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Abstract— We present a novel type of sampled-data
extremum-seeking control (ESC) aimed at speeding up con-
vergence to the optimum and reducing the number of costly
performance measurements in practical applications. The ap-
proach uses collected output measurements to construct online
an approximation of the system’s steady-state performance
function using kernel-based function approximation. In regions
where this approximation is detected to be sufficiently accurate,
the proposed approach utilizes it to determine the search
direction and compute a suitable optimizer gain for the update
step. In regions where the approximation is not yet accurate,
additional data is collected and employed in a ‘standard’ ESC
update step, while also using it to refine the approximation
of the performance function. By using the approximation of
the performance function to determine the search direction
and optimizer gain when possible, the number of required
performance measurements and parameter update steps can
be significantly reduced, e.g., with respectively 75% and 45%
in our simulation study involving a static cost function.

I. INTRODUCTION

Extremum-seeking control (ESC) is a data-based control
technique aimed at optimizing a system’s steady-state perfor-
mance based on the assumption that a unique, time-invariant
mapping between constant inputs and the steady-state system
performance output exists. Typically, information about the
gradient of this steady-state performance function is obtained
by adding small perturbations (dither) to the system input and
measuring the corresponding output to estimate the gradient
of the performance function at a point of interest. This
gradient information is used in gradient-based optimization
schemes to steer the system input towards its performance-
optimizing value. In general, ESC approaches are either of
the continuous-time type [1]–[4] or the sampled-data type
[5]–[8]. Here, we will focus on schemes of the latter type;
in particular on standard gradient-based schemes as in [5].

While such gradient-based schemes have been used suc-
cessfully in several applications, they also have a number of
drawbacks. Firstly, convergence to the optimum is typically
slow since 1) these approaches require a sufficiently long
waiting time in between input perturbations and output mea-
surements to guarantee that the system output is sufficiently
close to its steady-state value, and 2) the optimizer gain
of the gradient-based optimization scheme (sometimes also
referred to as ‘step size’) should be chosen small to guarantee
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convergence to a close neighborhood of the optimum [8].
Secondly, due to the persistent use of dither to obtain gradient
information of the performance function, one typically only
achieves practical stability of the optimum, as opposed to
more desirable asymptotic stability. Finally, evaluating the
system output for many different constant inputs might be
costly in practical applications, e.g., due to suboptimal inputs
leading to an increase in the number of scrapped products.

To improve the speed of convergence to the optimum,
observers have previously been employed in a continuous-
time ESC setting to obtain improved gradient estimates via
local approximations of the performance function [9]–[11].
Furthermore, in [12], local approximations were obtained
using first-order least-squares fitting to estimate the gradient
without the need for dither, resulting in faster convergence
and asymptotic stability. However, as mentioned in [13], a
drawback of these approaches is that they do not allow the
use of available, previously collected datasets. Therefore, in
[13], a non-local approximation of the performance func-
tion is constructed on the basis of both available datasets
and online measurements. By constructing this non-local
approximation and using its gradient in a gradient-based
optimization scheme, the approach allows the use of pre-
viously collected datasets. Furthermore, in contrast to the
local approximations that are not retained, the non-local
approximation can be reused in case the optimizer returns
to a region it has visited before. However, a drawback of the
continuous-time approach in [13] is that it requires continu-
ously perturbing the system and measuring the output.

In contrast to these continuous-time approaches, the goal
of this work is therefore to improve the rate of convergence to
the optimum and to reduce the number of different inputs that
need to be applied to the system in a sampled-data setting.
This goal is pursued by combining gradient-based sampled-
data ESC with kernel-based function approximation. The
three main contributions of this paper are as follows. Firstly,
as a key stepping stone, we derive bounds on the gradient
approximation error obtained by kernel-based approxima-
tion of the performance map under sufficient regularity
conditions. These error bounds are inspired by the bounds
on the function approximation error in [14]. Secondly, as
a first step towards the general setting of systems with
dynamics, we present a novel ESC scheme for optimizing
static cost functions that extends sampled-data ESC as in
[5] with kernel-based function approximation, in order to
make more efficient use of previous output measurements.
The proposed kernel-based ESC (KB-ESC) approach uses
output measurements that have previously been collected, or
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which are collected online by applying dither, to create online
an approximation of the unknown performance function. In
regions where this approximation is a sufficiently accurate
description of the performance function, KB-ESC uses it
to determine a suitable search direction for a gradient-
based optimization step, instead of applying dither to es-
timate the gradient of the performance function. Moreover,
it uses the approximation to determine a suitable optimizer
gain, instead of using a (typically small) fixed optimizer
gain. In contrast to the approach employed in [13], the
proposed sampled-data approach only requires dither and
measurements in regions where the approximation of the
performance function is not sufficiently accurate. Measuring
only in regions where the approximation is not sufficiently
accurate has the benefit of reducing the number of possibly
costly function evaluations (i.e., steady-state performance
measurements) needed to reach the optimum, and leads to
faster convergence. Furthermore, like the approach in [12],
the KB-ESC approach enables asymptotic stability of the
optimum, since dither is not required for gradient estimation
once the approximation is sufficiently accurate around the
optimum. Thirdly, we show the advantages of the proposed
approach compared standard ESC on a static cost function.

The rest of this paper is organized as follows. In Section II,
we present the problem formulation. In Section III, bounds
on the gradient error in kernel-based function approximation
are presented, and the proposed KB-ESC approach is intro-
duced. A performance comparison of KB-ESC and sampled-
data ESC as in [5] on a static cost function is given in
Section IV. Finally, conclusions are presented in Section V.

II. PROBLEM FORMULATION

Consider the general nonlinear system

ẋ(t) = p(x(t),θ(t)), (1a)
y(t) = q(x(t),θ(t)), (1b)

where x ∈ Rnx denotes its state, θ ∈ Θ ⊂ Rnθ denotes its
input, y ∈ R denotes its output, and p : Rnx × Θ → Rnx

and q : Rnx ×Θ → R denote the state and output functions,
respectively. Given system (1), the following assumption is
typically adopted in extremum-seeking control [1].

Assumption 1: For every constant input θ̄, (1) has a
unique steady-state solution x̄ = l(θ̄). That is, p(x, θ̄) = 0
if and only if x = x̄. Moreover, this steady-state solution is
assumed to be globally asymptotically stable.

Under Assumption 1, there exists a unique steady-state
map f(θ) := lim

t→∞
q(x(t),θ) = q(l(θ),θ) for every constant

input θ. We adopt the following assumption on this map f .
Assumption 2: The steady-state map f has a minimizer

θ∗, such that f(θ∗) ≤ f(θ) ∀θ ∈ Θ.
The goal in extremum-seeking control is to achieve the

minimum steady-state output y∗ = f(θ∗) by steering the in-
put θ to the minimizer θ∗. To achieve this in a sampled-data
context, let us define the zero-order hold (ZOH) operation

θ(t) := θi, ∀t ∈ [(i− 1)T, iT ) (2)

with i ∈ {1, 2, . . . } and waiting time T > 0, and the ideal
T -periodic sampling operation

yi := y(iT ), ∀i ∈ {1, 2, . . . }. (3)

Using these ZOH and sampling operations, a sampled-data
extremum-seeking controller as considered in [5] collects nh

output measurements yi = q(x(iT ), θ̂k + hj(i)) = f(θ̂k +
hj(i)) + ϵi, i ∈ {nhk + 1, . . . , nh(k + 1)}, at each update
step k. Herein, θ̂k is the current estimate of θ∗, hj(i) is
a perturbation vector called a dither signal, j(i) := (i − 1
mod nh) + 1 is the dither index, i is the iteration index,
k := ⌊(i − 1)/nh⌋ is the update index with ⌊·⌋ the floor
function, and ϵi is a perturbation term resulting from the
system not fully being in steady-state at the moment the
output is measured. The output measurements are used to
update θ̂ in an update step taking the following form:

θ̂k+1 ∈ Σ
(
θ̂k, G(θ̂k)

)
. (4)

Here, Σ is a (potentially set-valued) map and G is a function
containing information about the gradient of f at θ̂k, which
is obtained by the output measurements yi. An example of
an optimization scheme taking the form of (4) is the central-
difference-based update step

θ̂k+1 = θ̂k − µ

2h




y2nθk+2 − y2nθk+1

...
y2nθ(k+1) − y2nθ(k+1)−1


 (5)

with y2nθk+l = f(θ̂k + hl) + ϵ2nθk+l, l ∈ {1, 2, . . . , 2nθ},
hl = (−1)lhe⌈l/2⌉ with ⌈·⌉ the ceiling function, h the dither
magnitude, e⌈l/2⌉ the ⌈l/2⌉-th unit vector in Rnθ , and µ > 0
the optimizer gain. Note that for (5), nh = 2nθ evaluations of
f are required for each update step, since l ∈ {1, . . . , 2nθ},
which might be large in case nθ is large.

By requiring nh output measurements for each update
step, and discarding the collected output measurements af-
terwards instead of reusing them to build up knowledge on
the performance map f , optimization schemes of the form
(4) make inefficient use of collected data yi. As mentioned
in the introduction, it is desirable to make more efficient
use of collected data to keep the number of required output
measurements to a minimum. Additionally, update steps of
the form (5) typically require the constant optimizer gain µ
to be chosen sufficiently small to guarantee convergence of
θ̂ to a (small) neighborhood of θ∗, which generally means
that convergence is slow. To address these issues, we extend
sampled-data ESC with kernel-based function approximation
in the next section. As a key stepping stone, we consider
systems without dynamics for simplicity. That is, we restrict
our attention to the case where direct measurements of the
performance function f are available (i.e., ϵi = 0 for all
i = 1, 2, . . . ). We project that the extension to the dynamic
case (ϵi ̸= 0) can be done in the same way as for other
sampled-data ESC schemes.
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III. ESC USING FUNCTION APPROXIMATIONS

In this section, we present our approach to make more
efficient use of output measurements in ESC. To this end, we
first present preliminaries of kernel-based function approxi-
mation. Next, we derive bounds on the gradient approxima-
tion error when using kernel-based function approximation to
approximate the performance function f . Finally, we present
a novel ESC technique that combines sampled-data ESC with
kernel-based function approximation.

A. Preliminaries of kernel-based function approximation

Suppose a dataset D = {(θi, yi) | i = 1, . . . , N} is
available, where Ω = {θ1, . . . ,θN} are N pairwise distinct
inputs for which the system output has been measured, and[
y1 . . . yN

]⊺
=

[
f(θ1) . . . f(θN )

]⊺
=: y are the

corresponding measured outputs. Our goal is to construct
an approximation m of the performance function f based
on the data D. To this end, we will use kernel-based
function approximation, where a kernel is considered to be
a continuous, symmetric function κ : Θ × Θ → R that is
positive definite according to the following definition.

Definition 1: A function κ : Θ × Θ → R is called
positive definite if for any set of pairwise-distinct inputs
{θ1, . . . ,θN} the N ×N Gram matrix K, whose elements
are given by Ki,j = κ(θi,θj), is positive definite.

We assume κ is twice continuously differentiable and write

∇kΩ(·) :=



D(e1,0)κ(·,θ1) . . . D(e1,0)κ(·,θN )

...
. . .

...
D(enθ

,0)κ(·,θ1) . . . D(enθ
,0)κ(·,θN )




and

∇2κ(·, ·) :=



D(e1,e1)κ(·, ·) . . . D(e1,enθ

)κ(·, ·)
...

. . .
...

D(enθ
,e1)κ(·, ·) . . . D(enθ

,enθ
)κ(·, ·)


 ,

where 0 denotes the zero vector in Rnθ , and

D(a,b)κ(θ,θ′) :=

∂ a1+ ...+ anθ
+ b1+ ...+bnθ

∂θa1
1 . . . ∂θ

anθ
nθ ∂(θ′1)

b1 . . . ∂(θ′nθ
)bnθ

κ(θ,θ′).

By the Moore-Aronszajn theorem [15], any kernel κ
satisfying Definition 1 has a uniquely determined repro-
ducing kernel Hilbert space (RKHS) associated with it.
This RKHS, which we denote by H, is defined to be
the completion of the class of functions of the form
g(·) =

∑
i αiκ(·,θi). It is equipped with the inner

product ⟨g1, g2⟩H =
〈∑

i αiκ(·,θi),
∑

j βjκ(·,θj)
〉
H

=
∑

i

∑
j αiβjκ(θi,θj) and norm ∥g∥H :=

√
⟨g, g⟩H.

Given an RKHS H, we approximate f by searching an
m̄ ∈ H such that the evaluations m̄(θi) match yi for all
data pairs (θi, yi) in D, i.e., by solving

m = argmin
m̄∈H

∥m̄∥2H (6a)

s.t. m̄(θi) = yi,∀i = 1, . . . , N. (6b)

By the representer theorem [16], (6) has a solution of the
form m(·) = ∑N

i=1 αiκ(·,θi). Enforcing the constraints (6b)
thus results in the following set of linear equations

y =



κ(θ1,θ1) . . . κ(θ1,θN )

...
. . .

...
κ(θN ,θ1) . . . κ(θN ,θN )


α = Kα, (7)

where α :=
[
α1 . . . αN

]⊺
is a vector of weights. By

Definition 1, the symmetric matrix K is positive definite and
hence invertible. The weights α are thus obtained from (7)
as α = K−1y, resulting in f being approximated by

m(·) =
N∑

i=1

αiκ(·,θi) = kΩ(·)K−1y (8)

with kΩ(·) :=
[
κ(·,θ1) . . . κ(·,θN )

]
.

B. Novel error bound on the gradient approximation error
Since K and y, and thus α, are constant given the dataset

D, and κ is assumed to be twice continuously differentiable,
the gradient of m is given by

∇m(·) =
N∑

i=1

αi



D(e1,0)κ(·,θi)

...
D(enθ

,0)κ(·,θi)


 = ∇kΩ(·)K−1y (9)

with ∇kΩ(·) as defined in Section III-A. To use m in
(gradient-based) optimization schemes aimed at minimizing
f , we are interested in quantifying the function approxi-
mation error |f(θ)−m(θ)| and the gradient approximation
error ∥∇f(θ)−∇m(θ)∥. Hereto, we note that error bounds
on the function approximation error have been obtained in
[14] under the following assumption.

Assumption 3 ([14, Assumption 3]): Given a kernel κ, we
assume that f belongs to its corresponding RKHS H, and
that an upper bound on the norm ∥f∥H ≤ Γ is known.

Under Assumption 3, the function approximation error for
any θ ∈ Θ can be bounded by [14, Proposition 1]

|f(θ)−m(θ)| ≤ PΩ(θ)

√
Γ2 − ∥m∥2H, (10)

where PΩ(θ) :=
√
κ(θ,θ)− kΩ(θ)K−1 (kΩ(θ))

⊺ and

∥m∥2H =

〈
N∑

i=1

αiκ(·,θi),

N∑

j=1

αjκ(·,θj)

〉

H

(11)

=

N∑

i=1

N∑

j=1

αiαjκ(θi,θj) = α⊺Kα. (12)

Next, we will show that bounds of similar form can
also be obtained for the gradient approximation error
∥∇f(θ)−∇m(θ)∥, as given by the following theorem.

Theorem 1: Under Assumption 3, given an approximation
m obtained by solving (6) on the basis of a dataset D =
{(θi, yi) | i = 1, . . . , N} with pairwise distinct inputs Ω =
{θ1, . . . ,θN} and corresponding function values yi = f(θi),
∥∇f(θ)−∇m(θ)∥ for any θ ∈ Θ can be bounded as

∥∇f(θ)−∇m(θ)∥ ≤ λ̄
(
P̃Ω(θ)

)√
Γ2 − ∥m∥2H, (13)
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where P̃Ω(θ) :=
(
∇2κ(θ,θ)−∇kΩ(θ)K

−1 (∇kΩ(θ))
⊺) 1

2

and λ̄(P̃Ω(θ)) is its maximum eigenvalue.
Proof: The proof follows steps along the lines of the

proof of [14, Proposition 1]. Let D̃ = D ∪ (θ̃,∇f(θ̃)) be the
dataset D with a single additional virtual gradient observation
pair (θ̃,∇f(θ̃)). An approximation m̃ of f interpolating all
data pairs in D̃ can be obtained by solving (cf. (6))

m̃ = argmin
m̄∈H

∥m̄∥2H (14a)

s.t. m̄(θi) = yi,∀i = 1, . . . , N, (14b)

∇m̄(θ̃) = ∇f(θ̃). (14c)

By [17, Theorem 2], (14) has a solution of the form

m̃(·) =
N∑

i=1

αiκ(·,θi) +

nθ∑

j=1

αN+jD
(0,ej)κ(·, θ̃) (15)

=
[
kΩ(·)

(
∇kθ̃(·)

)⊺]
α̃ (16)

with ∇kθ̃(·) :=
[
D(0,e1)κ(·, θ̃) . . . D(0,enθ

)κ(·, θ̃)
]⊺

,

α̃ :=
[
α1 . . . αN+nθ

]⊺
, and kΩ(·) as defined in Sec-

tion III-A. Similar to before, the gradient of m̃ is given by

∇m̃(·) =
N∑

i=1

αi



D(e1,0)κ(·,θi)

...
D(enθ

,0)κ(·,θi)


+

nθ∑

j=1

αN+j



D(e1,ej)κ(·, θ̃)

...
D(enθ

,ej)κ(·, θ̃)




(17)

=
[
∇kΩ(·) ∇2κ(·, θ̃)

]
α̃. (18)

Enforcing the constraints (14b) and (14c) in (16) and (18),
respectively, and defining ỹ :=

[
y⊺ (∇f(θ̃))⊺

]⊺
, we

obtain the following set of linear equations

ỹ =




m̃(θ1)
...

m̃(θN )

∇m̃(θ̃)


 =




kΩ(θ1) (∇kθ̃(θ1))
⊺

...
...

kΩ(θN ) (∇kθ̃(θN ))⊺

∇kΩ(θ̃) ∇2κ(θ̃, θ̃)


 α̃ (19)

=

[
K (∇kΩ(θ̃))

⊺

∇kΩ(θ̃) ∇2κ(θ̃, θ̃)

]
α̃ =: K̃α̃. (20)

It follows from (16) and reproducing properties [17,
Theorem 1] D(0,ej)κ(θi, θ̃) = ⟨κ(·,θi), D

(0,ej)κ(·, θ̃)⟩H,
D(ej ,0)κ(θ̃,θi) = ⟨D(0,ej)κ(·, θ̃), κ(·,θi)⟩H and
D(ei,ej)κ(θ̃, θ̃) = ⟨D(0,ei)κ(·, θ̃), D(0,ej)κ(·, θ̃)⟩H that

∥m̃∥2H =

〈
N∑

i=1

αiκ(·,θi) +

nθ∑

j=1

αN+jD
(0,ej)κ(·, θ̃), . . .

N∑

i=1

αiκ(·,θi) +

nθ∑

j=1

αN+jD
(0,ej)κ(·, θ̃)

〉
(21)

=

N∑

i=1

N∑

j=1

αiαjκ(θi,θj) +

N∑

i=1

nθ∑

j=1

αiαN+jD
(0,ej)κ(θi, θ̃)

+

N∑

i=1

nθ∑

j=1

αiαN+jD
(ej ,0)κ(θ̃,θi)

+

nθ∑

i=1

nθ∑

j=1

αN+iαN+jD
(ei,ej)κ(θ̃, θ̃) (22)

= α̃⊺K̃α̃. (23)

Assuming K̃ is invertible, we use (20) and block matrix
inversion to write (23) as

∥m̃∥2H = ỹ⊺K̃−1ỹ (24)

= ỹ⊺

[
K−1 +XP̃−2

Ω (θ̃)X⊺ −XP̃−2
Ω (θ̃)

−P̃−2
Ω (θ̃)X⊺ P̃−2

Ω (θ̃)

]
ỹ (25)

= y⊺K−1y + ỹ⊺

[
X

−I

]
P̃−2
Ω (θ̃)

[
X

−I

]⊺
ỹ (26)

= y⊺K−1y +
∥∥∥P̃−1

Ω (θ̃)
(
X⊺y −∇f(θ̃)

)∥∥∥
2

, (27)

where X := K−1(∇kΩ(θ̃))
⊺, and P̃ 2

Ω(θ̃) := ∇2κ(θ̃, θ̃) −
∇kΩ(θ̃)K

−1(∇kΩ(θ̃))
⊺ is the (symmetric) Schur comple-

ment of K in K̃. Using (7), (9), (12) and (27), we obtain

∥m̃∥2H = ∥m∥2H +
∥∥∥P̃−1

Ω (θ̃)
(
∇m(θ̃)−∇f(θ̃)

)∥∥∥
2

. (28)

Denoting the minimum and maximum eigenvalue of a matrix
A by λ (A) and λ̄ (A), respectively, we note that λ

(
A−1

)
=

λ̄−1 (A) and λ̄
(
A2

)
= λ̄2 (A). Furthermore, we note that

since P̃Ω(θ̃) is symmetric, it holds that

λ
(
P̃−2
Ω (θ̃)

)∥∥∥∇m(θ̃)−∇f(θ̃)
∥∥∥
2

≤
∥∥∥P̃−1

Ω (θ̃)
(
∇m(θ̃)−∇f(θ̃)

)∥∥∥
2

. (29)

With these observations we obtain the following inequality
from (28)

∥m∥2H + λ̄−2
(
P̃Ω(θ̃)

)∥∥∥∇f(θ̃)−∇m(θ̃)
∥∥∥
2

≤ ∥m̃∥2H .

(30)

Finally, note that ∥m̃∥H ≤ ∥f∥H ≤ Γ, where the first
inequality follows from the fact that f ∈ H and m̃ is the
function in H with the smallest norm that interpolates all
data pairs in D̃, while the second follows from Assumption 3.
Consequently, alternatively to (30), we can write

∥m∥2H + λ̄−2
(
P̃Ω(θ̃)

)∥∥∥∇f(θ̃)−∇m(θ̃)
∥∥∥
2

≤ Γ2, (31)

from which (13) follows by rewriting the inequality and
noting that θ̃ could be any input θ ∈ Θ.

C. Kernel-Based Extremum-Seeking Control

As mentioned in Section II, in ESC typically nh output
measurements are made to perform update steps (4) aimed at
finding the minimizer θ∗. Instead of discarding these output
measurements after each update step, as is commonly done in
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sampled-data ESC, we collect those measurements and their
corresponding inputs in a dataset D as defined in Section III-
A. Each time a new data pair (θi, yi) is added to D, we can
obtain a new approximation m of the performance function
f using the kernel-based function approximation technique
described in Section III-A. If m is a sufficiently accurate
approximation of f around θ̂k (in a sense that will be defined
shortly below), we use update steps

θ̂k+1 = θ̂k − µ̂∇m(θ̂k), (32)

where µ̂ > 0 is a suitable optimizer gain, instead of the
classical update steps in the form (4). We say that m is a
sufficiently accurate approximation of f around θ̂k if there
exists a µ̂ that satisfies the Armijo condition [18, Chapter 3]

f(θ̂k+1) ≤ f(θ̂k)− cµ̂
(
∇f(θ̂k)

)⊺
∇m(θ̂k). (33)

Here, the control parameter c ∈ (0, 1) is a given constant
that is typically chosen small, and θ̂k+1 is defined as in
(32). Furthermore, we call any µ̂ for which (33) is satisfied a
suitable optimizer gain. Using this definition for the accuracy
of m, an update step (32) with a suitable optimizer gain µ̂
guarantees a sufficient decrease in f to aid convergence if
−∇m is a descent direction [18, Chapter 3]. The following
lemma provides sufficient conditions for using m to check if
(33) is satisfied and to check if −∇m is a descent direction.

Lemma 1: Under the same conditions as Theorem 1, the
Armijo condition (33) is guaranteed to be satisfied if

m(θ̂k)− δ1(θ̂k)− cµ̂(∥∇m(θ̂k)∥2 + δ2(θ̂k)∥∇m(θ̂k)∥)
≥ m(θ̂k − µ̂∇m(θ̂k)) + δ1(θ̂k − µ̂∇m(θ̂k)) (34)

with δ1(·) := PΩ(·)
√

Γ2 − ∥m∥2H the bound on the
function approximation error from (10), and δ2(·) :=

λ̄
(
P̃Ω(·)

)√
Γ2 − ∥m∥2H the bound on the gradient approx-

imation error from (13). Moreover, −∇m(θ) is guaranteed
to be a descent direction if δ2(θ) < ∥∇m(θ)∥.

Proof: It follows from (10) that f can be bounded as

m(θ)− δ1(θ) ≤ f(θ) ≤ m(θ) + δ1(θ). (35)

Furthermore, from the Cauchy-Schwarz inequality and (13)

∇f(θ)⊺∇m(θ)

= ∥∇m(θ)∥2 + (∇f(θ)−∇m(θ))
⊺ ∇m(θ)

≤ ∥∇m(θ)∥2 + ∥∇f(θ)−∇m(θ)∥ ∥∇m(θ)∥
≤ ∥∇m(θ)∥2 + δ2(θ) ∥∇m(θ)∥ =: γ(θ). (36)

Combining the left inequality in (35) and (36), it follows that

m(θ)− δ1(θ)− cµ̂γ(θ) ≤ f(θ)− cµ̂∇f(θ)⊺∇m(θ).
(37)

Thus, if (34) is satisfied, then it follows from combining (32),
the right inequality in (35), and (37) that

f(θ̂k+1) ≤ m(θ̂k − µ̂∇m(θ̂k)) + δ1(θ̂k − µ̂∇m(θ̂k))

≤ m(θ̂k)− δ1(θ̂k)− cµ̂γ(θ̂k)

≤ f(θ̂k)− cµ̂∇f(θ̂k)
⊺∇m(θ̂k), (38)

which is the Armijo condition (33), concluding the proof of
the first statement. The second statement follows from using
similar steps as in (36) to show that −∇f(θ)⊺∇m(θ) < 0
for ∇f(θ) ̸= 0 if δ2(θ) < ∥∇m(θ)∥.

Since evaluations of m are cheap compared to possibly
costly measured evaluations of f , Lemma 1 allows to select
a suitable optimizer gain µ̂ to be used in (32) that guarantees
that (33) is satisfied solely on the basis of knowledge on the
approximation m, its gradient, and their error bounds in (10)
and (13), or to decide to use a classical ESC update step
as in (4) if such µ̂ cannot be found. To this end, we use a
backtracking line search that iteratively reduces µ̂ by a factor
ρ ∈ (0, 1), starting from a given maximum value µmax. The
search terminates when either a µ̂ satisfying (34) is found,
or µ̂ becomes smaller than a given minimum value µmin. In
the latter case, we assume no suitable optimizer gain µ̂ exists
and that the approximation m is not sufficiently accurate. In
this case, we perform nh additional output measurements as
in standard ESC, and use them to perform an update step
of the form (4). Additionally, we add the newly collected
data pairs (θi, yi), consisting of the output measurements
and the corresponding inputs, to the dataset D to improve the
approximation m. This approach, which we will refer to as
kernel-based ESC (KB-ESC), is summarized in Algorithm 1.

Note that update steps of the form (32) do not require
any additional output measurements, as opposed to the
nh output measurements required for update steps of the
form (4). Furthermore, the backtracking line search allows
computation of a suitable optimizer gain µ̂ at each update
step of the form (32), in contrast to requiring a (typically
small) constant optimizer gain µ, e.g., in update steps of the
form (5). By using update steps of the form (32) whenever m
is a sufficiently accurate approximation of f , KB-ESC thus
reduces the total number of output measurements by making
more efficient use of previously collected data, and possibly
allows for faster convergence by allowing computation of a
suitable µ̂ at these update steps. Satisfaction of the Armijo
condition (33), which by Lemma 1 is guaranteed by satis-
faction of (34), ensures a sufficient decrease in the system
output upon each update (32) to guarantee θ̂ converges to (a
neighborhood of) the minimizer θ∗ over time.

Remark 1: In the above we considered a static system
where the measurements yi = f(θi) + ϵi give direct eval-
uations of the performance function f with all ϵi = 0. In
the dynamic setting, generally only perturbed measurements
(ϵi ̸= 0) are available due to the system not fully being
in steady-state when the output is measured after a finite
waiting time. However, by Assumption 1, for every ϵ̄ there
exists a waiting time Tϵ̄ such that |ϵi| ≤ ϵ̄, ∀i = 1, 2, . . .
(i.e., |y(t)− f(θ)| ≤ ϵ̄ for all t ≥ Tϵ̄). In case such
ϵ̄ corresponding to the chosen waiting time T is known,
or in case a waiting time Tϵ̄ is known such that ϵ̄ is
guaranteed to be smaller than a desired value, one could
use for example ε-support vector regression to obtain an
approximation m. Using such approach, steps similar to the
proof of [14, Theorem 2] could be used to derive a bound on
the gradient approximation error ∥∇f(θ)−∇m(θ)∥ of the
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Algorithm 1 Kernel-Based Extremum-Seeking Control

1: Input: initial input θ̂0, line search starting value µmax, line
search termination value µmin, reduction factor ρ,
dither h, and maximum number of iterations kmax.

2: Output: estimate θ̂ of the minimizer θ∗

3: procedure KB-ESC(θ̂0, µmax, µmin, ρ, h, kmax)
4: k ← 0, D ← {}, θ̂ ← θ̂0

5: Perform nh output measurements with dither h as
described in Section II.

6: Update θ̂ according to (4).
7: Update the dataset D with the collected data pairs (θi, yi),

i ∈ {nhk + 1, . . . , nh(k + 1)}. Use the updated D to
determine the new m and ∇m according to (8) and (9).

8: while k < kmax do
9: k ← k + 1, µ̂← µmax

10: while µ̂ ≥ µmin and not (34) do
11: µ̂← ρµ̂
12: end while
13: if µ̂ ≥ µmin and δ2(θ̂) < ∥∇m(θ̂)∥ then
14: Update θ̂ according to (32).
15: else
16: Perform the steps described in lines 5-7.
17: end if
18: end while
19: end procedure

form (13) plus some additional perturbation induced by the
mismatch of the measured performance output with respect
to the steady-state performance function. This bound can be
used to obtain a condition similar to (34) to check if the
Armijo condition is guaranteed to be satisfied. Similar to [14,
Theorem 2], the additional perturbation will decrease as ϵ̄
decreases (e.g., by choosing a longer waiting time), and (13)
is recovered for ϵ̄ = 0. We project that these insights can be
used to extend the results in this paper to the scenario of KB-
ESC for steady-state performance optimization of dynamical
systems, but this will be addressed in a future investigation.

IV. SIMULATION STUDY

We compare the performance of KB-ESC to standard
sampled-data ESC as considered in [5], by applying both
approaches to the static cost function f(θ) = − 1

2κ(θ,−1)−
2κ(θ, 0) − κ(θ, 1) + κ(θ, 2) + 1

2κ(θ, 3), where κ(θ, θ′) =
exp(−(θ − θ′)2/σ2) is a squared exponential kernel with
length scale σ = 4. Starting from the initial guess θ̂0 =
5, we use updates of the form (5) with dither amplitude
h = 0.1 in both approaches when updating θ̂k on the basis
of output measurements. Furthermore, for KB-ESC, we use
c = 10−4 for the Armijo control parameter (cf. (34)), and
the backtracking parameters ρ = 0.9, µmax = 50, and
µmin = 0.01. Finally, we use Γ = 3 as a 20% higher
conservative upper bound on the true value of ∥f∥H = 2.49.

The performance of both approaches is compared for a
low optimizer gain (µ = 0.1 in (5)), an intermediate one
(µ = 1), and a high one (µ = 10). In the low-gain case,
changes in the estimate θ̂ of the minimizer are small for
standard ESC, resulting in a slow convergence rate, as shown
in Fig. 1. Conversely, for KB-ESC, larger changes in θ̂ can
be observed due to a larger optimizer gain µ̂ being chosen
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Fig. 1: Estimate θ̂ at update k for the two ESC approaches in
the low-gain case (µ = 0.1). Shaded intervals indicate KB-
ESC updates needing output measurements. Convergence to
the minimizer θ∗ is quicker for KB-ESC and requires only
8 output measurements (needed in 4 update steps).

whenever condition (34) from Lemma 1 can be satisfied.
These large changes result in faster convergence of θ̂ towards
the minimizer θ∗ = −0.66. Moreover, for KB-ESC, only the
4 update steps indicated by the shaded intervals in Fig. 1
require output measurements. Since nh = 2 for these update
steps (cf. (5)), KB-ESC only requires 8 output measurements
to converge to the minimizer θ∗, whereas standard ESC used
40 measurements for the 20 updates shown in Fig. 1 alone.

Faster convergence to θ∗ is obtained for standard ESC
in the intermediate-gain case (µ = 1), as can be seen by
comparing Fig. 2 to Fig. 1. However, similar to the small-
gain case, KB-ESC converges even faster due to its ability
to use larger optimizer gains µ̂ at some update steps. As a
result, KB-ESC requires 45% fewer update steps to achieve
the same level of accuracy as standard ESC (9 instead of
20). Furthermore, KB-ESC only requires 5 update steps with
output measurements, as illustrated by the shaded intervals
in Fig. 2. Because of this, only 10 output measurements are
made instead of 40, leading to a reduction of 75%.

Finally, in the high-gain case (µ = 10), the optimizer gain
is too large for θ̂ to converge to a small neighborhood of θ∗

using standard ESC, as shown in Fig. 3. In contrast, for KB-
ESC, θ̂ converges to θ∗ as a result of a smaller optimizer gain
µ̂ that guarantees a sufficient decrease in f being computed
at updates of the form (32). The convergence is achieved
using only 5 update steps in which output measurements
are required, as indicated by the shaded intervals in Fig. 3,
resulting in only 10 output measurements being made.

V. CONCLUSION

We presented a novel extremum-seeking control (ESC)
approach that combines sampled-data ESC with kernel-
based function approximation aimed at making more effi-
cient use of previously collected data. This new approach,
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Fig. 2: Estimate θ̂ at update k for the two ESC approaches
in the intermediate-gain case (µ = 1). Shaded intervals
indicate KB-ESC updates needing output measurements.
Convergence to the minimizer θ∗ is quicker for KB-ESC and
requires only 10 output measurements (needed in 5 updates).

named kernel-based extremum-seeking control (KB-ESC),
uses system output measurements and their corresponding
inputs obtained during standard sampled-data ESC steps
to construct a kernel-based approximation of the system’s
steady-state performance function. In regions where the
approximation is sufficiently accurate, this approximation is
used to determine a search direction and a suitable optimizer
gain without performing additional output measurements.
By using the approximation of the performance function
to determine the search direction, the number of costly
output measurements required for optimizing the steady-
state performance is reduced. Additionally, the computation
of a suitable optimizer gain based on the approximation
of the performance function increases the convergence rate
compared to standard gradient-based sampled-data ESC.
These benefits have been shown in a simulation case study
involving a static cost function, in which KB-ESC achieved
reductions of 75% and 45% in the number of required output
measurements and update steps, respectively, to converge as
close to the minimizer as standard sampled-data ESC. Future
work will consider extension of KB-ESC to the dynamic
setting, and a formal analysis of its convergence properties.
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