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Abstract— We consider the problem of identifying the admit-
tance matrix of a three-phase radial network from voltage and
current measurements at a subset of nodes. These measure-
ments are used to estimate a virtual network represented by
the Kron reduction (Schur complement) of the full admittance
matrix. We focus on recovering exactly the full admittance
matrix from its Kron reduction, i.e., computing the inverse
of Schur complement. The key idea is to decompose Kron
reduction into a sequence of iterations that maintains an
invariance structure, and exploit this structure to reverse each
step of the iterative Kron reduction.

I. INTRODUCTION

Modeling distribution networks below substations is in-
creasingly important as distributed energy resources prolif-
erate on these systems. Today these networks are sparsely
monitored at best, with few µPMUs (micro-Phasor Measure-
ment Units) beyond the SCADA (Supervisory Control and
Data Acquisition) system at substations and smart meters
at utility customers. As a result, the utility company often
does not have an accurate model of its network as it evolves
either due to faults, repairs or upgrades. This limits their
ability to analyze power flows and optimize their planning
and operations. This has motivated a large number of papers
to identify the topology, line admittances, or switch status
of distribution grids. A recent tutorial [1] explains different
approaches in the literature and contains an extensive list of
references. Various methods have been proposed for these
identification problems using AMI data (voltage magnitudes,
real and reactive power injections) or PMU data (voltage
and current phasors, real and reactive line flows), measured
at all or a subset of nodes, with only passive measurement
or also active probing, for single-phase or unbalanced three-
phase networks, in radial or mesh topologies (see Table 1 of
[1]). Most of the literature focuses on identification problems
for single-phase networks or assumes measurements are
available at every node in the network. This paper studies
the identification of the admittance matrix (topology and
line admittances) for unbalanced three-phase radial networks
from voltage and current measurements at a subset of nodes.
This is more realistic for distribution systems.

A. Summary

The phasors of the nodal voltages V and current injections
I are related linearly, I = Y V , by the complex symmetric
admittance matrix Y . When only a subset of the voltage
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and current phasors (V1, I1) are measured, they satisfy
I1 = Ȳ V1 where Ȳ is called the Kron reduced admittance
matrix. It describes a virtual network topology consisting of
only measured nodes and the “effective” line admittances
connecting these nodes. To identify the full matrix Y from
the partial measurement (V1, I1), we first estimate the Kron
reduced admittance matrix Ȳ from (V1, I1). This corresponds
to identification from full measurements and several methods
in the literature can be applied, e.g., [1], [2–4]. Then we
identify the unique Y given Ȳ , the focus of this paper.

The mathematical problem is as follows. Consider any

complex symmetric matrix Y =:

[
Y11 Y12
Y21 Y22

]
with a non-

singular Y22 where Y11 describes the connectivity between
measured nodes, Y22 describes the connectivity between
hidden nodes, and Y12 describes the connectivity between
measured and hidden nodes. The Kron reduced admittance
matrix Ȳ is the Schur complement of Y22 of Y . This defines
a mapping from Y to Ȳ given by

Ȳ := f(Y ) := Y11 − Y12Y −122 Y21

When does the inverse f−1(Ȳ ) exist and how to compute
it when it does? In this paper we show that f−1(Ȳ ) exists
when the graph underlying Y is a tree (and when some other
conditions hold), by describing an explicit construction of Y
from Ȳ .

Our construction method extends the method in [5] for
single-phase radial networks to an unbalanced three-phase
setting. For a single-phase radial network, the series line
admittances are always nonzero. This allows certain struc-
tural properties important for the identification of Y to be
preserved under Kron reduction. In a multi-phase network
however line admittances are 3× 3 matrices for a three-wire
model. It is often unclear when Kron reduction exists or
whether these structural properties are still preserved under
Kron reduction. Following the same idea in [5], we have
developed in [19] two new results to overcome the difficul-
ties in the three-phase setting. Specifically the construction
method in [19] consists of three main algorithms:

1) Algorithm 1: Reduces the overall identification prob-
lem into the special case of identifying the admittance
matrix of a single maximal clique consisting of mea-
sured leaf nodes connected by a tree of hidden nodes.
This procedure is the same for both single-phase and
unbalanced three-phase networks [5].

2) Algorithm 2: Identifies a maximal clique in an un-
balanced three-phase setting. Consider iterative Kron
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reduction where a single hidden node is reduced in
each iteration. The novel idea is to characterize an
invariant structure that is preserved in one-step Kron
reduction and use it to derive its one-step inverse,
yielding an iterative reverse Kron reduction.

3) Algorithm 3: Identifies a new hidden node to be added
in each iteration of Algorithm 2 to the set of identified
nodes. This new hidden node is adjacent to a subset
of sibling nodes that have been identified in previous
iterations. A sibling grouping property of [5] that
underlies Algorithm 3 is generalized from single-phase
to three-phase setting under a (restrictive) uniform line
assumption.

Due to the page limit, we will only formulate the network
identification problem in this paper and summarize Algo-
rithm 2 that solves the special case and forms the core of
the overall construction method.

B. Prior work

We leave the discussion of the large literature on single-
phase identification problems to the comprehensive tutorial
[1]. We leave out papers on topology and line parameter
identification using active probing (e.g. [6]) and cover only
methods that use passive measurements. We also leave out
a large literature on line parameter estimation given network
topology and cover only methods that involve topology
estimation. We now summarize several papers on the identifi-
cation of unbalanced three-phase networks, with an emphasis
on papers that explicitly exploit the radial structure of the
network

Operational radial networks. Consider a given mesh network
in which tie switches and sectionalizing switches are config-
ured so that the operational network at any time consists of a
forest of nonoverlapping trees that span all nodes. Often the
switch status may not be known accurately due to frequent
reconfigurations or manual changes in distribution systems.
The problem of estimating the switch status and hence
the operational topology is called topology detection. It is
studied in [7, 8], both of which extend the statistical method
of [9] from a single-phase to an unbalanced three-phase
setting. The key idea is to use a linear or linearized model
that related voltages (phasors or magnitudes) V to nodal
power injections (p, q) or current injections I . Then assuming
the nodal injections are statistical independent, their second
moments induce second moments on V that have the sibling
grouping property in [10, Lemma 4]. A recursive grouping
algorithm similar to that in [10] is then used to identify
successively each node’s unique parent, starting from leaf
nodes, and thus the operational tree. In [11], the topology
detection problem is formulated instead as a mixed integer
linear program based on the three-phase linear DistFlow
model of [12]. The operational topology is taken to be a
minimizer of normalized l1 norm of observation error. All
these works assume the topology and line admittances are
known, while they are what we aim to identify.

Radial topology identification. Given a set of network nodes,

topology identification is the problem of identifying the lines
connecting these nodes. Reference [13] identifies the radial
network topology (and bus phase labels) by extending the
graphical-model method of [14] from a single-phase to an un-
balanced three-phase setting with unknown phase identities.
A key assumption of [14] is that the injection current phasors
at different nodes are statistically independent. This leads to
the important conclusion that the joint distribution p(V ) :=
p(V1, . . . , Vn) of the voltage phasors on a radial network is
what is called a probability distribution of first-order tree
dependence in [15] or a latent tree graphical model in [10].
Moreover, if we label the edges (j, k) of the complete graph
with n nodes by the mutual information I(Vj , Vk), then the
latent tree is a maximum-weight spanning tree [15]. This
leads to the identification algorithm of [14] for single-phase
radial networks and its extension in [13] for unbalanced
three-phase radial networks. Unlike the problem we study,
topology identification does not estimate line parameters.

Radial admittance matrix identification. The problem of
admittance matrix (or impedance matrix) identification is the
problem of determining topology and line admittances (or
impedances) from measurements. This is the problem studied
in [2], as well as in this paper, when measurements are
available only at a subset of the nodes. Both papers first use
measurements to estimate the Kron reduced admittance (or
impedance) matrix. To identify from the Kron reduction the
hidden nodes where measurements are not available, [2] uses
the recursive grouping algorithm of [10, Section 4] to identify
the impedance matrix for single-phase radial networks. We
instead develop a different method to identify the admittance
matrix Y .

Mesh networks. Besides radial networks, identification prob-
lems are studied in [3, 4, 16, 17] for unbalanced three-phase
mesh networks. All these methods apply to both single or
three-phase systems, radial or mesh. Our method explicitly
exploits the radial structure of distribution grids.

C. Organization and notation

We formulate in Section II the network identification
problem studied in this paper. To identify a single maximal
clique, we characterize in Section III an invariant structure
that is preserved under iterative Kron reduction and use it
to derive a reverse iterative Kron reduction. We conclude in
Section IV.

We write a column vector in Cn either as x = (x1, . . . , xn)

or x =

x1...
xn

. We use 1k to denote the column vector of

k 1s and Ik to denote the identity matrix of size k. Then
1j ⊗ Ik is the jk × k matrix of j identity matrices each
of size k stacked vertically. When the dimension is clear
from the context we often write 1 and I for 1k and Ik
respectively. If A1, · · · , Aj are j matrices each of k × k,
then diag (A1, · · · , Aj) is the jk×jk block-diagonal matrix
with A1, · · · , Aj as its diagonal blocks. Given an admittance
matrix A, G(A) denotes its underlying graph. We will often
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use A to refer to either the admittance matrix, its underlying
graph G(A), or the set of nodes in G(A), when the meaning
should be clear from the context.

II. NETWORK IDENTIFICATION PROBLEM

In this section we formulate our network identification
problem.

A. Admittance matrix Y

Consider a network G := (N,E) with n nodes where
N := {1, . . . , N} is the set of nodes and E ⊆ N × N
is the set of lines. We use N to denote both the set and
the number of nodes; the meaning should be clear from the
context. We assume the network G is three-phased, where
each line is characterized by a 3×3 series admittance matrix
yjk ∈ C3×3 and the admittance matrix Y of G is a 3N×3N
matrix. We assume shunt admittances are zero. We will refer
to the rows (columns) 3j − 2, 3j − 1, 3j that are associated
with node j as the jth row block (jth column block). We
use Y [j, k] ∈ C3×3 to denote the 3× 3 submatrix consisting
of the jth row block and the kth column block. Then the
admittance matrix Y is defined by Y [j, k] = −yjk 6= 0
if (j, k) ∈ E, Y [j, j] =

∑
k:(j,k)∈E yjk, and Y [j, k] = 0

otherwise.
We make the following assumption on the network G and

its line admittance matrices yjk.

Assumption 1 (Line admittances). We assume the network
G is radial (i.e., with tree topology) and connected. For all
lines (j, k) ∈ E, we assume that shunt admittances are zero
and the series admittance matrices yjk satisfy:

1) yjk = ykj ∈ C3×3 so that Y [j, k] = Y [k, j].
2) yjk are symmetric so that Y T = Y .
3) Re(yjk) � 0, i.e., yjk is positive definite, where

Re(yjk) is the real part of the line admittance matrix
yjk.

Assumption 1 leads to useful properties, from [18], sum-
marized in the next lemma which is fundamental to three-
phase identification.

Lemma 1 ([18]). Suppose Assumption 1 holds.

1) For any line (j, k) ∈ E, y−1jk exists and is complex

symmetric. Moreover Re
(
y−1jk

)
� 0.

2) For any strict subset A ( N , Y −1A exists and is
complex symmetric. Moreover both Re(YA) � 0 and
Re
(
Y −1A

)
� 0.

3) (YA/B22)
−1 exists and is complex symmetric. More-

over both Re(YA/B22) � 0 and Re
(
(YA/B22)−1

)
�

0.

Remark 1 (Assumption 1). The importance of Assumption
1 is that it allows us to take inverse of any principal sub-
matrix of the admittance matrix Y , justifying arbitrary and
successive Kron reductions. It also allows certain structural
properties to be preserved under Kron reduction, which
underlies our results in Sections III.

B. Hidden nodes and Kron reduction Ȳ

We assume there are two types of nodes, i.e., N =: M∪H .
Nodes j ∈M are called measured nodes whose three-phase
nodal voltage and current injection phasors (Vj , Ij) ∈ C6 are
measured. Nodes j ∈ H are called hidden nodes whose nodal
voltages and currents are not measured. We abuse notation
and use M and H to denote both the sets and the numbers
of measured and hidden nodes, so N = M +H . The nodes
are labeled such that the first M nodes are measured and the
last H buses are hidden. We partition the admittance matrix
into four sub-matrices accordingly:

Y =:

[
Y11 Y12
Y21 Y22

]
(1)

where Y11 ∈ C3M×3M specifies the connectivity between
measured nodes, Y22 ∈ C3H×3H specifies the connectivity
between hidden nodes, Y12 specifies the connectivity be-
tween measured and hidden nodes, and Y21 = Y T

12 under
Assumption 1. Partition the voltage and current phasors
accordingly: (V1, I1) correspond to the voltages and currents
of measured nodes and (V2, I2) those of hidden nodes. If
the current injections I2 at hidden nodes are zero, then the
network model is:[

I1
0

]
=

[
Y11 Y12
Y21 Y22

] [
V1
V2

]
Under Assumption 1, Lemma 1 implies that Y22 is non-
singular and hence we can eliminate V2 by computing the
Schur complement Y/Y22 of Y22 of Y . We denote the Schur
complement by Ȳ :

Ȳ := Y/Y22 := Y11 − Y12Y −122 Y
>
12 (2a)

and call Ȳ a Kron-reduced admittance matrix or a Kron
reduction of Y because Ȳ relates the voltages and currents
at the measured nodes:

I1 = Ȳ V1 (2b)

The matrix Ȳ is the admittance matrix of a virtual network
consisting of only measured nodes in which two measured
nodes are adjacent G(Ȳ ) if and only if there is a path consist-
ing of only hidden nodes that connect them in the original
graph G(Y ). As mentioned above, the identification of Ȳ
from the measurements (V1, I1) is the same as identification
from full measurements and several methods in the literature
can be used, e.g., [1], [2–4]. We assume this has been done
and focus on identifying Y from a given Kron reduction Ȳ .

The following assumption is necessary for reversing Kron
reduction in Section III-C.

Assumption 2 (Hidden nodes). 1) Hidden nodes have
zero injections Ii = 0 ∈ C3, ∀i ∈ H .

2) Every hidden node has node degree at least 3.

C. Special case: single maximal clique

The network identification problem we study is: given a
Kron-reduced admittance matrix Ȳ , our goal is to construct
the original admittance matrix Y that satisfies (2a) under
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Assumptions 1 and 2 (as well as Assumption 3 in Section
III-C).

Due to page limit, we will consider only a special case
in this paper where the network graph G(Y ) consists of
(degree-1) leaf nodes, all of which are measured, connected
through a tree of hidden nodes. Its Kron reduction G(Ȳ ) is a
single maximal clique consisting of only the measured nodes
arranged in a complete graph. It is shown in the full version
of this paper [19] that the general identification problem can
be reduced to solving this special case.

III. IDENTIFICATION OF MAXIMAL CLIQUE

In Section III-A we define the network to be identified in
this paper and describe an iterative procedure that computes
its Kron reduction by reducing one hidden node in each
step, starting from a tree of measured and hidden nodes and
terminating in a single maximal clique of only measured
nodes. The key is to track a certain permuted admittance
matrix Âl of the graph in each step as well as its principal
submatrix Cl that represents the clique subgraph. In Section
III-B we derive an invariant structure of this sequence of
matrices (Âl, Cl) as the original graph is being iteratively
Kron reduced. In Section III-C we show how to reverse
each iteration using this invariant structure and present the
identification algorithm for a single maximal clique.

A. Basic idea: reversible one-step Kron reduction

1) Single maximal clique: Consider a connected three-
phase radial network consisting of M degree-1 measured
nodes connected by H non-leaf hidden nodes each with
degree at least 2 (or at least 3 under Assumption 2). We par-
titions the set M of measured nodes into internal measured
nodes that are not adjacent to any hidden nodes and boundary
measured nodes that are adjacent to some hidden nodes.
Similarly partition the set H of hidden nodes into internal
hidden nodes that are not adjacent to any measured nodes and
boundary hidden nodes that are adjacent to some measured
nodes. Let Hb ≤ H denote the number of boundary hidden
nodes. There are no internal measured nodes in this network.
Let Y denote its admittance matrix and Ȳ its Kron reduction
where all the hidden nodes have been Kron reduced. Since
the Kron reduced network G(Ȳ ) is a clique where every
measured node is adjacent to every other measured node, Ȳ
is an admittance matrix whose 3 × 3 entry blocks are all
nonzero. We will often use “maximal clique” to refer either
to the tree underlying Y or the clique underlying its Kron
reduction Ȳ , depending on the context.

Since there are no internal measured nodes the admittance
matrix Y reduces to the following form

Y =:

[
Y11 Y12
Y21 Y22

]
=:

 Y11,22 Y12,21 0
Y22,11 Y22,12

Y22,22

 (3a)

The given Kron reduction is Ȳ =: Y/Y22. Each boundary
measured node i has nonzero admittance submatrix yih(i) ∈
C3×3 for exactly one hidden node h(i) in the tree. Otherwise
if i is adjacent to two hidden nodes, there is a loop in G.

Since every boundary measured node is adjacent to a hidden
node, no boundary measured nodes can be adjacent to each
other in G; otherwise there is a loop in G. Therefore Y11,22
and Y12,21 are of the form

Y11,22 = diag

 y1h(1)
...

yMh(M)

 , Y12,21 =

 −e
T
h(1) ⊗ y1h(1)

...
−eTh(M) ⊗ yMh(M)


(3b)

where ei ∈ {0, 1}Hb is the unit vector with a single 1 in the
ith entry and 0 elsewhere, and yij ∈ C3×3 is the three-phase
series admittance of line (i, j). Here Hb ≤ H is the number
of boundary hidden nodes.

In this section we design an algorithm that uses the
structure in (3) to recover Y for a single maximal clique
by iteratively reversing Kron reduction, starting from Ȳ .
We start by decomposing the forward Kron reduction into
a sequence of iterations that maintain an invariant structure.

2) Iterative Kron reduction: It is more convenient to
describe iterative Kron reduction in terms of an arbitrary
3n × 3n complex matrix A0 on a graph G0 := (N0, E0)
where its 3× 3 (i, j)th blocks A0[i, j] are given by:

A0[i, j] =


−yjk (i, j) ∈ E0∑

k:(i,k)∈E0 yik i = j

0 otherwise

We refer to A0 as the admittance matrix of the graph G0,
or equivalently G0 = G(A0). Suppose the graph and its
admittance matrix (G0, A0) satisfy Assumption 1.

Let A0 =:

[
A11 A12

AT
12 A22

]
with a 3k × 3k nonsingular

submatrix A22, 1 ≤ k < n (in our case, k = H). To simplify
exposition, we will refer to nodes in A22 to be Kron reduced
as “hidden nodes” and nodes in A11 as “measured nodes”.
We can compute the Schur complement A0/A22 of A22 of
the admittance matrix A0 by eliminating hidden nodes on
the graph G0 one by one through Kron reduction. Following
[20], we define

A1 := A0/A0[n, n], · · · , (4a)

Ak := Ak−1/Ak−1[n− k + 1, n− k + 1] = A0/A22

(4b)

i.e., Al+1 is the admittance matrix for the graph after the last
node in Al has been Kron reduced. Conversely a sequence of
matrices A0, A1, . . . , Ak computed according to (4) defines a
sequence of graphs G0, G1, . . . , Gk with Gl = (N l, El) :=
G(Al) defined by (N0 := {1, . . . , n}): for l = 0, 1, . . . , k,

N l := N0 \ {n, n− 1, . . . , n− l + 1}
El :=

{
(i, j) : Al[i, j] 6= 0

}
We refer to Gl := G(Al) as the graph underlying Al.
Explicitly, for l = 0, . . . , k − 1, i, j = 1, . . . , n− l − 1,

Al+1[i, j] = Al[i, j] − Al[i, n− l]
(
αl
)−1

Al[j, n− l] (5)
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where αl := Al[n− l, n− l]. Starting from A0, (5) iteratively
computes the Kron-reduced admittance matrix A/0A22 =
Ak. The iterative computation is useful for proving properties
that are preserved under Kron reduction.

3) Maximal clique Cl of re-labeled matrix Âl: Given
a tree A0, the forward iterative Kron reduction grows an
initial maximal clique A0[n, n] ∈ C3×3 consisting of a single
node n into a single maximal clique Ak ∈ C3(n−k)×3(n−k)

consisting of n−k nodes, while eliminating k hidden nodes
from A0 in the process, one hidden node in each step.

The basic idea of our identification method is to derive
an invariant structure that is preserved under one-step Kron
reduction and that is reversible. To this end, it is more
convenient to focus, not on the sequence Al := Al−1/Al[n−
l − 1, n − l − 1], but a permuted sequence Âl over which
the invariant structure can be propagated and from which the
sequence Al in (4) can be extracted (see Section III-B). We
will use Cl to denote the maximal clique in the permuted
matrix Âl in iteration l. We will abuse notation to use the
term “maximal clique” and the symbol Cl to refer to either
the principal submatrix of Âl, or the subgraph of G(Âl),
or the nodes in the subgraph corresponding to the maximal
clique; the meaning should be clear from the context.

The permuted sequence Âl results from re-labeling nodes
in each step of the iterative Kron reduction. Specifically,
given the permuted matrix Âl in each iteration l, after taking
the Schur complement Âl/Âl[n − l, n − l] to reduce node
n−l, we will re-label nodes so that the next permuted matrix
Âl+1 has all (hidden and measured) nodes in the maximal
clique indexed consecutively with the largest indices (as
well as another convenient structure). This corresponds to
multiplying the matrix Âl/Âl[n − l, n − l] on the left and
on the right by appropriate permutation matrices and its
transpose respectively to obtain Âl+1 (see [19] for examples).
We explain in Section III-B the invariant structure of the
permuted sequence (Âl, Cl) and how to compute Al from
Âl.

The Kron reduction A0/A22 is generally not equal to
the matrix Âk at the end of the forward iterations on
the permuted sequence (Â0, . . . , Âk). The Kron reduction
A0/A22 can, however, be recovered from Âk since the re-
labeling in each iteration l does not re-label node n− l that
will be Kron reduced in that iteration. Consider an arbitrary
square matrix A ∈ C3(m1+m2)×3(m1+m2) partitioned as

A =:

[
A11 A12

AT
12 A22

]
where A11 is m1 × m1 and A22 is

m2 × m2. The permutation matrix that re-labels nodes in
A11 takes the form

P =

[
Pm1 0

0 Im2

]
(6a)

and the permuted matrix is

Â := PAPT =

[
Pm1A11P

T
m1

Pm1A12

A21P
T
m1

A22

]
The Kron reduction of the permuted matrix is

Â/A22 = Pm1

(
A11 −A12A

−1
22 A21

)
PT
m1

Since the square of any permutation matrix is an identity
matrix, the Kron reduction A/A22 of the original matrix can
be recovered as

A/A22 = Pm1

(
Â/A22

)
PT
m1

(6b)

where the permutation matrix Pm1
is given in (6a).

B. Forward Kron reduction: growing Cl

We now design an alternative iterative Kron reduction
that is equivalent to the computation in (4). The alternative
procedure grows the maximal clique from C0 := A[n, n]
corresponding to the single node n to Ck := A/A22

corresponding to the Kron reduced network after removing
k hidden nodes. It has the advantage that each step is easy
to reverse, as we will explain in Section III-C.

Consider the admittance matrix A0 of a single maximal
clique of the form in (3). Then initially the maximal clique
C0 := A0[n, n] ∈ C3×3 is in the lower-right corner of A0.
As we take Schur complements, the components of Cl may
be spread across Al. To facilitate reversing each iteration of
Kron reduction we will work with a sequence of permuted
matrices Âl, as summarized in Figure 1 and given next.

Initialization. Let the set of neighbors of the hidden node n
in the graph G(A0) be

Nn :=
{
j 6= n : A0[j, n] 6= 0 ∈ C3×3}

This set may contain both measured and hidden nodes (e.g.,
if n is a boundary hidden node). Let n0 := |Nn| be
the number of these neighbors. Order them in a way that
maintains their relative order in A0:

i1 < · · · < im0︸ ︷︷ ︸
measured nodes

< im0+1 < · · · < in0︸ ︷︷ ︸
hidden nodes

Let y0 ∈ C3nl×3 denote the admittance submatrices of lines
connecting node n, to be Kron reduced in iteration l = 0, to
these neighbors:

y0[j, 1] := A0[ij , n], j = 1, . . . , n0

Re-label nodes in A0 except node n so that y0 immediately
precedes C0 in the lower-right corner of the permuted matrix
Â0. Let the permutation matrix be denoted by P 0. Then Â0

and its maximal clique C0 take the form (the structure of
Â0 will be proved in Theorem 1 below):

Â0 := P 0A0
(
P̂ 0
)T

=:

 A1
11 A1

12,1 0
diag(ŷ0) −y0

α0

 (7a)

C0 := α0 := A0[n, n] (7b)

Ĉ0 :=

[
diag(ŷ0) −y0
−yT0 α0

]
(7c)

P 0 =

[
P 0
− 0
0 I3

]
(7d)

where P 0
− ∈ {0, 1}3(n−1)×3(n−1) and (since Â0 has zero

row-block sums)

ŷ0 := y0 −
(
A1

12,1

)T
(1⊗ I3) (7e)
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̂A2 =:
diag(y2) 0 −y2

C211 c212
α2

Reversible 1-step Kron reduction

Learning admittance matrix Y

A0

̂A0 =:
A111 A112,1 0

diag( ̂y0) −y0
α0

P0

̂A1 =:
A211 A212,1 A212,2 0

diag( ̂y1) 0 −y1
C111 c112

α1

C1 := Ĉ0/α0; ̂P0 C2 := Ĉ1/α1; ̂P1

A1 := A0/α0

P1 := P0− ̂P0

A2 := A1/α1

P2 := P1− ̂P1

Ĉ0 Ĉ1 Ĉ2

A3 := A2/α2

Fig. 1. Reversible iterative forward Kron reduction with three hidden nodes. The focus of iterative Kron reduction and its reverse process will be on the
sequence of permuted matrices and their maximal clqiues (Â0, Cl), . . . , (Âk, Ck).

From (7a) we have A0 = P 0Â0(P 0)T since the square of a
permutation matrix is an identity matrix.

Given A0 the initialization step thus produces
(Â0, C0, P 0) where C0 is the maximal clique of Â0

and A0 can be obtained from Â0 through permutation
matrix P 0.

Iteration. For l = 0, . . . , k−1, given (Âl, Cl, P l) that takes
the form:

Âl =:

[
Al

11 Al
12(

Al
12

)T
Cl

]
(8a)

=


Al+1

11 Al+1
12,1 Al+1

12,2 0
diag(ŷl) 0 −yl

Cl
11 cl12

αl

 (8b)

Cl =:

[
Cl

11 cl12(
cl12
)T

αl

]
, (8c)

Ĉl :=

diag(ŷl) 0 −yl
Cl

11 cl12
αl

 (8d)

P l =

[
P l
− 0
0 I3

]
(8e)

where (since Âl has zero row-block sums)

ŷl := yl −
(
Al+1

12,1

)T
(1⊗ I3) (8f)

and 1 is the vector of 1s of size nl, such that Al =
P lÂl(P l)T, we compute (Âl+1, Cl+1, P l+1) so that:

• The permuted matrix Âl+1 has the same structure as
that of Âl.

• Cl+1 is the maximal clique of Âl+1.
• The Schur complement Al+1 = Al/αl =
P l+1Âl+1(P l+1)T (re-labeling nodes in Âl+1).

As we will see, the one-step Kron reduction, and its reversal,
boils down to the propagation of the maximal clique:

Cl+1 := Ĉl/αl

=

[
diag(ŷl) 0

0 Cl
11

]
−
[
−yl
cl12

]
(αl)−1

[
−yTl

(
cl12
)T]

(9)

Specifically we compute (Âl+1, Cl+1, P l+1) and Al+1 from
(Âl, Cl, P l) in (8) in four steps.

1) From (8b), the (unpermuted) Kron reduction Âl/αl is
equal to:

Âl/αl =

[
Âl+1

11 Âl+1
12

Ĉl/αl

]
=:

[
Âl+1

11 Âl+1
12

Cl+1

]
where Âl+1

12 :=
[
Al+1

12,1 Al+1
12,2

]
and Cl+1 is from (9).

2) It can be checked that the last node n−(l+1) remains
the node to be Kron reduced in the next iteration
because the way the nodes in yl have been ordered.
Let the set of neighbors of node n − (l + 1) in the
graph G(Âl/αl) that are not already in the maximal
clique Cl+1 be

Nn−(l+1) :=
{
j 6∈ Cl+1 : (Âl/αl)[j, n− (l + 1)] 6= 0

}
This set may contain both measured and hidden nodes.
Let nl+1 :=

∣∣Nn−(l+1)

∣∣ be the number of these
neighbors. Order them in a way that maintains their
relative order in A0:

i1 < · · · < iml+1︸ ︷︷ ︸
measured nodes

< iml+1+1 < · · · < inl+1︸ ︷︷ ︸
hidden nodes

Let yl+1 ∈ C3nl+1×3 denote the admittance submatri-
ces of lines connecting node n − (l + 1), to be Kron
reduced in iteration l + 1, to these neighbors:

yl+1[j, 1] := (Âl/αl)[ij , n− (l + 1)]

Partition the maximal clique Cl+1 of Âl/αl into the
last row and column block and other submatrices:

Cl+1 =:

[
Cl+1

11 cl+1
12(

cl+1
12

)T
αl+1

]
(10a)

where αl+1 := (Al/αl)[n−(l+1), n−(l+1)] ∈ C3×3.
3) Re-label nodes in Âl/αl, other than node n−(l+1), so

that the permuted matrix Âl+1 has the same structure
as that in (8). Let the permutation matrix for re-labeling
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be P̂ l so that

Âl+1 := P̂ l
(
Âl/αl

)(
P̂ l
)T

=:

[
Al+1

11 Al+1
12(

Al+1
12

)T
Cl+1

]

(10b)

=:


Al+2

11 Al+2
12,1 Al+2

12,2 0
diag(ŷl+1) 0 −yl+1

Cl+1
11 cl+1

12

αl+1


(10c)

where (to maintain zero row-block sums of Âl+1)

ŷl+1 := yl+1 −
(
Al+2

12,1

)T
(1⊗ I3) (10d)

and 1 is the vector of 1s of size nl+1.
4) Define the permutation matrix

P l+1 := P l
− P̂

l (10e)

where P l
− is defined in (8e) and P̂ l is defined in

(10c). Then from (6) and the fact that the square of a
permutation matrix is the identity matrix, the one-step
Kron reduction of Al+1 := Al/αl can be recovered as

Al+1 = P l+1Âl+1(P l+1)T (10f)

Return. A clique Âk = Ck of size n − k and the Kron
reduction A0/A22 = Ak = P kÂk(P k)T.

The important feature of this procedure is that the structure
of the permuted matrix Âl in (8) is preserved under one-step
Kron reduction where the maximal clique Cl is a contiguous
block in the lower-right corner of Â. This structure together
with the way its maximal clique Cl propagates through (9)
make it possible to reverse the Kron reduction as we explain
in Section III-C. We now justify (8) and prove the correctness
of the forward iterative Kron reduction procedure above.

Consider A0 =:

[
A11 A12

AT
12 A22

]
∈ C3n×3n with a 3k × 3k

nonsingular submatrix A22, 1 ≤ k < n.

Theorem 1 (Invariant structure of Âl [19]). Suppose A0 is
the admittance matrix of a single maximal clique of the form
in (3) and it satisfies Assumption 1. The procedure above
computes the Kron reduction A0/A22, i.e., for l = 0, . . . , k−
1,

1) The permuted matrix Âl has the form in (8). In
particular, the entries of Al+1

11 , Al+1
12,1, A

l+1
12,2 in Âl are

equal to the corresponding entries in A0.
2) The matrix Al+1 computed in (10f) is equal to Al/αl.
3) At l = k − 1, Ak

11 = 0, Ak
12 = 0, Âk = Ck, and

Ak = A0/A22.
Moreover

4. In (8f), if node i in yl is a measured node (i.e.,
in A11 with an appropriate label in light of all the
permutations by iteration l), then ŷl[i, 1] = yl[i, 1].

5. If Assumption 2 holds then for each l = 0, . . . , k − 1,
the number nl of neighbors of node n− l not in Cl is
at least 2.

We now use Theorem 1 (proved in [19]) to devise a
method to compute Y from its Kron reduction Ȳ by reversing
each step in the forward iterative Kron reduction.

C. Reverse Kron reduction: shrinking Cl

Given A0/A22, it is generally not possible to reverse the
Kron reduction to recover the original admittance matrix A0.
This turns out to be possible, using the invariance structure
of Al in Theorem 1, when the network is a tree.

The basic idea is as follows. Given the Kron reduction
Ak := A0/A22, we will reverse each step in the process
illustrated in Figure 1, focusing on computing the permuted
sequence Âl in the reverse direction. Each reverse iteration
l will involve three steps:

• From Âl+1 with the structure in (8), identify a set of
“sibling” nodes in Cl+1 that are adjacent to a unique
“parent” hidden node (this step requires Assumption
3 below). These sibling nodes define the set Nn−l of
nodes in yl, to be determined, and their parent node will
be added in iteration l to the set of identified nodes.

• Reverse the Kron reduction of the maximal clique, i.e.,
compute Ĉl from Cl+1. This allows us to construct Âl

which will have the structure in (8).
• Permute Âl to obtain Al (this step can also be done

only on Â0 at the end).

The following assumption is important for constructing the
permuted matrix Âl from Âl+1.

Assumption 3 (Parent node). Given any Âl+1 and its
maximal clique Cl+1, it is possible to determine the identity
of a set of all “sibling” nodes in Cl+1 that are adjacent to
a common “parent” node in the original graph G(A0) but
not in the graph G(Âl+1).

The parent node not in G(Âl+1) will be labeled by n− l
and added to G(Âl) in iteration l. In the forward direction, yl
is constructed from the graph G(Âl−1/αl−1) (or G(Âl)). In
the reverse direction, Assumption 3 allows us to determine
the identity of the nodes in (but not the value of) yl from
the graph G(Âl+1) and construct (9). We provide a sufficient
condition in [19] for Assumption 3 to hold and an algorithm
to identify these sibling nodes.

The procedure to identify A0 from its Kron reduction
A0/A22 is as follows.

Algorithm: reverse iterative Kron reduction

Given: Ak := A0/A22 ∈ C3(n−k)×3(n−k).
Initialize: Let

Âk := Ak, Ck := Âk

P̃ k := I3(n−k)×3(n−k)

Iterate for l = k − 1, k − 2, . . . , until the maximal
clique Cl ∈ C3×3:
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Given (Âl+1, Cl+1, P̃ l+1) with

Âl+1 =:

[
Al+1

11 Al+1
12(

Al+1
12

)T
Cl+1

]

=:


Al+2

11 Al+2
12,1 Al+2

12,2 0
diag(ŷl+1) 0 −yl+1

Cl+1
11 cl+1

12

αl+1


(11)

we compute (Âl, Cl, P̃ l) as follows.
1. Identify all the “sibling” nodes in Cl+1 that

are adjacent to a common “parent” hidden node
in G(Â0) but not in G(Âl+1) guaranteed by
Assumption 3. These nodes in Cl+1 define the set
Nn−l of nodes in yl. The parent node is labeled
(n− k) + l̃ = n− l in Âl (to be determined).

2. Solve (9) for (yl, ŷl) and (Cl
11, c

l
12, α

l). Due to
page limit, we leave the details to [19].

3. Substitute (yl, ŷl) and (Cl
11, c

l
12, α

l) as well
as (Al+1

11 , Al+1
12 ) from (11) into (8) to obtain

(Âl, Cl). Note that Âl has the same structure as
Âl+1 in (11) by construction, i.e., the invariance
structure is preserved in both the forward and the
reverse directions.

4. The matrix yl ∈ C3nl×3nl may include both
measured and hidden nodes and therefore the
order in which the measured nodes appear in Âl

may not agree with that in the given Ak = Ã0.
Re-label the nodes in Âl so that they agree and
let the permutation matrix be P̃ l. Then set

Al := P̃ l(Âl)(P̃ l)T

Return: Ak̃ = A0.

IV. CONCLUDING REMARKS

In this paper we study the problem of identifying a
three-phase admittance matrix from partial measurements of
voltage and current phasors. It boils down to computing the
inverse Y of any given Kron reduced admittance matrix Ȳ .
We have presented the solution for the special case of a single
maximal clique, to which the general identification can be
reduced (see [19]). The key idea is to derive an invariant
structure that is preserved in each step of an iterative Kron
reduction and use it to reverse Kron reduction step-by-step.

The main limitations of the paper are specific to unbal-
anced three-phase system. Assumption 1 requires Re(yjk) �
0 which may not be necessary. Assumption 2 assumes that
all hidden nodes have zero injections which may not hold in
practice. This assumption is required for both single-phase
or three-phase network. Assumption 3, which identifies the
common parent hidden node of a set of sibling nodes that
have been identified, is crucial for the reverse Kron reduction.
For an unbalanced three-phase network, a sufficient condition
in [19] that ensures Assumption 3 requires all lines to be of
the same type and differ from each other only in their lengths.
This is too restrictive and likely not necessary.
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