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Abstract— This paper presents a study on developing a hybrid
3D position observer for a rover with acceleration and relative
distance measurements. The observer design utilizes two dif-
ferent methodologies; a Trajectory Based Optimization Design
(TBOD) and a Linear Matrix Inequality (LMI) method. We
prove that, under the proposed solutions, the boundedness of
the estimation error is guaranteed. The performance of the
observer is evaluated and compared to a standard EKF using
comprehensive Monte Carlo simulations.
Index Terms— Hybrid systems; Optimization; Estimation

I. INTRODUCTION

The rise of interest in autonomous systems has put the
spotlight on navigation, namely the capability of a robot
to get an awareness of the surroundings and consequently
decide on a motion control strategy to reach specific target
locations successfully. Indeed, navigation strongly relies on
localization algorithms, which estimate the agent’s position
and attitude. Depending on the goodness of the initial
estimation, localization can be addressed as a position tracking
or global localization problem [1]. Furthermore, localization
is affected by the environment in which the robot moves; a
dynamic environment substantially complicates the task. In
this scenario, simultaneous localization and mapping (SLAM)
algorithms are considered the standard [2].
Several technologies are used to address localization; position
tracking and global localization exploit both internal sensors
(e.g., IMU, gyros, encoders) and external sensors (e.g., GNSS,
range sensors) [3]. A special mention should be made of
the vision-based SLAM algorithms (V-SLAM), which use
cameras [4]. The combined usage of different sensors is
commonly referred to as sensor fusion [5], [6]; the solutions
proposed in the literature vary from different fields, from
observer theory to deep learning, handling nonlinear and
multi-rate sensors. An interesting approach is the Markov
localization, a probabilistic approach based on a discrete
state-space representation [7].
Another solution widely used is the Ultra Wide Band (UWB)
technology. These antennas can measure the relative distance
between the object in question and the preset landmarks. In
particular, the antenna mounted on the agent is called tag,
while those identifying the landmarks are called anchors. The
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idea is to define points in the operating space that identify
the reference system of the robot. At this point, the problem
is to find the agent’s position, knowing his distance from
the different points. The problem has been approached in
several ways: trilateration approaches (e.g., [8]) provide an
initial estimation of the landmark position using three or
more available range measurements. Other methods consider
probabilistic grids as an accumulator voting scheme [9]. UWB
localization and SLAM have been widely compared in [10],
and visual-UWB navigation in unknown environments has
been addressed in [11].
However, among probabilistic approaches, the Kalman filter
(KF) represents the standard for sensor fusion and localization
problems, along with all its improvements and modifications.
In particular, the Extended Kalman Filter (EKF) is widely
used to deal with sensor and model nonlinearity. In [12],
low-cost GNSS and IMU sensors are exploited for precise
2D positioning. [13] uses distance measurements provided by
Radars and Lidars instead. Regarding the multi-rate nature
of a general sensor setup, KF-based algorithms can easily
address it, as shown in [14]–[16]. Regarding the stability
claims for EKF, key results have been proposed in [17].
The main drawback of KF-based approaches is the local
linearization and the consistent computational burden.
In this scenario, Hybrid systems [18] can be considered
a valid alternative to KF-based localization systems. More
specifically, Hybrid observers have been proposed to deal
with intermittent measurements in [19] and [20], [21]. In
particular, [19] proposes a procedure for designing a static-
gain hybrid observer on linear systems with known input and
asynchronous measurements.
This paper deals with designing a hybrid 3D position observer
for a rover with acceleration and relative distance measure-
ments provided by IMU and UWB antennas, respectively.
The main contributions of this work are the following:

• A linear hybrid observer is designed through an LMI-
based procedure inspired by [19], based on knowledge
of the plant control input, where two different dynamics
are used between the plant and the observer. Moreover,
the plant control input is unknown.

• A linear hybrid observer is designed through a Trajectory
Based Optimization Approach (TBOD).

II. PROBLEM STATEMENT

This section introduces the plant considered for the localiza-
tion problem, the measurement setup, and the structure of
the proposed observer. As presented in Section I, this work
addresses the localization of a material point moving in a
3D environment. We are interested in designing a very fast
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and lightweight observer capable of matching the estimation
precision of the object’s position from methods known in the
literature and occasionally doing better. In particular, our goal
is to maintain good precision on the x, y axes while improving
the estimation on the z axis. The agent is represented as the
following dynamic model P , where the orientation dynamics
are not considered for simplicity:

P :


ṗ = v

v̇ = u

ḃ = 0,

→ ẋ = Ax+Bu, (1a)

y =

[
d
a

]
=

[
d⋆

u

]
+

[
νd

b+ νa

]
, (1b)

where x = [pT vT bT ]T ∈ R9 is the plant state vector, p,v ∈
R3 are the position and velocity of the rover, respectively,
u ∈ R3 is the unknown input of the plant, and b ∈ R3 is
a measurement bias that will be detailed later. y ∈ RN+3

is the vector of plant outputs: measurements consisting of
the signal provided by an IMU a ∈ R3, and a set of range
measurements d = [d1, . . . , dN ]T ∈ RN provided by N fixed
UWB antennas placed at known locations, called anchors,
and one antenna installed on the agent, called tag. Lastly,
νd ∈ RN and νa ∈ R3 are the measurement noises. The
ranging measurements are defined as d⋆i = ∥pA,i − p∥, where
pA,i ∈ R3 is the known absolute position of the i-th anchor
and p is the position of the tag installed on the object1.
Regarding the ranging measurements, we also let Assumption
2 from [22] to hold, i.e., at least three non-collinear anchors
are available at any time. Regarding the IMU measurements
a, we assume that a = u + b + νa, as in (1b), where b
denotes the measurement bias previously introduced.
As we are tackling an estimation problem for real applications,
we assume that the output y is sampled by multi-rate
acquisition hardware. Indeed, IMU and UWB measurements
are available with different rates, ∆ta and ∆td, respectively
defined as

ta,q − ta,q−1 = ∆ta, (2a)
td,l − td,l−1 = ∆td, (2b)

where (q, l) ∈ N, ∆ta ≤ ∆td and ∆td = h∆ta, with
h ∈ N0 ≫ 1. Under this assumption, we consider the IMU
acquisition to be continuous compared to the UWB. Thus,
the hybrid framework is used, considering the IMU dynamics
continuous and the UWB correction discrete.
To propose a hybrid observer, analogously to [19], we model
the plant P as a hybrid system Ph, exploiting the formalism
proposed in [18], with continuous and discrete time dynamics

Ph :

{
ẋ = Ax+Bu

τ̇ = 1
, (x, τ) ∈ C,{

x+ = x

τ+ = 0
, (x, τ) ∈ D,

(3a)

1We assume that the tag position is the position of the object.

where C ≜ {x ∈ R9, τ ∈ [0, ∆td)} and D ≜ {x ∈
R9, τ ≥ ∆td}. The continuous-time evolution of the system is
described by a flow-map defined over the set C. The discrete-
time evolution is instead described by a jump-map defined
over the set D. The timer variable τ ∈ R keeps track of
the flow time between each state reset, namely, each switch
between these maps. Here, note that the jump-map is not used
to change the dynamics, as a continuous-time system describes
the plant. Instead, the hybrid framework will come in handy
when describing the observer structure, which will rely on
continuous and discrete-time IMU and UWB acquisitions,
respectively.
As introduced in Section I, our objective is to design a hybrid
observer for Ph, where the input u is considered unknown.
Then, consider the following continuous-time system:

P̂ :


˙̂p = v̂
˙̂v = â− b̂
˙̂
b = 0
˙̂a = α(a− â)

→ ˙̂x = Ahx̂+Bha, (4)

where x̂ = [p̂T v̂T b̂T âT ]T ∈ R12 is the observer state with
p̂, v̂ ∈ R3 respectively the estimated position and velocity,
b̂ the estimated IMU bias, and â the output of a low-pass
filter of the IMU measurements a. We define a signal νf (t)
in order to rewrite â as

â = u+ b+ νf , (5)

where νf takes into account the mismatch between a and
â introduced by the linear dynamics of â in (4) and the
Gaussian noise measurement νa in (1b). We now propose the
hybrid observer P̂h for Ph with hybrid dynamics, defined as:

P̂h :

{
˙̂x = Ahx̂+Bha

τ̇ = 1
, (x̂, τ) ∈ Ĉ,{

x̂+ = x̂+ K̃(g(d)− p̂)

τ+ = 0
, (x̂, τ) ∈ D̂

(6)

where Ĉ ≜ {x̂ ∈ R12, τ ∈ [0, ∆td)} and D̂ ≜ {x̂ ∈
R12, τ ≥ ∆td}. Without loss of generality, within our
framework, the timer variable τ is considered the same for
all hybrid systems. Then, the dependence of the jump-map
on the UWB measurements justifies the hybrid framework.
Specifically, note that a static gain K ∈ R9×3 is introduced
in the jump-map as an output injection term of the observer
through K̃ ∈ R12×3, K̃ =

[
K′, 03×3

]′
. Differently from a

standard EKF approach, P̂h does not require any model
linearization or matrix inversion, which are both computed in
the prediction and correction steps of the KF methods. Thus,
the computational cost is lower in P̂h.
The nonlinear map g(·) : RN → R3 represents the output
of a trilateration algorithm that provides an estimate of the
absolute position p̄ exploiting the ranging measurements d
defined as
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p̄ = argmin
p

N∑
i=1

(∥pA,i − p∥ − di)
2 = argmin

p
J(p). (7)

Indeed, the solution to (7) can be computed either in closed
form or numerically (see also [23]). An efficient algorithm to
solve the trilateration problem, especially in the framework
considered in this work, is the Newton-Raphson algorithm,
which exhibits local quadratic convergence to (one of the)
minimum of J, and whose single-step evaluation at the i-th
iteration is defined as

pi+1 = pi −
(
HJ(pi)

)−1∇J(pi), (8)

where HJ is the Hessian matrix of J and ∇J its gradient,
both calculated with respect to p. The Hessian shall be
invertible over the trajectories considered. It can be easily
shown through some calculations that the condition for this
to happen consists of not having the material point to exactly
reach the location of any fixed anchors, namely p = pA,
which never occurs in the trajectories considered in this
work.
With the simulation settings of this work specified in V-
A, iterating no more than five times the Newton-Raphson
algorithm (8) yields a very accurate, although approximated,
solution of (7), which we will refer to as p5. We then make
the following assumption in the rest of the paper.
Assumption 1: Let p ∈ Ωp ⊂ R3, with Ωp and νd bounded.
Define g(d) ≜ p5, where p5 is obtained by five iterations of
the Newton-Raphson algorithm (8), with initial condition p0,
and assume that

p5 = p+ νJ(νd), (9)

holds true for any p0 ∈ Ωp, with a bounded function νJ :
RN → R3 that takes into account the uncertainties introduced
by the UWB ranging sensors, due to the measurement noise
νd, and the approximate solution to (7) provided by five
iterations of the Newton-Raphson algorithm.
We proceed now with the design of K such that the hybrid
observer P̂h would provide estimates of (p, v, b). Note that
differently from [19], Ph and P̂h have different flow and
jump maps. Moreover, the innovation term in (6) does not
directly depend on the agent’s position but rather on the
ranging measurements. Indeed, the design of the static gain
shall take these aspects into account. The following sections
address the stability conditions for the proposed estimation
problem and the design of a suitable static gain K.

III. STABILITY ANALYSIS

In this Section, we analyze the estimation error dynamics.
Let the estimation error be defined as:

e =

p− p̂
v − v̂

b− b̂

 ∈ R9. (10)

Through some simple calculations and by Assumption 1, the
error dynamics can be shown to be described by the hybrid
system

Eh :

{
ė = Aee+Beνf

τ̇ = 1
, (e, τ) ∈ Ce,{

e+ = (I − ΓK)e− KνJ

τ+ = 0
, (e, τ) ∈ De,

(11)

where:
Ce ≜ {e ∈ R9, τ ∈ [0,∆td)}, De ≜ {e ∈ R9, τ ≥ ∆td},
and

Ae =

0 I3 0
0 0 −I3
0 0 0

 , Be =

 0
−I3
0

 , Ce = [I3 0 0],

ΓK = KCe =

k1I3 03 03

k2I3 03 03

k3I3 03 03

 , K =

k1I3
k2I3
k3I3

 ,

(12)

and we wrap the scalar terms in a vector K = [k1 k2 k3]
T ∈

R3. Thus, the design will consider K only. Note that the
output injection term entering in the jump map of the
hybrid observer (3) together with Assumption 1 provides
a correction term in the jump map of the estimation error
system that depends on d. The following theorem addresses
the boundedness of the estimation error trajectories.
Theorem 1: Consider the hybrid system Ph and the ob-
server P̂h. Let Assumption 1 hold, and assume that
there exists a positive constant M ∈ R such that
max{∥u∥ , ∥u̇∥ , νa, νf , νd νJ} ≤ M . Then, the origin
of the estimation error system Eh is Globally Uniformly
Ultimately Bounded.
Remark 1: Note that the bound on the error trajectories is
related to the constant M . The lower M , the lower the bound.
This suggests that better sensors can provide a smaller bound
on the error trajectories, which is fair. Indeed, we intend to
dig into this aspect in future developments.
Theorem 1 provides a set of constraints on the static-gain K.
In the next section, we address the selection of K, such that
the stability of Eh is ensured from Theorem 1.

IV. OBSERVER DESIGN

This section presents two methods to obtain the static-gain K
introduced in Sections II and III. The first method follows [19],
while the second relies on a trajectory mismatch optimization
approach. The stability of Eh for the outcomes of both the
methods is analyzed through the result of Theorem 1.

A. LMI design method

The first method relies on the results presented in [19], and
more specifically in Proposition 1, which we briefly recall:

Proposition 1: Consider system Eh, a positive value ∆td > 0,
and a symmetric positive definite matrix P = PT > 0. The
problem described by [Eq. 13, [19]] is feasible if and only if
the pair (Ce, e

Ae∆td) is detectable:
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where Ce is full row rank, and C⊥
e is a basis of the orthogonal

complement of CT
e .

Note that this work deals with synchronous measurements;
∆td is the only sampling time for the ranging sensors. Thus,
[Eq. 13, [19]] is finite-dimensional. The solution P to [Eq.
13, [19]] can be computed with the algorithm proposed in
[19]. Then, the static gain K is computed applying Theorem
2 of [19].
As previously highlighted, differently from [19], here, the
nominal and observer plants P and P̂ have different structures
and dimensions. Moreover, the control input u is assumed to
be unknown. Indeed, by rephrasing the estimation error defi-
nition as in (10), and considering g(d) provided by Newton-
Raphson as a position measure, we recast the localization
problem to be compatible with the setup addressed in [19],
which is the first contribution of this work.
We solved [Eq. 13, [19]] on Eh with the gevp MATLAB
method, as suggested in [19]. The static gain K⋆ computed
with [Eq. 17, [19]] resulted in K⋆ = [1, 1.2662,−0.5457]T ,
which can be easily checked to render (I−ΓK⋆)eAe∆td Schur,
and resulting in boundedness for Eh from Theorem 1. More
specifically, it results

∣∣σ((I−ΓK)eAe∆td)
∣∣ = [0, 0.87, 0.87]T .

One aspect stands out from this solution; K⋆ fully exploits
the position measure g(d) in the jump map, namely

x̂+
1 = x̂1 + k1(g(d)− x̂1) = g(d). (13)

This makes perfect sense if no measurement noise is consid-
ered, namely νJ = 0. In such a case, the position error p− p̂
vanishes after the first state-reset of P̂h. This is consistent
with the zero eigenvalue. The performance of K⋆ both in
absence and presence of noise is investigated in Section V.
Indeed, the LMI-based design method proposed in [19] does
not consider any information on the measurement noise, as
it relies on [Eq. 13, [19]]. Generally speaking, this approach
could lead to poor estimation precision due to its lack of
robustness. Thus, we propose another design approach to
solve this issue.

B. TBOD design method

This section describes the main methodological novelty of
this work. The core idea is to formulate the static-gain design
as an optimization problem. More specifically, consider M
different trajectories (xj , x̂j) for (Ph, P̂h) within a time
interval [0 T ], and j ∈ {1, . . . ,M}. The related estimation
error trajectories are ej = xj − x̂j . Indeed, from (11), ej
depends on the static-gain K choice. Thus, we define the
following optimization problem:

K = argmin
K

M∑
j=1

T∫
0

∥ye,j(t)∥ dt . (14)

Indeed, differently from IV-A, the design takes into account
measurement noise, as it relies on the actual error trajectories
ej , directly affecting the output ye,j of system Eh through Ce.
Problem (14) has been defined over a set of trajectories ej to
further increase the robustness of the design by considering

different initial conditions and evolutions for Eh. Considering
the structure of (14), this method is referred to as Trajectory-
Based Optimization Design (TBOD).
Clearly, (14) defines a continuous-time problem as it considers
the integral of ye,j . However, in the actual implementation,
ye,j is available at a specific rate: every ∆ta. Thus, (14) is
implemented as

K = argmin
K

M∑
j=1

P∑
p=1

∥ye,j(ta,p)∥ , (15)

with ∆ta chosen according to the Nyquist criterion, and
P = T/∆ta the number of measurement samplings.
Indeed, the main drawback of the TBOD approach is the
computational cost, which scales quickly with trajectories
and system complexity. However, this issue affects only the
offline computation time for K. Before proceeding with the
numerical results of this approach, some aspects should be
highlighted.
Remark 2: The characteristics (e.g., convexity) of problem
(15) strongly depend on the plant dynamics. Thus, its solution
is generally agnostic to the minimization algorithm used.
However, convergence speed can be increased under specific
assumptions (e.g., linear dynamics and output mapping).
Note that in this work, the Newthon-Rapshon method in (8)
introduces a nonlinearity in P̂h. Thus, we solved (15) with
MATLAB built-in simplex-like patternsearch method.
Remark 3: As problem (15) is unconstrained, no general
claims can be made on the stability of each trajectory ej .
Thus, the stability of Eh with the obtained K is investigated
a posteriori exploiting Theorem 1.
Note that, generally speaking, the TBOD method gives more
design freedom compared to the LMI method, as it does not
depend on the linearity of the plants Ph, P̂h. For instance,
nonlinear update laws can be designed in place of static gain
K.
The solution of problem (15) depends on the setup considered
for plant P . Thus, the detailed simulation setup and the
obtained results are addressed in the dedicated Section V.
Furthermore, the performance of LMI and TBOD methods
are compared with a standard EKF filter.

V. RESULTS AND DISCUSSION

This section describes in detail the simulation setup for plant
P and then proceeds by presenting the results of the TBOD
design method. Lastly, a comparison of the LMI and TBOD
performance is presented.

A. Simulation setup

The simulation setup considers the position estimate of a
terrestrial rover moving in an indoor 3D environment of
dimensions roughly of 10× 15× 3 m. Precisely, the area is
filled with sparse hills around 50 cm high. The rover patrols
the area by following a rectangular path. Four UWB antennas
have been placed at a 2 m height and around the area.
Due to the patrolling task, the rover moves slowly, with
velocities of around 0.5 m/s and with acceleration peaks of 0.5
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m/s2. Regarding the IMU and UWB sensors measurements,
the sampling frequencies have been set respectively to 100 Hz
for the IMU and 5 Hz for the UWB, resulting in ∆ta = 0.01 s,
and ∆td = 0.2 s, resulting in a factor h = 20 (see Section II).
Noise characteristics have been defined as follows:

• IMU bias: for each trajectory xj , the IMU bias bj
is uniformly randomly selected within the interval
[0.05 0.15] m/s2.

• IMU noise: the additive noise νa is randomly selected
from a zero-mean Gaussian distribution N (0, 0.05) m/s2.

• UWB noise: the additive noise νd is randomly selected
from a zero-mean Gaussian distribution N (0, 0.2) m.
The measurement precision has been selected accord-
ingly to the UWB antennas DW1001 datasheet from
Qorvo 2, where also bias correction was considered.

As for the direct rover position measurement g(d), the
additive noise νJ is of the same order of magnitude as νd.

B. TBOD design

This paragraph describes the conditions used to define
problem (15), and discusses its solution. More specifically,
(15) has been defined over a set of M = 5 trajectories, each
lasting T = 200 s, enough for the rover to cover the full
area once. On each plant trajectory xj , the rover starts from
a position p0,j placed in the upper-right corner of the area,
with zero velocity and acceleration. The initial condition x̂0,j

of each estimated trajectory is set to [p̂T
0,j v̂T

0,j b̂T0,j âT
0,j ]

T =
[pT

0,j(1 + δj) 0T
3×1 0T

3×1 0T
3×1]

T , with each component of
δj ∈ R3 extracted from a Gaussian distribution N (0, 0.5).
With these assumptions, problem (15) has been solved numer-
ically with the built-in MATLAB method patternsearch,
as introduced in Section IV.
The resulting static gain is K = [0.4221, 0.2888,−0.0281]T ,
which renders (I − ΓK)eAe∆td Schur, and more specifically
|σ((I − ΓK)eAe∆td)| = [0.7132, 0.8294, 0.9770]T .
In this case, there are no zero eigenvalues, meaning that the
observer does not fully trust the measurements, providing
more robustness to the estimation.

C. LMI vs TBOD comparison

This paragraph compares the results of the static-gain obtained
with the LMI and TBOD methods, namely K⋆ and K. A first
comparison is presented without measurement noise to show
the convergence properties of the observer P̂h. Then, the two
gains are tested in the presence of measurement noise, and
their performance is also compared to a standard EKF. The
comparison has been made on a batch of 50 Monte Carlo
simulations to validate the results.
Noisy case: The performance of the two gains with measure-
ment noise is reported in Figure 1. Note that the saw-tooth
behavior of the estimation error in Figure 1a is caused by
the state reset. Indeed, every ∆td, position, velocity, and bias
are updated with the injection term K(g(d)− p̂). The free
evolution in the subsequent time interval [0,∆td] depends on
the estimation of â, which eventually converges to a with

2https://www.qorvo.com/products/d/da007946

(a) (p, p̂)

(b) (b, b̂)

Fig. 1: Estimation of x (solid black) with K⋆ (dashed blue)
and K (dotted red) in presence of measurement noise.

the low-pass filter dynamics α. Indeed, when K⋆ is used, the
estimation fully relies on the position measure g(d). This
case study highlights the robustness of the TBOD compared
to the LMI method. The convergence is slower with K, but
the precision reached is better.
Monte Carlo simulations: In order to extensively validate
the results, a batch of 50 Monte Carlo simulations has been
run with K⋆, K, and a standard EKF. Specifically, the EKF
has been implemented on P equations (1a), and considering
y measurements in (1b) as output mapping. Thus, the EKF
directly exploits the ranging measurements d.
The random seeds used in these simulations differ from those
used for the TBOD optimization. For the rest, the setup is
the same considered in V-A. This analysis aims to validate
the proposed methods’ performance against the widely used
EKF algorithm. As reported in Section I, we are particularly
interested in reaching a good precision on the z axis without
compromising the estimation on x, y. Results are reported
in Table I in terms of the average standard deviation of the
estimation error, considered after convergence, namely from
t̄ = 30 s. Table II reports instead the computational time
required for a single iteration of each method.
Considering the EKF as the reference method, we can see
that its performance on x, y is not matched by the two other
methods. However, the EKF performs poorly on z. This
happens because the linearization of (1a) and (1b) depends
on the distance of the material point on each axis with respect
to the anchors; indeed, this value is higher on x, y, because
of the anchor positions described in V-A. Instead, the TBOD
and LMI outperform the EKF in the z axis estimation. In
numbers, EKF performs 52% and 75% better than TBOD
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method x axis y axis z axis ||σx, σy , σz ||
EKF 0.041 m 0.045 m 0.188 m 0.198 m

LMI K⋆ 0.169 m 0.172 m 0.068 m 0.250 m
TBOD K 0.087 m 0.088 m 0.035 m 0.129 m

TABLE I: Performance comparison of EKF, TBOD, and LMI
methods in the presence of noise. The results are from a
batch of 50 Monte Carlo simulations. The first three columns
report the standard deviation of the estimation error on each
axis, while the fourth shows the norm.

method time
EKF 0.277 s
LMI 5.58e-5 s

TBOD 5.6e-5 s

TABLE II: Performance comparison of EKF, TBOD, and LMI
methods in terms of computational cost. The table reports
the computational time for a single iteration, expressed in
seconds.

and LMI on x, respectively, and 48% and 73% better on y.
Instead, EKF performs 81% and 63% worse than TBOD and
LMI on z, respectively. Indeed, the performance improvement
on z is substantial for LMI and TBOD. However, TBOD
outperforms LMI on all the axes, keeping a decent precision
on x, y as well. Overall, the estimation precision of the TBOD
performs better than the EKF by 35%, as reported in the last
column of Table I. Lastly, as introduced in Section II, the
computational cost of TBOD and LMI methods is consistently
lower than the EKF, as described in Table II. Considering all
these analyses, the observer designed with TBOD is the best
choice in terms of accuracy and computational cost.

VI. CONCLUSIONS

This work proposes a hybrid observer to tackle the localization
problem for a rover moving in a 3D indoor environment
by using IMU measurements and ranging distances from
anchors placed at known fixed positions. The structure of the
observer relies on a static-gain K whose design is critical
for the estimation performance. The stability analysis of the
estimation error is presented in Section III, where Theorem 1
ensures boundedness on the estimation error trajectories. As
far as the design of the static-gain K, Section IV proposes two
approaches: the LMI-based method, which we rephrased from
[19] to suit our localization task, and the TBOD approach.
The theoretical part presented in Section IV is supported
by the numerical results provided in Section V, comparing
the precision and robustness of the two methods with a
standard EKF. In particular, the TBOD approach ensures
better performance, making it a valid alternative to standard
tools.
Furthermore, the TBDO method can also consider nonlin-
earities in the plant or the observer structure, which will be
explored in forthcoming research. Additionally, implementing
this solution in an experimental configuration is the target of
future work.
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