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Abstract— In this paper we study an infinite-
horizon persistent monitoring problem in a two-
dimensional mission space containing a finite number
of statically placed targets. At each target we assume a
constant accumulation of uncertainty, which the agent
is capable of reducing by taking local measurements
with an onboard sensor. We derive a steady-state
minimum time periodic trajectory over which each
target uncertainty is driven to zero at least once.
A hierarchical decomposition leads to purely local
optimal control problems, coupled via boundary con-
ditions. We optimize the local trajectory segments as
well as the boundary conditions in an on-line bilevel
optimization scheme.

I. Introduction
Monitoring a dynamically changing environment in

an efficient and cost-feasible manner has long attracted
attention due to its broad applicability to areas such
as ocean monitoring [1], forest monitoring [2], wildfire
surveillance [3], data harvesting [4], or particle track-
ing [5]. A common approach is to place static sensors in
order to maximize the monitored area or to maximize
event detection probability, which in the literature is
known as the coverage control problem [6]. However,
employing a large number of static sensors can be expen-
sive and inflexible. Hardware and software advances have
enabled the replacement of static sensors with mobile
autonomous agents equipped with sensors. The coverage
control problem was thus extended to the Persistent
Monitoring (PM) problem [7].

Over the last decade this problem has accumulated a
rich set of formulations and variations. For some formu-
lations the dynamic environment consists of a connected
and typically compact subset of Rn. In this setting the
agents are often tasked to detect rogue elements appear-
ing at unknown locations [8], or to minimize the cu-
mulative average value of a dynamically changing scalar
field [9]. Other formulations, as is the case in this paper,
focus on a finite set of targets within the environment.
Typical tasks then consist of detecting stochastic events
at known locations [10], or minimizing the maximum
revisit time along a periodic trajectory [11]. Usually the
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targets are spatially static, however, some formulations
consider mobile targets as well [12], [13], [14].

A common subproblem of PM tasks consists of de-
termining a periodic visiting sequence of all the targets,
which in and of itself is NP-hard since it is more general
than the Traveling Salesperson Problem (TSP), due to
the dynamic nature of the problem. Even if a good
visiting sequence is determined, computing optimal agent
trajectories (with respect to a given metric such as
minimum time or minimum energy) remains challenging.
In order to monitor a given target we require the agent to
be close to it. However, the more time the agent spends
monitoring one target, the more cost is accumulated
at all other targets. On the other hand, if the agent
moves too quickly past a target, then the local cost,
and thus also the global cost, is insufficiently reduced.
A challenge in designing trajectories is to manage this
trade-off. Due to the difficulties of solving PM problems,
they are often decomposed and many contributions fo-
cus on specific subproblems. One such decomposition
is the path-velocity decomposition [15]. However, this
decomposition is always suboptimal unless the agent’s
local sensing capability is independent of the target-
agent distance. Examples for velocity controllers along a
given path can be found in [16], [17]. The vast majority
of methods for trajectory optimization work off-line [9],
[18], though the authors of [19] introduced an on-line
trajectory optimization approach. Inherently different to
the approach of decomposition is that of abstraction.
Such methods formulate the mission space using a graph
topology, where each target is described as a node and
edges between two targets reflect the travel cost between
those targets [20], [21], [11]. Such methods aim at solving
the target visiting sequence.

In this paper we consider a PM formulation with
a single agent and M targets, each of which is asso-
ciated with an internal state that models uncertainty.
The goal is to minimize the infinite-horizon average
uncertainty. We introduce a method that optimizes the
agent’s trajectory on-line. Similar to [18], we decompose
the problem into purely local Optimal Control Problems
(OCP), the solutions of which provide decoupled trajec-
tory segments. We then solve these OCPs using a direct
multiple shooting approach [22]. While modern solvers
are able to treat optimal control problems with hybrid
dynamics directly [23], [24], we utilize this decomposition
for the simple reason that the dimension of the local
problems become independent of the number of targets.
The contributions of this paper are
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(i) Thm. 2, which shows the existence of an exact
relaxation for the local OCP (5) with hybrid dy-
namics, and

(ii) A bilevel optimization scheme that optimizes the
agent’s trajectory on-line.

The remainder of this paper is organized as follows.
Sec. II introduces the considered PM problem. In Sec. III
we introduce the decomposition into two layers: a se-
quence planner on the higher level; and a low-level layer
generating the individual trajectory segments. In Sec. IV
we analyze the low-level problems in detail. We then
utilize a gradient descent method in Sec. V in order to
optimize the boundary conditions that are imposed on
the lower levels. Sec. VI discusses results in a comparison
to a greedy solution.

II. Problem Formulation
We are interested in a PM problem with a single

agent and M targets indexed by T = {1, 2, . . . ,M}. We
denote the agent’s position by s(t) ∈ R2 which evolves
according to the first-order system ṡ(t) = u(t) with
bounded control input ∥u(t)∥ ≤ 1, where ∥ · ∥ denotes
the Euclidean norm. The fixed positions of the targets
are denoted by x1, x2, . . . , xM ∈ R2. We assume that
each target i ∈ T is associated with an internal state
that models a measure of uncertainty Ri ∈ R≥0, which
evolves according to the dynamics Ṙi = fRi given by

fRi(Ri, s) =
{

0, Ri = 0 ∧Ai −Bipi(s) < 0,
Ai −Bipi(s), otherwise,

where Bi > Ai > 0, and pi(s) = max
(
0, 1 − ∥s−xi∥2

r2
i

)
is the monitoring model with sensing range ri > 0. It
is fairly straightforward to consider more complicated
sensing functions so long as they remain monotonic in
the agent-target distance.

We are interested in minimizing the average uncer-
tainty over an infinite time horizon. While it is possible
to characterize optimal solutions in one-dimensional set-
tings [25], [26], [13], the problem becomes much harder
in two-dimensional settings and such characterizations
remain unknown. We thus rely on heuristics. Previous
results [25], [26], [13] indicate that optimal trajectories
typically drive the uncertainty of each target to zero
before visiting another target. Additionally, we make
the observation that in order to minimize a target’s
uncertainty accumulation during a trajectory segment
at which it is not monitored is achieved by minimizing
the duration of that time interval, since the uncertainty
grows linearly in time with a rate of Ai. Motivated by
these behaviors, we formulate the following persistent
monitoring problem.

Problem Find a steady-state minimum time periodic
trajectory over which each target uncertainty is drained,
i.e., driven down to zero, during each visit.
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Fig. 1: Illustrating the three optimization problems of
the decomposition: (a) sequencing; (b) entrance and
departure point optimization; and (c) local trajectory
optimization.

Assumptions Throughout this paper we assume that: 1)
the initial uncertainties Ri(0) are known for all targets
i ∈ T ; 2) the sensing areas around the targets do not
intersect; and 3) there exists a steady-state solution.

These assumptions are typical in the given PM set-
ting [16], [26], [13]. Note that assumption 2) is funda-
mental for the decomposition, whereas assumption 3)
is fundamental for convergence. We remark that the
existence of steady-state trajectories strongly depends
on the topology of the mission space as well as the
parameters A,B, and r. While the existence of steady-
state solutions can be proven when the uncertainty model
is replaced by a Kalman filter model [27], [18], this
remains an open problem in the given setting.

III. Hierarchical Decomposition
With the problem set up, it is a natural task to

identify characterizing properties of an optimal periodic
trajectory. It is immediately evident that the agent is
required to visit each of the targets in order to drive
their uncertainties down to zero. This understanding
directly induces a two-level hierarchy: a higher level with
the objective of finding a target visiting sequence; and
a lower level of steering the agent so as to 1) satisfy
the target visiting sequence and 2) drain each of the
target uncertainties, i.e., drive them down to zero. We
will formulate the low-level problems as OCPs and we
refer to those problems as the local OCPs, since solving
them only requires knowledge of local information of the
visited target. In order to connect the two levels, we
introduce a coordinator1, which takes a visiting sequence
and then coordinates the local trajectories by providing
the boundary conditions of the local OCPs. Additionally,
it is the coordinator’s task to optimize those boundary
conditions on-line.

The optimization problems within the individual lev-
els are depicted in Fig. 1: 1a illustrates the problem
of finding a target visiting sequence; 1b illustrates the
problem of optimizing the entrance (yellow square) and
departure (green circle) points when visiting a target;

1The coordinator is not to be confused with coordinators in
multi-agent systems, which coordinate information between agents.
Here it coordinates information between trajectory segments.
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Fig. 2: Illustrating the workflow of the coordinator, which
is part of the agent’s control system.

and 1c depicts a local OCP, which determines the tra-
jectory that drives the target uncertainty to zero while
respecting the boundary conditions from 1b. Note that
the red circle in 1b and 1c depicts the sensing radius
around the considered target.

In this paper we focus on the optimization of the
entrance and departure points together with the low-level
trajectories. However, we remark that visiting sequences
can be computed using a graph-based abstraction, e.g.,
via TSP or other methods specifically designed for PM
problems [21], [11].

Coordinating the local trajectories. From here
on we assume that a periodic target visiting sequence
{i1, i2, . . . iK , i1} is provided. The coordinator is tasked
to realize the visiting sequence and coordinate the re-
quirement of driving the target uncertainties down to
zero. To do this, we note that during the kth target visit,
the agent begins sensing the target ik at a specific point
in space, which we denote by sφk and refer to it as the en-
trance point (yellow square in 1b). Similarly, there exists
a departure point sψk (green circle in 1b), i.e., a point at
which the agent last sensed the target. The coordinator
passes the entrance and departure points down to the
local OCP solver generating the local trajectory segments
as discussed at the end of this section. In return, the
local OCPs provide dual variables specifying the cost
associated with the entrance and departure constraints.
The coordinator then utilizes these dual variables to
optimize the entrance and departure points with the goal
of minimizing the total cycle time (see Sec. V).

Fig. 2 depicts the proposed workflow of the coordinator
(dashed box). It receives an initial guess of the en-
trance and departure points generated from the visiting
sequence (the generation is discussed in Sec. V). The
coordinator then calls the local OCP solver in an event-
based fashion, i.e., whenever the agent starts or stops
sensing a target. On completion of a cycle, the coor-
dinator updates the entrance/departure points as well
as the target uncertainties at cycle start, or terminates
the algorithm if the cost gradients with respect to the
entrance and departure points are sufficiently small and
steady-state is reached.

Formulating the local OCPs. There are two types
of local OCPs to be solved: that of driving a target’s un-
certainty to zero (draining problem) and that of moving
from the departure point of one target sψk to the entrance

point of the next target sφk+1 (switching problem).
Given an unconstrained environment and first-order

dynamics, the switching problem becomes trivial as it
is given by a maximal and constant control input that
moves the agent from one point to another along a
straight line. However, the current formulation is capable
of adapting to other scenarios. For example, if obsta-
cles are present in the environment then the problem
becomes more complicated but can often still be solved
using optimal control techniques [28]. We solely require
the local switching problem to provide cost sensitivities
with respect to the constraints that fix the boundary
conditions sψk and sφk+1.

Let us now focus on the draining problem, which
consists of finding a time optimal trajectory that drives
the target uncertainty down to zero while satisfying the
constraints imposed by the coordinator. Specifically, this
is given by the OCP

min
u(·), Tk

∫ Tk

0
dt (1a)

s.t. ṡ(t) = u(t), (1b)
Ṙik(t) = fRik (Rik(t), s(t)), (1c)
∥u(t)∥2 ≤ 1, (1d)

min
τ∈[0,Tk]

Rik(τ) = 0, (1e)

s(0) = sφk , (1f)
s(Tk) = sψk , (1g)
Rik(0) = Řk, (1h)

where sφk and sψk denote the respective entrance and
departure points, and Řk denotes the uncertainty at
arrival time, all of which are passed down from the
coordinator. At first glance, this problem seems chal-
lenging to solve due to the non-smoothness of fRik and
the unconventional constraint (1e), which enforces the
uncertainty to be drained. In the next section we discuss
how the problem can be solved efficiently.

IV. Solving the Draining OCP
In this section, we devote our attention to the local

draining OCP (1), the main result being Thm. 2, which
shows the existence of an exact relaxation. Let us denote
by δik the radius of the zero-level set of the function
fRik as depicted in Fig. 3. We begin with a theorem that
characterizes the final segment of the trajectory. Proofs
to all statements are provided in the preprint [29].

Theorem 1 For any optimal trajectory of (1) there ex-
ists a unique time t0k such that ∥s∗(t0k) − xik∥ = δik and
R∗
ik

(t0k) = 0. Further, it holds

u∗(t) =
sψk − s∗(t0k)
∥sψk − s∗(t0k)∥

(2)

for every t ∈ [t0k, T ∗
k ].
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Fig. 3: Illustrating a solution of the draining OCP (1) of
target xik with entrance point sφk , outer departure point
sψk and inner departure point s0

k (cf. (5)). The function
fRik takes positive values when the agent-target distance
exceeds δik , whereas it is negative in the interior of the
inner circle (dashed).

A special case of the optimal control occurs whenever
the initial uncertainty Řik is large enough such that the
greedy control policy

ũ(t) =


xik−sφ

k

rik
, if 0 ≤ t < rik ,

0, if rik ≤ t < T ∗
k − rik ,

sψ
k

−xik
rik

, if T ∗
k − rik ≤ t ≤ T ∗

k ,

(3)

becomes optimal, as captured in the next statement.

Proposition 1 If

Řik ≥ −
(
Aik − 2

3Bik
)
rik−δik(Aik−Bik)− δ3

ik

3r3
ik

Bik (4)

then the greedy control policy (3) is an optimal control
of (1).

Finally, we provide a statement that reformulates (1)
into the smooth OCP

min
u(·), t0k, s0

k

∫ t0k

0
dt+ ∥sψk − s

0
k∥ (5a)

s.t. ṡ(t) = u(t), (5b)
Ṙik(t) = Aik −Bikpik(s(t)), (5c)
∥u(t)∥2 ≤ 1, (5d)
Rik(t0k) ≤ 0, (5e)

s(0) = sφk , (5f)
s(t0k) = s0

k, (5g)
∥s0
k − xik∥ = δik , (5h)
Rik(0) = Řk. (5i)

Theorem 2 The relaxation (5) is exact, i.e., any opti-
mal trajectory s∗ of OCP (5) is also optimal for (1). Fur-
ther, the respective uncertainty trajectory can be recovered
from the relaxed counterpart.

V. Optimizing the Local Boundary Conditions
The goal of this section is to minimize the cycle time

T given a sequence of target visits i1, i2, . . . , iK ∈ T ,
where K denotes the length of the visiting sequence. By
decomposing the cycle into its local segments, we can

Fig. 4: Projecting the relaxation (red) to zero during the
yellow interval, and shifting it during the blue interval
by the violation at t0k recovers the true uncertainty
trajectory (black).

express the total cycle time in terms of the entrance and
departure points, i.e., as

T =
K∑
k=1

T ∗
k (sφk , s

0
k) + ∆∗

k(s0
k, s

φ
k+1),

where T ∗
k denotes the time of the kth draining trajectory,

and ∆∗
k = ∥s0

k − s
φ
k+1∥ denotes the kth switching time,

i.e., the time taken from the (inner) departure point s0
k to

the next entrance point sφk+1. Now note that the entrance
and departure points can be expressed as

sφk = xik+rik
(

cos(φk)
sin(φk)

)
and s0

k = xik+δik
(

cos(ψk)
sin(ψk)

)
,

respectively, where φk and ψk correspond to the polar
coordinate angles of the entrance and departure points
in the coordinate system fixed upon the target ik. Moti-
vated by Thm. 2, we choose to optimize the inner depar-
ture point instead of the outer departure point. Then the
only degrees of freedom are the angles φk and ψk. From
here on we denote by φ,ψ ∈ RK the vectors that contain
the respective entrance and departure angles. We may
then express the total cycle time T (φ,ψ) as a function of
these parameters. We are left to solve the unconstrained
bilevel minimization problem

min
φ,ψ

K∑
k=1

T ∗
k (φk, ψk) + ∆∗

k(ψk, φk+1). (6)

Solving this problem can be done on-line in the following
manner. We first initialize the entrance and departure
points using

ψk = atan2(ϑky , ϑkx), φk+1 = atan2(−ϑky ,−ϑkx), (7)

where ϑk = xk+1 − xk. This natural initialization places
s0
k and sφk+1 on the intersection of the straight line

from target ik to ik+1 with the respective sensing range
circles. We place the agent at the exit point of target
iK and apply the constant control (sφ1 − s0

K)/∆K . When
the agent arrives at the first entrance point, we solve
a discretized version of the smooth draining OCP (5)
for the first target (the discretization is discussed in
Sec. VI). Note that this provides an open loop control
law during the draining period. Alternatively we could
apply a closed loop controller to track the computed
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trajectory, or close the loop using Model Predictive
Control (MPC) [30]. When reaching the departure point,
we repeat the process for the next target.

On completion of a cycle we compute the gradients
∂T

∂φk
= ∂T ∗

k

∂φk
+
∂∆∗

k−1
∂φk

,
∂T

∂ψk
= ∂T ∗

k

∂ψk
+ ∂∆∗

k

∂ψk
, (8)

of the cycle time T (φ,ψ). Note that gradients of ∆∗ can
be computed analytically, while evaluation of the gradi-
ents of T ∗

k can be done by using the dual variables — or
Lagrange multipliers [31] — of the respective constraints.
Let us denote by λφk , λψk ∈ R2 the dual variables of the
entrance (5f) and departure constraints constraint (5g)
of the kth local OCP, respectively. Applying the chain
rule then provides

∂T ∗
k

∂φk
= λ⊤

φk
rik

(
− sin(φk)
cos(φk)

)
,

∂T ∗
k

∂ψk
= λ⊤

ψk
δik

(
− sin(ψk)
cos(ψk)

)
.

We then update the parameters using a simple gradient
descent law

φk ← φk − α
∂T

∂φk
, ψk ← ψk − α

∂T

∂ψk
, (9)

where α is chosen using a diminishing step-size rule.

VI. Numerical Results
Motivated by the fact that greedy policies are able

to produce optimal solutions under certain scenarios
(see Prop. 1), we compare the proposed method to the
greedy control policy: move towards the target (and po-
tentially dwell there) until uncertainty hits 0, then move
to the next target. We consider homogeneous targets
with Ai = 1, Bi = 20, ri = 3, and Ri(0) = 0.

We discretize the local OCPs via direct multiple shoot-
ing [22] using explicit Euler integration over 20 nodes.
We model this in Matlab via CasADi [32] and then solve
the resulting nonlinear programs using IPOPT [33]. The
underlying hardware consists of an Intel i5 processor
running at 1.60GHz with 16GB of RAM.

Fig. 5 shows that even though the trajectories appear
to be similar, our approach shows a 20% reduction in
total travel time over the greedy policy, as can be seen on
the right plot depicting the respectively obtained steady-
state cycles with periods of 41.8 and 52.3 time units.
Furthermore, the proposed method leads to a smooth
control profile, which is favorable for tracking feasibility.
We conjecture that this smoothness is a fundamental
behavior for solutions of (6), with exceptions being set-
tings where the optimal entrance and departure points
coincide, or settings where the the initial uncertainty
is large enough to satisfy (4). The following intuition
justifies this conjecture: if the entrance (or departure)
transition is non-smooth, then this indicates that the
angle between the entrance and departure points is too
large. Reducing the angle between the entrance and de-
parture point always reduces the local draining time T ∗

k .

The only thing that prevents the entrance and departure
points from converging to each other is the trade-off
introduced by the potentially increased switching times
∆k−1 and ∆k. The equilibrium of this trade-off, namely
the solution of (6), may induce a natural property of
smooth transitions.

We now shift our attention to the computational effi-
ciency of the proposed method. The right plot in Fig. 5
shows the CPU timings for this experiment, where we re-
call that the draining OCP refers to (5) and the switching
OCP refers to the (trivial) problem of switching from
target’s departure point to the next target’s entrance
point. The relaxation of the hybrid dynamics as well as
the reduction of the state space dimensionality lead to
trajectory segments computed in fractions of a second,
suggesting real-time feasibility for systems with update
rates of 50-80 Hz. Fig. 6 depicts the convergence and
demonstrates robustness towards the initial conditions.

VII. Conclusion and Future Work
In this paper we considered a two-dimensional infinite-

horizon PM problem, in which we are interested in
finding a minimum time draining cycle. By decomposing
the problem into local OCPs on the lowest level, and co-
ordinating their trajectories via higher level parameters,
we were able to prove the existence of an exact relaxation
for the underlying hybrid dynamics. These two layers are
coupled within a bilevel optimization scheme, with which
the agent’s trajectory is optimized on-line.

In future work we aim at analyzing the conjecture
made in Sec. VI, as well as extending to scenarios to three
dimensions, or to multi-agent settings. Furthermore, a
particularly interesting extension could arise when the
draining condition is relaxed. This could be done by
introducing new parameters that specify the right hand
side of (1e), which could then be optimized in a similar
way as was done here with the entrance and departure
points. Apart from extending the introduced approach,
we also desire comparing the proposed approach to exist-
ing methods, e.g., by utilizing the general optimal control
problem solver [23], or to the method suggested in [18].
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to dubins vehicle tracking problems,” IEEE Transactions on
Automatic Control, vol. 59, no. 10, pp. 2801–2806, 2014.

[13] J. Hall, S. B. Andersson, and C. G. Cassandras, “Optimal
persistent monitoring of mobile targets in one dimension,”
arXiv preprint arXiv:2210.01294, 2022.

[14] Y. Wang, Y. Wang, Y. Cao, and G. Sartoretti, “Spatio-
temporal attention network for persistent monitoring of mul-
tiple mobile targets,” arXiv preprint arXiv:2303.06350, 2023.

[15] K. Kant and S. W. Zucker, “Toward efficient trajectory plan-
ning: The path-velocity decomposition,” The international
journal of robotics research, vol. 5, no. 3, pp. 72–89, 1986.

[16] S. L. Smith, M. Schwager, and D. Rus, “Persistent monitoring
of changing environments using a robot with limited range
sensing,” in 2011 IEEE International Conference on Robotics
and Automation, pp. 5448–5455, IEEE, 2011.

[17] C. Song, L. Liu, G. Feng, and S. Xu, “Optimal control for

multi-agent persistent monitoring,” Automatica, vol. 50, no. 6,
pp. 1663–1668, 2014.

[18] M. Ostertag, N. Atanasov, and T. Rosing, “Trajectory plan-
ning and optimization for minimizing uncertainty in persistent
monitoring applications,” Journal of Intelligent & Robotic
Systems, vol. 106, no. 1, pp. 1–19, 2022.

[19] G. Notomista, C. Pacchierotti, and P. R. Giordano, “Online
robot trajectory optimization for persistent environmental
monitoring,” IEEE Control Systems Letters, vol. 6, pp. 1472–
1477, 2021.

[20] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring
in discrete environments: Minimizing the maximum weighted
latency between observations,” The International Journal of
Robotics Research, vol. 33, no. 1, pp. 138–154, 2014.

[21] S. Welikala and C. G. Cassandras, “Event-driven receding
horizon control for distributed persistent monitoring in net-
work systems,” Automatica, vol. 127, p. 109519, 2021.

[22] A. V. Rao, “A survey of numerical methods for optimal con-
trol,” Advances in the Astronautical Sciences, vol. 135, no. 1,
pp. 497–528, 2009.
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