
A trajectory-based stochastic approach to symbolic control

Alessandro Tenaglia, Corrado Possieri and Daniele Carnevale

Abstract— This paper presents two innovative approaches to
design symbolic controllers for dynamical systems. The first
novelty involves a new trajectory-based strategy for defining
the states of a symbolic model, which provides a more accurate
representation of the system’s dynamics than the traditional
grid-based technique. The second novelty concerns using a
Bounded-parameter Markov Decision Process rather than a
Finite Transition System to model the behavior of a symbolic
model. This procedure allows for handling the system’s stochastic
behavior and considers uncertainties. The effectiveness of the
novel approaches presented is demonstrated through numerical
results.

Index Terms— Automata, Markov Processes, Machine Learn-
ing, Symbolic Control, Finite Transition Systems.

I. INTRODUCTION

Symbolic control refers to a class of control methods that
rely on symbolic models, such as finite transition systems
or automata, to design controllers for dynamic systems.
The fundamental idea behind symbolic control is to find a
bisimulation relation between the models that share the same
properties. The seminal papers [1] and [2] first introduced
this concept in the 1980s. It has since become a popular
method for controlling complex systems in computer science
and robotics due to its ability to handle systems with large
state spaces and provide formal guarantees on the controller’s
behavior. After several successful results on finite bisimula-
tions for control systems [3]–[5], the idea of approximate
bisimulation has been introduced [6], which captures the
equivalence of methods approximately. In [7], it has been
shown that every incrementally globally asymptotically stable
nonlinear control system is approximately bisimilar to a
symbolic model with a precision that can be chosen a priori.
Moreover, in [8], the stability assumptions have been relaxed
in favor of the incremental forward completeness property. In
recent years, there has been a significant increase in attention
and interest in Reinforcement Learning (RL). RL techniques
are a type of machine learning in which an agent is trained
to interact with an environment, learning from its experiences
to maximize a cumulative reward. The application of RL
methods in symbolic control has been demonstrated in [9].

Current techniques for symbolic control of dynamic sys-
tems mainly rely on grid-based partitioning of the state

This work has been partially supported by the Italian Ministry for Research
in the framework of the 2020 Program for Research Projects of National
Interest (PRIN). Grant No. 2020RTWES4.

A. Tenaglia, C. Possieri, and D. Carnevale are with the Department of
Civil Engineering and Computer Science Engineering, University of Rome
Tor Vergata, 00133 Rome, Italy. C. Possieri is also with the Institute for
System Analysis and Computer Science “A. Ruberti”, National Research
Council of Italy, 00185 Rome, Italy. E-mails: {alessandro.tenaglia,
corrado.possieri, daniele.carnevale}@uniroma2.it.

space, where each grid cell is associated with a discrete state.
Moreover, the behavior of the symbolic model is described
by transition systems without probability interpretation.

Novel contribution. The main novelties proposed in this
paper consist of the following:

• defining a symbolic system using a trajectory-based
approach to partition the state space;

• modeling the symbolic system behavior through a
Bounded-parameter Markov Decision Process.

The rest of the paper is structured as follows. Section II pro-
vides some preliminary definitions, followed by a description
of the problem of interest in Section III. Section IV presents
two techniques for partitioning the state space. In Section V,
state transitions are modeled using different frameworks, and
for each, an algorithm is provided to compute the optimal
policy. In Section VI, numerical results are presented to
support the validity of the proposed approaches. Lastly,
Section VII draws conclusions and future research directions.

Notation. Given a vector x ∈ Rn we denote by xi the i-th
element of x, by |xi| its absolute value, and by ∥x∥ the infinity
norm of x: ∥x∥ = max{|x1|, . . . , |xn|}. Given a measurable
function f : R+

0 → R, it is denoted by ∥f∥ the (essential)
supremum of f . Given a set A ∈ Rn, we denote by ∂A the
boundary of A and by |A| its area. For any A ∈ Rn and
µ ∈ R, let [A]µ = {a ∈ A|ai = kiµ, ki ∈ Z, i = 1, . . . , n}.

II. PRELIMINARY DEFINITIONS

One of the most simple approaches to represent a symbolic
model is through a Finite Transition System (FTS), [10].

Definition 1 (FTS): An FTS is a tuple T = (S,A,−→, R)
where: S is a finite set of states, with cardinality |S|; A is a
finite set of actions, with cardinality |A|; −→⊆ S ×A× S
is a finite set of admissible transitions; R : S ×A → R is a
reward function that assigns a scalar reward R(s, a) to each
state-action pair.
If for any state s ∈ S and any action a ∈ A there exists
a unique next state s′ such that (s, a, s′) ∈−→, then the
FTS is deterministic; otherwise, it is non-deterministic. In the
latter case, given a state-action pair (s, a) ∈ S ×A, there are
multiple possible next states s′ ∈ S to which the environment
could transition. If it is possible to associate a probability to
their occurrence, then the FTS is probabilistic. In this case,
the FTS can be equivalently modeled as a Markov Decision
Process (MDP) [11], [12].

This framework requires exact knowledge of the probability
for all transitions, which is difficult to obtain in practice due
to uncertainties and inaccuracies. Therefore, we introduce a
generalization of an exact MDP called Bounded-parameter

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2871

Markov Decision Process (BMDP) that enables accounting
for uncertainties in the underlying model parameters [13].

Definition 2 (BMDP): A BMDP is a tuple M↕ =
(S,A, P↕, R) where: S is a finite set of states, with cardinality
|S|; A is a finite set of actions, with cardinality |A|; P↕ is
an interval transition distribution that maps the probability
of transition from a state s ∈ S to a state s′ ∈ S after taking
action a ∈ A to a closed interval [P↓(s, a, s

′), P↑(s, a, s
′)].

To guarantee properly structured transitions, for any state
s ∈ S and any action a ∈ A the sum of the lower and upper
bounds of P↕(s, a, s

′) on all possible next states s′ ∈ S must
be less than or equal to 1 and greater than or equal to 1,
respectively; R : S ×A → R maps each pair (s, a) ∈ S ×A
to a reward R(s, a) = E[Rt = r|St = s,At = a].

In a decision-making framework, at each time step, starting
from state St ∈ S , the agent chooses an action At ∈ A based
on a policy π : S → A, which maps states to actions, then
the environment transitions to a new state St+1 ∈ S and
the agent receives a reward Rt+1. The corresponding return
Gt is defined as Gt = Rt+1 + γRt+2 + γ2Rt+3 · · · , where
γ ∈ [0, 1) is called discount rate. The goal is to find the
optimal policy π⋆ that maximizes the expected cumulative
discounted reward for all possible starting states. The tool
used to quantify the goodness of a policy π is the value
function Vπ : S → R, which is a mapping from each possible
state s ∈ S to the expected cumulative reward that can be
obtained starting from that state s and following a policy π,
namely, Vπ(s) = Eπ[Gt|St = s]. The optimal value function
V⋆ is defined as V⋆(s) = maxπ∈Π Vπ(s), where Π is the set
of all deterministic policies. Hence, the optimal policy π⋆

defines the actions that lead to the highest expected cumulative
reward. The value function V⋆ is greater than or equal to any
value function Vπ in the partial order ≥ defined as follows:
V1 ≥ V2 if and only if V1(s) ≥ V2(s) for all states s ∈ S.

In the case of BMDP, uncertainties concerning transitions
do not allow the calculation of an exact value function. Thus,
it is defined an interval value function V↕ that maps each
state to a closed interval, with V↕(s) = [V↓(s), V↑(s)]. Given
a policy π, the relative interval value function is defined
by V↕π(s) = [minM∈M↕ VM,π(s),maxM∈M↕ VM,π(s)] and
the optimal interval value function as V↕⋆ = maxπ∈Π(V↕π),
where the partial order ≥ is extended in the case of closed
intervals in an optimistic way, that is, V↕1 ≥opt V↕2 if and
only if [V↓1(s), V↑1(s)] ≥opt [V↓2(s), V↑2(s)] for all states
s ∈ S, namely V↑1(s) > V↑2(s), or V↑1(s) = V↑2(s) and
V↓1(s) > V↓2(s).

What is described for BMDP also applies to non-
deterministic FTS, since for a given policy π multiple
transitions can occur, making it impossible to compute an
exact value function V . Therefore, two distinct value functions
are introduced, a minimal value function V π and a maximal
value function V π , which describe, respectively, the expected
cumulative reward in the worst-case and the best-case scenario
following the policy π. Similarly, the minimally and the
maximally optimal value functions, V ⋆ and V ⋆, are defined,
to which correspond, respectively, the minimally optimal
policy π⋆ and the maximally optimal policy π⋆.

III. PROBLEM STATEMENT

In this paper, we consider the following class of systems

Σ :

{
ẋ = f(x, u),

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm,
(1)

where X is the state space and U is the input set, and f :
Rn×U → Rn is a continuous map that satisfies the following
classical Lipschitz assumption, which ensures uniqueness of
solutions to system (1).

Assumption 1: For every compact set W ⊂ Rn, there
exists a constant L ∈ R+ such that

∥f(x, u)− f(y, u)∥ ≤ L∥x− y∥

for all x, y ∈W and all u ∈ U .
Moreover, the results presented in this paper require the

notion of incrementally forward completeness (δ-FC) and
incrementally input-to-state stability (δ-ISS) given in [8].

We denoted by U all the measurable functions from
intervals of the form]a, b[⊂ R to U with a < 0 and b > 0. A
curve x :]a, b[→ Rn is said to be a trajectory of (1) if there
exists a u ∈ U satisfying ẋ(t) = f(x(t),u(t)), for almost
all t ∈]a, b[. Let x(t, x,u) be the state reached at time t with
input u from the initial condition x. There exists a unique
solution of (1) by Assumption 1 [14].

Since the attention of this paper is on digital control, given
a τ ∈ R+, it is defined by Uτ the set of all constant curves
of duration τ , i.e., Uτ = {u : [0, τ]→ U | u(t) = u(0),∀t ∈
[0, τ]}, and we consider trajectories x : [0, τ]→ Rn defined
on the closed domain [0, τ], with the understanding of the
existence of a trajectory x′ :]a, b[→ Rn such that x = x′|[0,τ].

Supposing that Assumption 1 hold, the problem addressed
in this paper concerns the design of a controller that from
any initial state x ∈ X and using the control inputs in Uτ
can drive (1) to a desired state x⋆ ∈ X .

This work focuses on modeling a dynamic system using
a transition system. In the former, the evolution of a state
over time is described by differential equations. The latter
is a discrete-time system whose behavior is modeled as a
sequence of states and transitions between them according to
the actions taken. By using a transition system, the problem
of designing a controller for the dynamic system can be
formulated as a decision-making problem.

IV. STATE SPACE PARTITIONING

This section addresses the challenge of partitioning the
state space into a finite set of states S. First, we introduce
the notion of quantization embedding, proposed in [15]. A
mesh M is a finite collection of pairs represented as

M = {{ξ0, C0}, {ξ1, C1}, ..., {ξ|S|, C|S|}}

where each Cs is a cell of the mesh M, each ξs is called the
discrete point of the s-th cell Cs, the pair {ξs, Cs} defines
a state s ∈ S, and moreover the set C = {C0, C1, ..., C|S|}
forms a partition of X . The mesh M defines a quantization
function QM : X → {ξ0, ξ1, . . . , ξ|S|} that maps an
arbitrary point of the state space x ∈ X to a discrete

2872

point ξs whose corresponding cell Cs includes x, formally
QM(x) = ξs if x ∈ Cs. The quantization function allows
the conversion of continuous states x ∈ X into discrete states
s ∈ S.

A. Grid-based approach

The most simple approach is to divide the state space
X into a grid with resolution µ chosen according to the
desired level of precision. Formally, S = [X]µ, where [·]µ
is the quantizer QM. In this way, each cell Cs of the grid
represents a discrete state of S, and the centroid ξs is its
representative point. In this partitioning, given a state x ∈ X ,
the quantizer QM compares its coordinates with the cell
boundaries and determines to which cell the state belongs,
namely QM(x) = ξs such that

∥x− ξs∥ ≤
µ

2
= δµ. (2)

This grid-based approach provides a standard representation
of the state space that is simple to manage and implement.
However, large state spaces may suffer from the curse of
dimensionality as the number of states grows exponentially
to obtain an accurate system representation. More exhaustive
details are reported in [8].

B. Trajectory-based approach

The novel approach we present is based on the idea that the
trajectories of the system provide a natural way to partition
the state space. Specifically, we propose to populate the state
space with the system’s trajectories and use the resulting
partitions as the meshM that defines the symbolic model. The
essential advantage of this technique is that it can precisely
represent the system’s behavior, which may not be possible
using an agnostic grid-based partitioning approach, where the
shape of the cells is fixed and predetermined.

Algorithm 1 describes in detail the sequential steps required
to execute the trajectory-based partitioning. The approach
is based on iteratively branching and simulating trajectories
forward and backward in time to explore the whole state space.
Since the goal is to steer the system’s state to x⋆ ∈ X , this is
the natural starting point to simulate the system’s evolution.
From x⋆, a new set of trajectories is generated based on
control inputs u ∈ U . The branching is performed so that,
given an existing trajectory x, if its length is greater than µ,
it is divided at its midpoint x̄ into two sub-trajectories x1 and
x2. Each time a new trajectory is branched from an existing
one, starting from x̄, its branching count is incremented. The
trajectories to be evaluated are sorted in increasing order
according to the branching count. Using a priority queue Q
ensures that the trajectories generated with fewer branches
are processed first, and the state space is explored more
efficiently. When two trajectories intersect, each is divided
into two sub-trajectories at the intersection points x̃. This
process is repeated until the priority queue is empty, that is,
the length of all the trajectories is less than µ.

Upon completion of this process, it becomes evident that
the set of generated trajectories provides a partition of the
state space X . Therefore, the boundary of each cell Cs

Algorithm 1: Trajectory-based partitioning
input : a starting state x⋆, a threshold µ
output : a mesh M

1 initialize a set T to store trajectories and a priority
queue Q for those to be evaluated

2 foreach a ∈ A do
3 x ← gen traj(x⋆, a, 0)
4 (T , Q) ← add traj(x, T , Q);
5 repeat
6 (x, p)← pop the first trajectory of Q
7 x̄← middle point of x
8 (T , Q) ← split traj(x, x̄, T , Q)
9 foreach a ∈ A do

10 x′ ← gen traj(x̄, a, p+ 1)
11 foreach x ∈ T do
12 if x intersects x′ then
13 x̃← intersection points of x and x′

14 (T , Q) ← split traj(x, x̃, T , Q)
15 (T , Q) ← split traj(x′, x̃, T , Q)
16 until Q is not empty
17 define the cells of C according to the trajectories of T
18 foreach Cs ∈ C do
19 ξs ← point of inaccessibility of Cs

20 return M = {{ξ0, C0}, ..., {ξ|S|, C|S|}
21 Function gen traj(x, a, p):
22 T ← [− min

x(−t,x,a)/∈X
t, min

x(t,x,a)/∈X
t]

23 return {x(t, x, a) : t ∈ T} with priority p

24 Function add traj(x, T , Q):
25 T .insert(x)
26 if length(x) > µ then Q.insert(x)
27 return T , Q
28 Function split traj(x, x, T , Q):
29 (x1,x2)← split x at x
30 (T , Q) ← add traj(x1, T , Q)
31 (T , Q) ← add traj(x2, T , Q)
32 return T , Q

is determined by portions of the system’s trajectories. It
is worth noticing that, unlike the grid-based approach, the
cells obtained following this trajectory-based partitioning do
not have fixed and regular shapes but are variable and not
necessarily convex.

Without guaranteeing the convexity property of the cells,
the centroid is not used as their reference point ξs, as in non-
convex shapes, it can fall outside of them. Thus, it is chosen
as the point farthest from its boundary, called Chebyshev
center, as in [16], formally,

ξs = arg max
x∈Cs

min
y∈∂Cs

∥x− y∥. (3)

Similarly to the grid-based approach, the quantization function
QM converts continuous states x ∈ X to discrete states ξs
considering the cell Cs to which the state belongs. Verifying if
a point is inside a convex shape is a straightforward problem,

2873

in contrast, a non-convex shape can have one or more concave
regions or holes, making it more challenging to solve. One
of the most common algorithms to solve this problem is the
ray-casting method, as described in [17].

Thus, it is possible to state that for each state s ∈ S

∥x− ξs∥ ≤ δµ ∀x ∈ Cs, (4)

where δµ is defined as δµ = max
s∈S

max
y∈∂Cs

∥ξs − y∥.
Note that in the worst-case scenario, a cell Cs is defined

by at most η trajectories that have a length less than or equal
to µ each, yielding a boundary of length p ≤ ηµ.

Proposition 1: Let Assumption 1 hold and consider system
(1). If the number of trajectories that constitute the boundary
of cell Cs is lower than η⋆ > 0 for all s ∈ S, then
limµ→0 δµ = 0.

Although more computationally expensive, trajectory-based
partitioning has several advantages over the traditional grid-
based approach. Firstly, it allows for a more flexible state
space partitioning that can more accurately describe system
dynamics, even if complex and non-linear. Moreover, it
reduces the number of cells because the number of partitions
required to capture the dynamics of a system using an agnostic
grid-based approach can be prohibitively large.

V. DEFINITION OF TRANSITIONS AND OPTIMAL POLICY

This section involves modeling the system’s behavior, that
is, defining the transitions between the set of states S based
on the set of actions A = Uτ , regardless of the state space
partitioning. The procedure followed to achieve such an
objective consists of generating, for each state s, namely,
for each cell Cs of the mesh M, a set of samples Xs ⊂ Cs.
Then, the evolution of the system (1) from each of the samples
belonging to Xs is simulated for a finite time τ with each
action a ∈ A. The next state s′ ∈ S is calculated according
to the quantizer QM, namely, s′ = QM(x(τ, x, a)), x ∈ Xs

and the transition s
a−→ s′ is determined.

Theorem 1: Consider system (1), let Assumption 1 hold,
let µ > 0 and τ > 0 be given. If system (1) is δ-FC, it is
possible to build a symbolic model with parameters (µ, τ)
such that, considering a transition s

a−→ s′ the following
inequality holds

∥x(τ, ξs, a)− ξs′∥ ≤ β(δµ, τ) + δµ, (5)

where β is the function that satisfies the δ-FC condition for
the system.

Corollary 1: Consider system (1) and let Assumption 1
hold. If system (1) is δ-ISS, then for any ε > 0, there exist
µ > 0 and time T > 0 such that it is possible to build a
symbolic model with parameters (µ, τ), with τ > T , where
each transition s

a−→ s′ satisfies the following inequality

∥x(τ, ξs, a)− ξs′∥ ≤ ε. (6)
It is worth pointing out that estimating transitions using

analytic approaches is a complex and challenging problem,
particularly in large and highly nonlinear systems. This work
uses a data-driven technique based on Monte Carlo methods.
Therefore, the quality of the samples is a crucial aspect to

consider, as it impacts the accuracy of the results. Since states
are defined as a partition of X and each sample corresponds
to a specific state x ∈ X , it is essential to ensure that the
sampling process covers the entire state space to represent the
whole system. The generation of samplings Xs is performed
using the Poisson disk sampling method, as described in [18],
which ensures efficiently obtaining a set of points uniformly
distributed and without clustering.

A. Finite Transition System

In the case of an FTS, each time a new state is reached,
the corresponding transition s

a−→ s′ is added to the set of
transitions −→. In general, it is a non-deterministic FTS
because given a pair (s, a) ∈ S × A, there can be multiple
possible transitions. Therefore, since it is impossible to
determine the next state with certainty, calculating an exact
value function is not feasible. Two value functions related to
the worst-case and best-case scenarios are defined, namely V
and V . [9] provides a detailed description of how to modify
the classic Value Iteration algorithm, as in [12], to obtain the
minimally and maximally optimal value function, namely V ⋆

and V ⋆.

B. Markov Decision Process

Treating all transitions as equally probable could lead to
erroneous actions since outliers can affect the behavior of
the entire state. The novelty proposed in this work is to
estimate the probability of the occurrence of the transitions
and model the symbolic system through an MDP. The most
straightforward method is to count the number of times a
transition to a state occurs for all state-action pairs and divide
it by the total number of samples. Repeating this procedure
for each state s ∈ S and action a ∈ A, we can estimate
the transition probability matrix P and then model an MDP.
Once an MDP has been modeled, the optimal value function
V⋆ and the optimal policy π⋆ can be found using the classic
Value Iteration algorithm [12].

C. Bounded-parameter Markov Decision Process

When probabilities are calculated based on a limited
number of samples, the related estimates have inherent
uncertainty. To mitigate this problem, a confidence interval CI
is calculated for the probabilities of the transitions, providing
a range of values likely to include the true value with a certain
confidence level. The probability distribution is modeled as a
multinomial distribution, which, for large values of n, can be
approximated by a normal distribution. Hence, the confidence
interval CI is computed as

CI = p̂± z⋆
√

p̂(1− p̂)

n
, (7)

where p̂ is the probability estimate, and z⋆ is the critical
value of the standard normal distribution corresponding to the
desired confidence level. As explained previously, a BMDP
is based on interval value functions V↕ so to find the optimal
value interval function V↕⋆ it is necessary to adapt the Value
Iteration algorithm, as described in [13].

2874

(a) Initial stage. (b) Second stage. (c) Final stage.

Fig. 1: Evolution of the state space partitioning using the trajectory-based approach.

(a) Value functions for grid-based partitioning. (b) Value functions for trajectory-based partitioning.

Fig. 2: Comparison of the value function obtained with FTS, MDP, and BMDP defined for grid-based and trajectory-based
state space partitioning.

VI. NUMERICAL SIMULATIONS

This section compares combinations of partitioning ap-
proaches and modeling frameworks through numerical simu-
lations. The tests have been performed on the double integrator
model, governed by

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u. (8)

The state set is given as X = [−2, 2]× [−2, 2], and the input
set is limited to a binary control u ∈ U = {−1, 1}. The goal
is to control the system from a generic initial state x0 ∈ X
to x⋆ = [0, 0]′.

Following the approach described in Section IV, two state
space partitions are considered. In the case of the grid-
based approach, the cell size used is µ = 0.2 on each
dimension, resulting in a grid of 19× 19 states. In the case
of the trajectory-based approach, the length threshold used
for branching is µ = 1. Figure 1 shows the evolution of
partitioning at different stages of the algorithm. The first

panel of Fig. 1a illustrates the initialization phase, where
the starting point is simulated only backward in time and is
embedded in an ad hoc cell to adjust the final error bound. The
second panel of Fig. 1b shows the branching of trajectories as
Algorithm 1 progresses. New cells from the initial ones are
established as the trajectories explore new regions of the state
space. The third panel of Fig. 1c represents the state space’s
final partition, where each trajectory’s length is less than the
desired threshold, resulting in a mesh M of 60 states.

Figure 2a shows the optimal value functions obtained
using grid-based partitioning combined with the introduced
frameworks. The MDP optimal value function V⋆ is in the
middle, while the extremes of the optimal interval value
function V↕⋆ obtained using the BMDP are above and below
it, respectively V↓⋆ and V↑⋆. Lastly, the outermost value
functions are derived from FTS, below the minimally optimal
value function V ⋆ and above the maximally optimal value
function V ⋆. The optimal value functions obtained using
trajectory-based partitioning are represented in Fig. 2a, which

2875

(a) FTS with grid partitioning. (b) MDP with grid partitioning. (c) BMDP with trajectory partitioning.

Fig. 3: Comparison of grid-based and trajectory-based state space partitioning and optimal policies obtained with FTS, MDP,
and BMDP. The cell color represents the optimal action: red is for action u = −1, blue is for action u = 1, and cyan
represents that both u = −1 and u = 1 are optimal.

follow the same order described above. It is worth noticing
that the ordering of the value functions obtained reflects
a more conservative system modeling. The MDP uses an
exact probability distribution P , while the BMDP uses an
interval probability distribution P↕. Hence, since P ∈ P↕,
the corresponding optimal value functions meet the same
relation, that is, V⋆ ∈ V↕⋆. Moreover, the FTS further
simplifies the probability interval of BMDP by reducing
it to binary conditions, from which V↕⋆ ⊂ [V ⋆, V ⋆]. Figure 3
compares optimal policies obtained through different pairs of
partitioning algorithms and modeling frameworks. In Fig. 3a
illustrates the optimal policy obtained by partitioning the state
space with a grid and modeling the symbolic system with
an FTS. This solution is far from the optimal control theory
solution. Figure 3b exhibits a better solution obtained using
the BMDP framework, which captures the system’s behavior
more accurately and can be improved by reducing the cell size.
Lastly, Fig. 3c highlights the effectiveness of the presented
approaches, as trajectory-based partitioning combined with
the BMDP framework allows capturing the system dynamics
accurately and returns the exact optimal solution.

VII. CONCLUSIONS

In this paper, we have introduced two novel methodologies
for symbolic control of dynamic systems. The trajectory-based
approach for defining the states of the symbolic model has
been shown to provide a more accurate representation of the
system’s dynamics than the traditional grid-based technique.
By dividing the state space across trajectories, we can identify
more significant cells in terms of control, resulting in better
performance than using a grid-based approach. Additionally,
using a BMDP rather than an FTS to model the symbolic
model has been demonstrated to be effective and robust
in handling the stochastic behavior of the system and its
uncertainties. The numerical results have further validated
the effectiveness of combining these innovative approaches.
Future work will focus on extending these techniques to more
complex systems with higher-dimensional state spaces.

REFERENCES

[1] D. M. R. Park, “Concurrency and automata on infinite sequences.”
Theoretical computer science, vol. 104, pp. 167–183, 1981.

[2] R. Milner, Communication and concurrency. Prentice Hall Englewood
Cliffs, 1989, vol. 84.

[3] P. Tabuada, “Symbolic models for control systems,” Acta Informatica,
vol. 43, no. 7, pp. 477–500, 2007.

[4] A. Borri, G. Pola, and M. D. Di Benedetto, “A symbolic approach to the
design of nonlinear networked control systems,” in ACM International
Conference on Hybrid Systems, 2012, pp. 255–264.

[5] ——, “Symbolic models for nonlinear control systems affected by
disturbances,” International Journal of Control, vol. 85, no. 10, pp.
1422–1432, 2012.

[6] A. Girard and G. J. Pappas, “Approximate bisimulations for nonlinear
dynamical systems,” in IEEE Conference on Decision and Control.
IEEE, 2005, pp. 684–689.

[7] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10, pp.
2508–2516, 2008.

[8] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models
for nonlinear control systems without stability assumptions,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1804–1809,
2011.

[9] A. Borri and C. Possieri, “Reinforcement learning for non-deterministic
transition systems with an application to symbolic control,” IEEE
Control Systems Letters, vol. 7, pp. 1610–1615, 2023.

[10] A. Arnold, Finite transition systems: semantics of communicating
systems. Prentice Hall International (UK) Ltd., 1994.

[11] M. L. Puterman, Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] R. Givan, S. Leach, and T. Dean, “Bounded-parameter Markov decision
processes,” Artificial Intelligence, vol. 122, no. 1-2, pp. 71–109, 2000.

[14] E. D. Sontag, Mathematical control theory: deterministic finite dimen-
sional systems. Springer Science & Business Media, 2013.

[15] Y. Tazaki and J.-i. Imura, “Finite abstractions of discrete-time linear
systems and its application to optimal control,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 10 201–10 206, 2008.

[16] L. Menini, C. Possieri, and A. Tornambe, “Distance to internal insta-
bility of linear time-invariant systems under structured perturbations,”
IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 1941–1956,
2020.

[17] E. Haines, “Point in polygon strategies.” Graphics Gems, vol. 4, pp.
24–46, 1994.

[18] R. Bridson, “Fast Poisson disk sampling in arbitrary dimensions.”
SIGGRAPH sketches, vol. 10, no. 1, p. 1, 2007.

2876

