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Abstract— The immune system response to pathogens is orga-
nized by a network of cells communicating through expression
of a variety of proteins and signaling molecules. A high number
of genes are involved in encoding these communicating agents,
but the relatively low number of data points is a major challenge
in modelling the gene expression response. In this work we
propose a feature-selection approach based on gene expression
distributions at the single-cell level that improves dynamics
identification at the population level. We investigate common
approaches to differential expression analysis and show that
Earth Mover’s Distance (EMD) is a relatively robust measure
for gene selection as reflected by the coefficient of variation
as well as accuracy of a naive Bayes classifier based on the
selected genes. We ultimately propose the bootstrap standard
deviation metric as an estimate of state uncertainty and show
that statistically significant signals in pathogen response can
be recovered in the reduced state space constructed with the
selected genes.

I. INTRODUCTION

Despite the general robustness of the immune response to
a particular pathogen, there can be significant variability in
its composition between individuals [1]. Understanding the
dynamics of the coordinated immune response that explains
this variability can be instrumental to identify susceptible in-
dividuals to certain pathogens or immune-mediated diseases
and to guide vaccination strategies [2].

The study of the immune system dynamics is carried out
at two primary levels: (i) intracellular gene networks and
switching in cell states (such as [3]–[5]), and (ii) cell-cell
interactions leading to adaptations analyzed at cell population
levels (such as [6]–[9]). The timescale is another differenti-
ating aspect among the studies, ranging from minutes (e.g.
[3]) to hours and days (e.g. [10] and [11] respectively).
Depending on the data-availability and time-steps, the dy-
namics are typically modelled as Boolean networks [12]–
[14], Bayesian Networks [15], [16] or differential equations
[3], [17], [18]. Tools from control theory and formal meth-
ods such as reachable-set and attractor computation can be
used to integrate insights obtained from studying dynamical
responses at different timescales. For example in [13], the
steady state of the gene network is obtained as the attractor of
the identified boolean network; this can be used in studying
related signalling pathways with slower dynamics [19], [20].

A common challenge that is present both in single cell and
population dynamics analysis across different timescales is
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the high number of measured features relative to the number
of available sample points. To address this issue, various
methods have been proposed for feature selection includ-
ing a-priori filtering of features by differential expression
assessment [21], [22], and simultaneous sparse optimization
methods [23], [24]. The high number of genes measured
may necessitate using both a-priori filtering and sparse
optimization approach to minimize the rate of false discov-
eries (random artifacts that appear as statistically significant
signals) [25], [26]. This problem is exacerbated in sparse
nonlinear dynamics identification approaches as they rely on
construction of nonlinear kernel libraries that further increase
the state-space dimension [27], [28]. As a result, reliable
a-priori filtering through differential expression assessment
becomes even more critical.

Differential expression is most commonly measured as
the difference between the logarithm of average gene ex-
pression between two sets of cells (Log); one reason for
the popularity of this metric is that it can be applied using
only average expression values which is available in bulk
measurement methods. However, with the single-cell data
becoming increasingly more accessible, other differential
expression metrics such as earth mover’s distance (EMD)
and mutual information (MI) are also being investigated as
alternatives. EMD specifically is shown to perform well in
detecting changes in sub-populations and detection of sub-
populations is essential in understanding pathogen responses
as these responses are typically initiated by a small set of
early-responders [29]. [30], [31] are two of the early works
that showed that informative genes are reliably extracted
using EMD between heterogenous cell classes.

In this work we formulate the dynamics identification
problem as finding a set of discrete-time models where
each model predicts one attribute such as expression level
of a gene in Section II. The goal is to find one or more
sets of attributes that are self-sufficient for prediction. Such
attributes can be considered to belong to one signalling
pathway. Following the discussion on the dimensinality chal-
lenge, in Section III we compare use of Log, EMD, and
MI metrics for identifying significant gene expressions in
pathogen response. We finally analyze the predictive power
of sparse linear models in the reduced state space that is
limited to the identified genes in Section IV. Throughout
this paper, we are using the data-set published from [10]. The
data-set comprises of samples collected from 120 individuals
and exposed in-vitro to three pathogens, namely, C. Albicans
(CA), M. Tuberculosis (MTB), and P. Aeruginosa (PA). The
data includes sc-RNA assays of the untreated samples as well
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as samples after 3 hour and 24 hour of exposure to each
pathogen. In total, expression of 23000 genes are measured
in 1.1M cells.

II. PROBLEM FORMULATION

Let us denote the set of real numbers as IR, non-zero real
numbers by IR+, and the inclusive set of integers between a
and b by [[a,b]]. We use lower-case letters for scalar values,
tuples, and functions, lower-case bold letters for vectors, and
upper-case letters for sets. We use vi to refer to the i-th
element of a vector v ∈ IRn. Let I be a set of m(≤ n) unique
integers from 1 to n, vector v′ = vI is an m-dimensional
sub-vector of v ∈ IRn with elements corresponding to the
indices in I. Superscripts in parenthesis such as c(i) are used
throughout this paper to refer to different instances of a
variable. We use N (µ,σ) to indicate a normal distribution
with µ and σ respectively being the mean and standard
deviation. We use P to denote the probability distribution
and E for the expected value of random variables.

A. Single-cell State

The state in a cell is expressed as a tuple c =< x,ct >
where x ∈ IR+ng is the gene expression vector of ng genes
and ct ∈CT is the cell-type, e.g. Monocyte. In many scRNA
sequencing protocols, the cells are destroyed during the
measurement, so typically only one measurement of each
cell is available and the dynamics can only be analyzed at
the population level.

B. Sample data

We consider samples that are collected from healthy
individuals and exposed to pathogens in-vitro. One instance
of a sample data is a tuple s =<C, p, t > that includes states
of nc cells within the sample C = {c(i)|1 ≤ i ≤ nc, c(i) =<
x(i),ct(i) >}, the pathogen type p ∈ P, and the time t since
the sample is exposed to the pathogen.

Remark 1: The single-cell state can be expressed as a
vector by assigning a numeric value to the cell-type; how-
ever, at the population level, the state cannot be similarly
expressed due to the permutation invariance of the cells in
the sample. We can however select a vector of permutation
invariant attributes s to represent the state of the sample s.
Such attributes include average expression of genes in the
population, or the relative number of cells that express that
belong to a certain cell-type.

C. Modelling in reduced space

Let us define a ω-sparse pathogen response model m(i) =<
f (i), Ii,e(i) > as follows:

si(t +∆t) = f (i)(sI(i)(t))+N (0,e(i)) (1)

where: dim(Ii) ≤ ω. Namely, f (i) predicts one attribute si
at time (t + ∆t) from a set of attributes sI(i) at time t as
inputs and the prediction error is expected to belong to the
Gaussian distribution N (0,ei). Enforcing sparsity helps to
avoid over-fitting given the limited number of data points.

Problem 1: Given an error threshold e(th), find a set of
models M such that

1) for all m(i) ∈ M, e(i) < e(th) and,
2) The set M is closed , i.e. any attribute that is used as an

input for one of the models in M can itself be predicted
with a model in M: ∀m(i) ∈ M : j ∈ Ii → m( j) ∈ M.

Intuitively a closed set of models M enables predicting
attributes for multiple time-steps and can be considered as
hypothesis for a signalling pathway.

III. DIFFERENTIAL EXPRESSION FOR GENE SELECTION

The differential expression of a gene is measured between
two sets of cells. Each set can be defined as a subset of
cells in a dataset of ns samples D = {s(i)|0 ≤ i ≤ ns,s(i) =<
C(i), p(i), t(i) >} that belong to a certain class; For instance
the class of untreated cells L(UT ), i.e. cells that are not
exposed to pathogens, can be defined as follows: L(UT ) =
{c(i, j)|c(i, j) ∈C(i), p(i) = /0, <C(i), p(i), t(i) >∈ D}

Where c(i, j) is the j-th cell in the i-th sample in the dataset.
There are three common metrics that are used for measur-

ing differential expression between cells belonging to two
classes L(1), and L(2); in the following sections we compare
the use of each metric for identifying the significant genes
in pathogen response.

1) Log difference: The most common method in differ-
ential expression is looking at the difference between the
logarithm of the average expression of the g-th gene:

DELog
g (L(1),L(2)) =

|log(E(xg | L(1))+ ε)− log(E(xg | L(2))+ ε)|
|log(ε)|

(2)

where E(xg | L(1)) and E(xg | L(2)) correspond to the expected
values of gene expression xg in a cells that respectively
belong to classes L(1) and L(2). The regulating parameter
ε << 1 is to avoid unbounded value for genes that are ex-
pressed close to zero. Higher values of ε put a higher weight
on linear difference (rather than ratio) between expression
levels. Log difference is a reliable method for detecting
significant changes at the population level but is likely to
miss changes in sub-populations of the cells [32].

A. Earth Mover’s distance

The earth mover’s distance (EMD) evaluates the effort
required to transform one probability distribution to another
one, assuming that they can be represented as two piles of
earth and that the effort is proportional to the amount of earth
moved. For 1-dimensional probability distribution functions,
the earth mover’s distance can be calculated as follows:

DEEMD
g (L(1),L(2)) =∫

∞

−∞

∣∣∣∣∫ v

−∞

(P(xg = v′ | L(1))−P(xg = v′ | L(2)))dv′
∣∣∣∣dv

(3)

where P(xg | L(1)) and P(xg | L(2)) are respectively the
probability distributions of the g-th gene in cells from the
classes L(1) and L(2). We adopt a binning approach to obtain
a discrete approximation of these probability distributions.
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B. Mutual Information

The mutual information (MI) between two variables is
defined as the Kullback–Leibler (KL) divergence between
their joint probability and product probability (i.e. assuming
they are independent). The differential expression can be
measured as the MI between the class and the gene expres-
sion assuming that the classes are equally likely:

DEMI
g (L(1),L(2)) =

P(L(1))

P(L(1))+P(L(2))
DKL

(
P(xg | L(1)), P(xg)

)
+

P(L(2))

P(L(1))+P(L(2))
DKL

(
P(xg | L(2)), P(xg)

)
. (4)

where DKL refers to the KL divergence. P(L(1)) and P(L(2))
are the probabilities that a cell belongs to each of the classes
L(1) and L(2). Similarly, binning can be used to approximate
P(xg | L(1)) and P(xg | L(2)), however authors in [33] have
shown that MI can be calculated with higher accuracy based
on nearest neighbour calculation; we have therefore adopted
this method (implemented in [34]) instead of binning.

C. Metric comparison

As seen in Fig. 1, both Log difference and Mutual In-
formation are highly correlated with the EMD as expected,
however the top genes vary a lot between the metrics. With
infinite samples all of the intra-class expression differences
are expected to be zero, therefore the intra-class points in
Fig. 1 show the error introduced by sample limits and should
be accounted for when considering differential expressions.
For example, errors of up to 0.25 are expected when using
the Log metric while the gene with the highest inter-class
differential expression is 0.5 and a change of 0.25 could put it
outside the top 100 differentially expressed genes. This issue
appears to be less problematic with MI and EMD metrics as
the intra-class differences remain below 0.1 and the inter-
class differences reach 0.3 and 0.5 respectively.

1) Bootstrapping: To compare the robustness of metrics
we bootstrap (resample cells with replacement) for a number
of times to see which metric is more consistent in selecting
top genes based on differential expression. As seen in Fig.
2, Earth mover’s distance provides the lowest coefficient of
variation in it’s top 100 genes when the cells are selected
from different distributions. This confirms EMD as the most
robust DE metric for identifying significant genes in a
pathogen response.

D. Cell classification based on the identified genes

After selecting a set of genes G(i, j) that are differen-
tially expressed between two classes L(i) and L( j), we can
assess how accurately the class of a cell can be inferred
only from the expression of genes in G(i, j). For multi-class
classification between classes L(1) to L(k), we use the union
of differentially expressed genes for pairwise classification:
G =

⋃
i∈[[1,k]], j∈[[1,k]],i< j G(i, j)

For a cell, represented as a tuple c =< x,ct >, we can
compute the proportional probability of it belonging to each

class L(i) (i ∈ [[1,k]]) as follows: P(c ∈ L(i) | x) ∝ P(c ∈
L(i)) · ∏g∈GP(xg | c ∈ L(i)) with ∝ indicating proportional
relation. We can now construct a naive Bayes classifier for
c as follows:

L̂ = argmax
L(i)

P(c ∈ L(i) | x), i ∈ [[1,k]] (5)

In Fig. 3 we compare the classification accuracy of cells,
i.e. ratio of cells that are assigned to the correct class. In all
classification problems, same number of cells from each class
is selected. Three classification problems are considered: The
first problem is to identify whether a cell has been exposed
to a pathogen, the second problem is to identify whether
3 hours or 24 hours has passed since a cell’s exposure to
pathogen, and the last problem is to identify the pathogen
type (CA, PA, or MTB) that a cell is exposed to.

It can be seen that the same naive Bayesian classifier
performs significantly more accurately for the same number
of genes when they are selected using the EMD measure
rather than Log difference. Classifying the cells based on
the pathogen type is applied only to the cells after 24
hours of exposure and appears to be the most challenging
classification. Pathogen types are indistinguishable to the
naive Bayes classifier after 3 hours of exposure.

IV. MODELLING DYNAMICS

Having identified the highly differentially expressed genes
in the response we can now investigate modelling the
response dynamics in a reduced state space that consists
of the relative population of each cell type together with
the expression levels of the identified genes. To construct
models, we introduce the bootstrap standard deviation for a
gene denoted as e(bts)

i to estimate measurement uncertainty
and is computed for each gene by calculating the standard
deviation of its average expression level in different cell
bootstraps of the samples. Intuitively, genes that are only
expressed in a small number of cells have higher e(bts)

i since
a small change in the number cells that express the gene
affects it’s average expression significantly. We only consider
modelling genes in which the inter-subject standard deviation
e(0)i is five times higher than e(bts)

i . We should note in spite
of pre-filtering the genes, the number of remaining features,
i.e. identified genes, is still high as compared to the number
of samples. We adopt the standard LASSO formulation to
identify linear models si(t + ∆t) = A(i)sI(i)(t) +N (0,e(i)):
A(i) = argmin(||si(t+∆t)−A(i)sI(i)(t)||2+α||A||1). We recall
that this linear model is a special case of formulation (1).

It can be seen in Fig. 4 that enforcing sparsity results in
models with higher testing accuracy and avoids over-fitting.

Let us now construct the set of models M by defining
the error threshold e(th) from Problem 1 as improving the
prediction accuracy by at least 2 times the bootstrap standard
deviation, namely e(th) = e(0) − 2e(bts). In Fig. 5 we show
the set of models that satisfy e(i) ≤ e(th) in the 20 highest
expressed genes in monocytes in the ∆t = 3h response to
the CA pathogen. Each row corresponds to one model, i.e.
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Fig. 1. Differential expression (DE) of genes based on three EMD, MI and Log metrics. The inter-class points show the difference in expression of
each gene between untreated cells L(UT ) (i.e. no pathogen) and cells that have been exposed to CA for 3 hours L(3hCA). The intra-class samples are where
expression difference is measured between populations of cells that are selected with uniform probability from all cells. As the number of data-points
approaches infinity, intraclass DE is expected to go zero for all metrics (i.e. all red points approach (0,0) in both figures.

Fig. 2. Top 100 differentially expressed genes by each metric, sorted by
their coefficient of variation in 10 bootstraps.

predicting one gene expression after 3 hours, and the non-
zero columns in that row correspond to the genes that are
required for this prediction.

We note that the requirement of model M being closed in
Problem 1 (i.e. condition 2) can also be expressed as: genes
that correspond to columns of the matrix which contain non-
zero values should be a subset of the genes corresponding to
the rows of the matrix. We observe that this is not satisfied
in the model shown in Fig. 5. This implies that even though
we can predict the expression levels of a set of genes at 3
hours after exposure (i.e. one time step), we cannot predict
their expression levels at 6 hours (i.e. two time steps) since
the models rely on some genes that cannot be predicted
at 3 hours with the required accuracy. Nevertheless, these
models can provide insights to immune response pathways;
for instance, DOCK4 and PTAFR are both associated with
gamma interferon production [35], a cytokine known to be
produced as a response to CA [36]. Fig. 5 suggests that
PTAFR may be upstream of DOCK4 in this pathway. Such
hypotheses can be used to inform gene knockout strategies

that provide further insights on the underlying dynamics.

A. Fast and slow responding genes

The over 90% classification accuracy between cells after
3h and cells after 24h hour exposure to pathogens seen in
Fig. 3 suggests that there are genes that significantly change
in expression levels within this time frame. Interestingly we
observe that a number of these genes can be divided to (rel-
atively) fast and slow reacting genes, suggesting that slower
genes are further downstream in the signalling pathways. Fig.
6 shows an example of a fast reacting gene NCF1 and a slow
reacting gene SLAMF8. At 3 hours after exposure NCF1
is highly down-regulated while SLAMF8 expression level
is almost identical to the untreated cells; In contrast, after
24 hours, SLAMF8 is highly up-regulated while NCF1 has
returned to the untreated expression level.

V. CONCLUSION

In this paper we show that when single-cell data is avail-
able, using EMD is a more robust measure of differential ex-
pression in identifying pathogen response genes as compared
to the more widely adopted log difference. We then propose
bootstrapping standard deviation as a an approximation of
sc-RNA measurement uncertainty. This measure can provide
insight on the predictive power of dynamical models to
reduce the rate of false hypotheses. We have shown that
for certain highly differentially expressed genes, models
with strong predictive power can be obtained; however, no
subset of the obtained models satisfy the closed requirement
expressed in Problem 1. This along with the observed fast
responding genes suggests that gene expressions should be
measured in shorter intervals to enable retrieving closed
model sets corresponding to complete signalling pathways.
Furthermore, we note that the obtained models serve as
hypotheses regarding the signalling pathway dynamics that
should be confirmed through gene knockouts or cell type
depletion; nevertheless, we show that construction of the
models in the reduced state space is instrumental in pruning
weak hypotheses. In summary, we have shown that access
to distributions and bootstrapping measures in the sc-RNA,
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Fig. 3. Classification accuracy of naive Bayes classifiers ((5)). Selecting genes using the EMD measure results in higher classification accuracy.

Fig. 4. Linear model identification of 3h response to the CA pathogen.
Each point represents the model used to predict the expression of one gene.
The explained std is measured in terms of bootstrap std.

Fig. 5. Gene response models (∆t = 3h) to CA pathogen in monocytes.

enables identification of informative models regarding sig-
nalling pathway dynamics in the human immune system.
We also note that restriction to linear models is a current
limitation of our approach. We plan to investigate potential
nonlinear formulations that still allow maintaining low false
discovery rates, potentially by enforcing relations only be-
tween pairs of genes that are known to interact at the protein
level. The methods presented in this paper are implemented
in Python and can be accessed on https://github.com/KTH-
DHSG/immune-system-pathogen-response.git.
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