a
subset of the measurement information. For the purposes of
this paper, the exact definitions of the LF is not important,
and we will instead derive a smaller measurement model
p(yk|h(xk),Rk) and present SFs to solve the binary clas-
sification problem. To this end, we form single difference
measurements where the terms related to I, T,D, dt in
Table I are compensated for by deterministic models or
estimates from the LF. Furthermore, we only consider the
pseudo-range, as this obviates the need for estimating integer
ambiguities. Consequently, we define a smaller model

yk = SD(ρk) + SD(MP
k ) + SD(ϵPk ). (6)
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P s
i (Lj) = +ρsi + c[dti − dts] + [Di(Lj , P )−Ds(Lj , P )] + T s

i +Isi (Lj) +Ms
i (Lj , P ) + ϵP,s

i (Lj) (1a)

Φs
i (Lj) = +ρsi + c[dti − dts] + [Di(Lj ,Φ)−Ds(Lj ,Φ)] + T s

i −Isi (Lj) +Ms
i (Lj ,Φ) + λjN

s
i (Lj) + ϵΦ,s

i (Lj) (1b)

Γs
i (Lj) = −ρ̇si − c[ḋti − ḋt

s
] − Ṫ

s

i+İ
s

i (Lj) − Ṁ
s

i (Lj ,Φ) + ϵΓ,si (Lj) (1c)

The model (6) only includes the kinematic states of the
receiver, xk, and any inconsistencies in the estimation model
can be attributed to modeling errors or multi-path.

We envision a two-stage filtering solution, where the origi-
nal LF remains intact but the conventional masks are replaced
by a Bayesian estimator (see Fig. 1). The measurement
mask using the posterior formed by the SF. We refer to this
as Bayesian measurement masking (BM), and present two
approaches in which it can be implemented. In Sec. III we
propose an interactive mixture model filter [20] to find the
most likely combination of nonzero elements {MP

k ,MΓ
k },

forming the LF measurement mask for (5). This is referred
to as the interactive Bayesian measurement mask (IBM). In
Sec. IV, an alternative approach is taken, with the idea that
modeling errors in (6) will increase the innovation errors
for specific measurements. Here, a variational Bayes (VB)
filter [21] is employed where we explicitly estimate the
variance of the noise terms, and determine a mask for (5).

III. BAYESIAN MASKS BY MIXTURE FILTERING

To implement a measurement mask using the interactive
multiple modeling (IMM) framework [20], we make two
assumptions, which reduce the computational complexity of
the algorithm by bounding the number of models in the filter.

Assumption 1 If multipath affects the code measurements
from one satellite, it also affects the carrier-phase measure-
ment from that same satellite. Formally,

[MP
k ]i = 0⇒ [MΦ

k ]i = 0, (7a)

[MP
k ]i ̸= 0⇒ [MΦ

k ]i ̸= 0. (7b)

For non-line-of-sight (NLOS), Assumption 1 is obviously
true. If we correctly detect that the code measurement is
NLOS, then this is a property that depends on the world
geometry and the relative location of the satellite, and the
carrier phase would be affected. Thus, we do not need to
consider the Doppler shifts, and can work with a small
estimation model

p(yk|xk) = N(yk|h(xk),R
m
k ), (8)

where Rm
k is the measurement noise covariance of the mth

measurement model. To specify the set of measurement mod-
els and reduce its size, we make the following assumption.

Assumption 2 A minimum of n̄ ∈ N[0,n] satellites are free
from multipath effects at any given time step k.

We introduce Assumption 2 mainly as a means of control-
ling the computational scaling of the method. It can be set
to n̄ = 0, thus covering all possible cases. Next, we consider
the noise levels of the pseudorange measurements in (8). If
we have compensated for the modeling errors correctly and

there is no multipath, the noise associated with yk is entirely
determined by some nominal noise N(ϵPk |0,Rk). Define

Rk =
{
Rk +RHdiag(b)

∣∣∣b ∈ {0, 1}n, n∑
i=1

[b]i ≥ n̄
}
, (9)

for some RH such that RHI ≻ Rk. In total, this amounts to
|Rk| =

∑n−n̄
k=0

(
n
k

)
models in (8) characterized by Rm

k ∈ Rk,
with each covariance matrix associated with a unique integer
m ∈ {1, ..., |Rk|}. We can then associate each model with a
probability wm

k ∈ (0, 1), define a posterior

p(xk|y0:k) =

|Rk|∑
m=1

wm
k N(xk|mm

k ,Pm
k ), (10)

and use an interactive filter to update the mixture estimates
{mm

k ,Pm
k }

|Rk|
m=1 and the mode probabilities {wm

k }
|Rk|
m=1 se-

quentially from p(xk|y0:k−1) given a transition probability
matrix (TPM) Π ∈ [0, 1]|Rk|×|Rk| governing the Markov
chain of the mode state. We find the most likely model as

m⋆
k = argmax

m
wm

k , (11)

and include information from satellite s at a time step k in
the LF. We define the masking function f at time step k by

S̄k = {s ∈ S | [Rm⋆
k

k −Rk]ss = 0}. (12)

A. Prior Information

As the IMM is derived in a Bayesian framework, it is
possible to define priors both over the mode probabilities
{wm

0 }
|Rk|
m=1 and encode assumed behaviors of the receiver

motion through the model p(xk+1|xk). In this paper, we
primarily consider a static receiver with a small random walk
on its positions, and a dynamic receiver with a small random
walk on its velocities.

Beyond standard modeling, it is also possible to encode
behaviors about the multipath in the transition probabilities
governing the Markov chain of the mode probabilities. For
example, we can let the probability of transitioning from one
mode to another based on the models in Rk. To see this,
let πs

A→B denote the probability that a satellite s in a state
A ∈ {0, 1} transitions to a state B ∈ {0, 1}, with∑

B∈{0,1}

πs
A→B = 1 ∀ s = 1, .., n, A ∈ {0, 1}. (13)

Furthermore, assume that each satellite transitions to a state
independent of any other satellite. Let (i, j) ∈ N2

[1,|Rk|] be
two modes, and consider their models as specified with the
associated binary variables bi, bj in (9). We can then form

[Π]ij =

n∏
s=1

πs
[bi]s→[bj ]s

, (14)
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and encode relative probabilities of remaining in a multipath-
free state directly in the masking method. It is also possible
to incorporate other information, such as satellite elevation
and CN0 variation in the definition of πs

A→B . Algorithm (1)
summarizes the approach.

B. Properties

If N denotes the dimension of xk, the computational
complexity of the algorithm per time step is O(N) =
N3

∑n−n̄
k=0

(
n
k

)
. For context, with a constant-velocity model

in R3 we have N = 6, and the evaluation of a mask with
n = 13 satellites and n̄ = 5 is then approximately equal to
running a regular Kalman filter in the LF with 100 states (not
including integer fixation). The poor computational scaling
in n motivates a study of alternative methods of computing
the Bayesian measurement mask. For this reason, we resort
to variational inference, and propose a second algorithm in
Sec. IV.
Algorithm 1 Interactive Bayesian Masking (IBM).

1: Define prior m0,P0, TPM Π, dimensions n, bound n̄,
nominal noise {Rk}Kk=1, and noise parameter RH .

2: for k = 1, ...,K do
3: Receive: tk,yk

// Mixing and moment matching
4: for m = 1, ..., |Rk| do
5: w̄m

k−1 =
∑|Rk|

j=1 [Π]mj · wj
k−1

6: m̄m
k−1 =

∑|Rk|
j=1 [Π]mj ·

wj
k−1

w̄m
k−1

mj
k−1

7: P̄m
k−1 =

∑|Rk|
j=1 [Π]mj ·

wj
k−1

w̄m
k−1

[P j
k−1

−(m̄j
k−1 − m̄m

k−1)(m̄
j
k−1 − m̄m

k−1)
⊤]

8: end for
9: Set hk = tk − tk−1

10: for m = 1, ..., |Rk| do
// Time prediction

11: Predict {mm
k|k−1,P

m
k|k−1} from {m̄m

k−1, P̄
m
k−1}

// Measurement update
12: Compute Hm

k = (∂/∂xk)h(xk)|xk=mm
k|k−1

13: Em
k = yk − h(mm

k|k−1)

14: Sm
k = Hm

k Pm
k|k−1(H

m
k )⊤ +Rm

k

15: Km
k = Pm

k|k−1(H
m
k )⊤(Sm

k )−1

16: mm
k = mk|k−1 +Km

k Em
k

17: Pm
k = (I −Km

k (Hm
k )⊤)Pm

k|k−1

18: wm
k = N(yk|h(mm

k|k−1),S
m
k ) · w̄m

k|k−1

19: end for
// Compute mask (satellites to include)

20: m⋆ = argmaxm wm
k

21: S̄k = {s ∈ S | [Rm⋆

k −Rk]ss = 0}
22: end for

IV. BAYESIAN MASKS BY VARIATIONAL INFERENCE

Another popular method for estimating noise statistics in
Gaussian state-space models is by the VB methods [21].
For Gaussian densities, we define an IW-distribution over
the noise covariance matrices, which is a conjugate prior to
the covariance matrix of a multivariate normal distribution.
However, the sum of IW random variables are not IW

distributed. Hence, to make the methods in [21] applicable
to determining noise of single satellites under SD operations,
we opt to estimate the SD-covariance directly. Specifically,
we consider a measurement model

p(yk|xk,Σk) = N(yk|h(xk),Σk). (15)

In VB, the idea is to approximate the posterior with factors

p(xk,Σk|y0:k) ≈ N(xk|mk,Pk)︸ ︷︷ ︸
≜qx(xk)

IW(Σk|νk,Vk)︸ ︷︷ ︸
≜qΣ(Σk)

, (16)

and solve a variational optimization problem

min
qx,qΣ

KL(qx(xk)qΣ(Σk)||p(xk,Σk|y0:k)). (17)

By variational calculus [22], the extremals are

qx(xk) ∝ exp(EqΣ
[p(xk,Σk,yk|y0:k−1)]), (18a)

qΣ(Σk) ∝ exp(Eqx [p(xk,Σk,yk|y0:k−1)]). (18b)

Eq. (18) can be evaluated to a local maxima by fixed-point
iterations, as the expectations in (18) are known in closed
form given the assumed form of the posterior in (16) [21].

A. Motion models

To implement the VBM, we require motion models for
the Gaussian states and the IW-parameters. For the Gaussian
distribution of the receiver states, we consider the model

p(xk|xk−1) = N(xk|Akxk−1,Qk), (19)

with the same static and dynamic model as in the IBM. For
the noise-covariance dynamics, we define a motion model

p(Σk|Σk−1) = IW(akνk−1 + bk(n+ 1), akVk−1), (20a)

ak = exp(−hτ−1), (20b)

bk = exp(−hτ−1)(exp(hτ−1)− 1), (20c)

with a parameter τ > 0 that can be interpreted as a
time-constant. Eq. (20) is obtained by interpreting the IW-
parameters as evolving according to an ordinary differential
equation that is discretized at a sampling period of h.
This effectively implements an exponential forgetting factor,
which increases as τ → 0. In the limit τ → ∞, the IW-
parameters are constant in the prediction, and unlike the
model in [21], the model (20) is independent on h and can
be implemented for variable rates.

B. Computing the measurement mask

Given the linear measurement model and assumptions of
independence of the code measurements, the noise covari-
ance matrix will have different structure depending on the
difference operation used. If implementing the SD operation
(4), MP effects in the “positive satellite” and “negative
satellites” can be inferred from the off-diagonal and diagonal
elements of the noise covariance matrix, respectively. Note
that with an SD scheme, the dimension of the measurement
vector is n − 1, necessitating a slight modification in the
VB update. For receiver-base SD operations (3), we simply
implement a threshold on the quantiles of the IW posterior,
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considering the diagonal elements of the measurement noise
covariance matrix. For example, we can compute

EqΣ [Σk] = (νk − n− 1)−1Vk, (21)

and determine the mask by a threshold η > 0 on the mean.
That is, we defining the masking function f at a time k by

S̄k = {s ∈ S | [(νk − n− 1)−1Vk]ss ≤ η}. (22)

C. Prior information

As in the IBM, we can include priors in the form of
initial estimates and initial measurement-noise covariances.
We can include behaviors of the multipath effects by the
parameter τ , which should be chosen small if the multipath
biases vary rapidly. However, this parameter must be chosen
in tandem with the masking threshold η. It is less obvious
how to include other signals, such as satellite elevation and
CN0 signals. One possibility is by modifying (20) to drive
the measurement-noise covariance to some target noise, and
model this target noise based on assumptions on how it varies
with elevation angle and CN0. Algorithm 2 summarizes the
proposed method.

D. Properties

The appeal of the variational framework for BM is that we
update a single model through a set of fixed-point iterations,
instead of updating a large number of models in the IBM.
When capping the number of iterations at Imax, the VBM is
approximately a factor (

∑n−n̄
k=0

(
n
k

)
)I−1

max faster than the IBM,
thus making it a suitable option for applications involving
a large number of satellites from multiple constellation
and multiple frequency bands, where the number of code
measurements is relatively large. However, since interactive
mixture filters tend to outperform their variational filtering
counterparts, we expect performance in the classification to
be slightly worse in the VBM. Similar to the IBM, it is
possible to determine certainty of the mask from the IW-
posterior. One option is to relate the mask S̄k to a nominal
covariance matrix in Rm

k ∈ Rk, and compute a relative
likelihood against the mode of the IW-distribution, which
is (νk + n+ 1)−1Vk. That is, we can compute a ratio

Ck =
IW(Rm

k |νk,Vk)

IW((νk + n+ 1)−1Vk|νk,Vk)
∈ [0, 1], (23)

and use (23) to indicate the quality of the computed mea-
surement mask. This information can also be leveraged in the
LF, which typically has internal logic (resets, integer fixation)
that depends on satellite health.

V. NUMERICAL RESULTS

We consider two simulation settings: an ideal setting and
a nonideal setting. In the former, the multipath effects are
modeled by an increasing variance in the measurement noise,
with the data generated by selecting a model randomly from
Rk, and changing the model every 10s. In the nonideal
setting, the outliers are modeled by selecting a model ran-
domly from Rk, but multiplying the outlier variance by a
random factor fm ∼ U([1, 5.0]) and including a bias sampled

Algorithm 2 Variational Bayesian Masking (VBM).

1: Define prior m0,P0, ν
−
0 ,V −

0 , time-constant τ , dimen-
sions n, maximum iterations Imax, and threshold η.

2: for k = 1, ...,K do
3: Receive: tk,yk

// Time prediction
4: Set hk = tk − tk−1

5: {m−
k ,P

−
k } ← predict({mk−1,Pk−1}, hk) by (19)

6: {ν−k ,V −
k } ← predict({νk−1,Vk−1}, hk) by (20)

// Measurement update
7: Compute Hk = (∂/∂xk)h(xk)|xk=m−

k

8: Set {m(0)
k ,P

(0)
k } ← {m

−
k ,P

−
k }

9: Set {νk,V (0)
k } ← {ν

−
k + 1,V −

k }
10: Set j = 0
11: while not converged and j < Imax do
12: Σ̂

(j+1)
k = 1

νk−n−1V
(j)
k

13: S
(j+1)
k = HkP

−
k H⊤

k + Σ̂
(j+1)
k

14: K
(j+1)
k = P−

k H⊤
k (S

(j+1)
k )−1

15: m
(j+1)
k = m−

k +K
(j+1)
k (yk −Hkm

−
k )

16: P
(j+1)
k = P−

k −K
(j+1)
k S

(j+1)
k (K

(j+1)
k )⊤

17: E
(j+1)
k = (yk −Hkm

(j)
k )(yk −Hkm

(j)
k )⊤

18: V
(j+1)
k = V −

k +E
(j+1)
k +HkP

(j)
k H⊤

k

19: j = j + 1
20: end while

// Update statistics
21: {mk,Pk,Vk} ← {m(j)

k ,P
(j)
k ,V

(j)
k }

// Compute mask (measurements to include)
22: S̄k = {s ∈ N[1,n] | [(νk − n− 1)−1Vk]ss ≤ η}
23: end for

uniformly from bm ∼ U([−10, 10]n). In summary, the noises
in the synthetic data for this study are sampled from

• N(ϵPk |0,R
mℓ

k ) (ideal case);
• N(ϵPk |bmℓ

,Rk+fmℓ
(Rmℓ

k −Rk)) (nonideal case);

where {mℓ}⌈hK/10⌉
ℓ=1 is a sequence of measurement models,

with a new model (and associated bias) chosen every 10s.
Furthermore, we consider two motion models: a static motion
model, with a random walk on the positions of the receiver,
and a dynamic model, with a random walk on the velocities
of the receiver.
A. Performance Metrics

We are primarily interested in binary classification perfor-
mance, as the job of the BM is to provide a measurement
mask to the LF (see Fig. 1). To study this, we consider
individual satellites, and distinguish between an outlier event
(true) and the absence of an outlier event (false). Based
on this, we compute the precision, recall, and the F1-score
(their harmonic mean) and use these metrics to assess the
classification performance.

B. Quantitative Study of Bayesian Masks

To assess the performance of the Bayesian methods, we
perform a quantitative study where the Bayesian masks
are compared with heuristics. We consider both the ideal

2849



TABLE II
CLASSIFICATION PERFORMANCE WITH STATIONARY RECEIVER

Method Case(s) Precision (↑) Recall (↑) F1-score (↑)

Elev. mask Both 0.745 0.585 0.655
IBM Ideal 0.990 0.989 0.990
IBM Nonideal 0.987 0.941 0.963
VBM Ideal 0.991 0.964 0.977
VBM Nonideal 0.969 0.980 0.974

TABLE III
CLASSIFICATION PERFORMANCE WITH MOVING RECEIVER

Method Case(s) Precision (↑) Recall (↑) F1-score (↑)

Elev. mask Both 0.745 0.585 0.655
IBM Ideal 0.990 0.990 0.990
IBM Nonideal 0.990 0.977 0.984
VBM Ideal 0.976 0.986 0.981
VBM Nonideal 0.992 0.875 0.930

and nonideal settings, the IBM and VBM, and the non-
Bayesian method that applies a measurement mask based
on the satellite elevation angle described in Sec. II-B. In this
study, we consider a binary classification problem, where a
satellite in a state 0 (false) is indicative of no multipath,
and a state of 1 (true) is indicative of multipath. Here, false
positives captured by the precision measure is of significant
importance, indicating that an outlier-corrupted measurement
is passed through the mask. To study this comprehensively,
we compute the precision, recall, and F1 score from 100
Monte-Carlo runs, see Tables II and III, for the static and
dynamic positioning case, respectively.

We note impressive prediction accuracy with the IBM
method over all tested cases, performing en par with sophis-
ticated learning-based methods [14] but without the need for
domain adaptation to specific environments or receivers. In
the elevation mask, performance of the classification solely
depends on the satellite positions, and the method is therefore
agnostic to any biases added to the measurements. This is
also true for the masks in RTKLib [11] and PPPLib [12].

VI. CONCLUSIONS

We present a method for multipath mitigation in GNSS po-
sitioning using Bayesian estimation techniques, and assume
that multipath on the code measurements indicate multipath
on the carrier-phase and Doppler measurements as well.
Based on this, we formulate a smaller estimation problem,
and propose two Bayesian methods to perform masking.

The VBM performs almost as well as the IBM, but yields
significant improvements in computational scaling, making
it more suitable for large, multi-constellation, and multi-
band GNSS positioning problems. Importantly, the proposed
masks depend on all code measurements, and not on a
short history of measurements or auxiliary indicators such
as elevation angles and CN0 density ratios. In the proposed
methods, assumed knowledge of these indicators can be
incorporated as priors.
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