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Abstract— This paper presents a technique for designing two-
parameter compensators that stabilize a plant and provide
offset-free tracking of set-points without overshooting or un-
dershooting. We first represent the impulse response of linear
systems using combinatorial polynomials, based on which a
new set of conditions is derived for the system to be externally
positive. This result is then used in control synthesis to achieve
monotonic tracking. In contrast to the methods available in
the literature, the proposed technique always gives a solution
whenever the problem is feasible, can yield as small a settling
time as desired, and provides the freedom to choose the closed-
loop poles arbitrarily inside the unit circle, all obtained by
low-degree controllers.

I. INTRODUCTION

Offset-free tracking of a reference signal is a central
problem to classical control theory. However, the mere
stabilization and asymptotic set-point tracking is deemed
inadequate in applications that are sensitive to overshoots and
oscillations. Such applications are found in diverse areas such
as transportation systems [14], robotics [8], and electronics
[9]. Their needs have initiated a long quest for controller
synthesis techniques that can eliminate both overshoots and
undershoots in the closed-loop system response.

A popular way to ensure that no overshoots or undershoots
are present in the system is to remove all oscillations by
imposing monotonicity on the closed-loop system response.
For linear systems, this is equivalent to enforcing that the
closed-loop system has a non-negative impulse response.
Such systems are known as Externally Positive (EP). There
have been many interesting results on the analysis and control
of these systems in the literature [2, 4, 5, 6]. Nevertheless,
finding conditions that ensure that a system is EP and
designing controllers that ensure such property in closed-
loop are still two open problems in control theory [14, 2].

The exact conditions under which a given transfer function
is EP are only known for system of orders up to three in
continuous-time and up to order two in discrete time [10,
15, 16]. For higher-order systems, there are conditions that
are only sufficient or only necessary but not both [5, 14,
17]. The conditions characterizing EP systems are ultimately
used to synthesize controllers that eliminate overshoots and
undershoots from the system response by enforcing external
positivity on the closed-loop. The problem of designing
such controllers for general linear systems is not completely
solved yet [14]. Nevertheless, several design procedures
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have been proposed in the literature that achieve monotonic
tracking using different control structures [4, 6, 13, 16, 17].
Each of these methods targets a different type of systems.
For example, modal synthesis was used in [13] to design
state feedback controllers which can be applied to non-
minimum phase systems. However, the design in [13] is
restricted to systems with relative degree one. The control
synthesis methods proposed in [15, 16] can be applied to
systems with any relative degree. However, the approach in
[15] is restricted to minimum-phase systems and the one in
[16] is restricted to not have any zeros beyond the vertical
line {z ∈ C|Re(z) ≥ 1}. Both the restrictions on relative
degrees and the location of zeros are lifted in the control
designs offered in [4, 17]. However, both these methods still
have some restrictions on where the closed-loop poles can
be located: In [4], all the closed-loop poles must be real and
non-negative, with some of them forced to be at the same
location, while [17] only permits a single closed-loop pole
to be real and positive.

In this paper, we develop a new set of conditions that
ensure a given system of arbitrary order is externally positive.
Our conditions are derived from a combinatorial repre-
sentation of the impulse response and are used to obtain
controllers that achieve offset-free monotonic tracking in
closed-loop. The proposed control design is applicable to all
linear systems (regardless of their relative degree and zero
locations) and the closed-loop poles can be placed anywhere
(on the negative real axis, on the positive real axis, or as
complex-conjugate pairs) inside the unit circle.

A. Notation

R+ (R++) refers to the set of non-negative (positive) reals,
z↓ ∈ Rn is the vector z ∈ Rn with components sorted in
descending order, |z| ∈ Rn

+ is the vector of the absolute
values of the components of z ∈ Cn. The notation [A]ij
refers to the element in row i and column j of the matrix A.

II. PRELIMINARIES

A. Problem statement

Consider the linear discrete-time systems with the transfer
functions of the form

H(z) =
B(z)

A(z)
= K

∏m
i=1(z − zi)∏n
i=1(z − pi)

=
b0z

n + b1z
n−1 + . . .+ bn−1z + bn

zn + a1zn−1 + . . .+ an−1z + an
(1)
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where K ̸= 0 to rule out the degenerate case H(z) ≡ 0.
Assume that the transfer function (1) has n+ real non-
negative poles and no = n − n+ other poles in the region
C\R+. We denote by p+ ∈ Rn

+ the vector of all the
non-negative poles of H(z) with additional zeros added as
p+i = 0 (n+ < i ≤ n) if n+ < n. Likewise, we let
po ∈ Cn denote the vector of all the other poles of H(z)
with additional zeros appended when no < n, i.e., poi = 0
for i = no + 1, no + 2, . . . , n.

We are interested in controlling the plant (1) such that the
closed-loop system is stable and tracks a set-point reference
with no overshoot, no undershoot, and no steady-state error.

Definition 1: The system (1) is called Externally Positive
(EP) if ht = Z−1{H(z)} ≥ 0 for all t ∈ N0.

Definition (1) indicates that a linear EP system has a
monotonic step response. Therefore, one way to eliminate
both overshoots and undershoots in a control system is to
design a controller that renders the closed-loop system EP.
For this purpose, we first study the family of EP systems.

B. Externally positive systems: the impact of pole locations

The conditions that make a discrete-time transfer function
EP can be neatly presented when the order of the transfer
function is lower than three [16]. Unfortunately, external
positivity conditions rapidly grow complicated for higher-
order systems and even for third-order discrete-time systems,
there is no set of conditions that exposes all the EP systems
known yet.

Whether an arbitrary-order system (1) is EP or not depends
on the exact location of its poles and zeros. Intuitively, when
the system has large negative or complex-conjugate poles,
it may not have a non-negative impulse response because
its modes pti corresponding to these poles keep changing
signs with time t. The following proposition makes this point
accurate, by asserting that a transfer function cannot be EP
unless its “dominant pole” is positive.

Proposition 1 ([4]): Let maxi |pi| > 0. If system (1) is
EP, then the pole with the maximum modulus is positive. If
there are other poles with the same maximum modulus, the
multiplicity of this real positive pole is greater than or equal
to the multiplicity of such other poles.

Proposition 1 only provides a necessary condition for (1)
to be EP: there are transfer functions whose dominant poles
are positive, but who are not EP. In the special case when all
the poles are positive, one can guarantee the system is EP
under certain assumptions, as shown in the next proposition.

Proposition 2 ([18]): The system (1) is externally posi-
tive if pi ≥ 0 for all i = 1, 2, · · · , n and bk ≥ 0 for all
k = 0, 1, · · · , n.

Now consider a system whose dominant pole is positive,
but in addition to its positive pole(s), it also has complex-
conjugate and negative poles. Such a system passes the
necessity test of Proposition 1 but does not satisfy the
requirements of Proposition 2. Therefore, it may or may not
be EP. These kinds of systems are in fact very common
in practice, as negative poles already appear in second-
order systems and complex-conjugate poles already appear

in third-order systems and have a critical say in the non-
negativeness of the impulse response by creating oscillations.
One can expect that these systems are EP, if their positive
poles prevail over all their negative and complex-conjugate
poles in some sense. This dominance should be stronger than
the necessary condition of Proposition 1 but more relaxed
than the sufficient condition of Proposition 2. In Section IV
we show that this dominance can be elegantly described by
a majorization inequality over the set of poles. We use the
properties of combinatorial polynomials to derive this result.
The next section is therefore devoted to a brief review of the
combinatorial polynomials used in this paper.

III. COMBINATORIAL POLYNOMIALS

In this section, we focus on four different families of
combinatorial polynomials that are useful in deriving the
main results in this paper. The t-th elementary symmetric
polynomial et : Cn 7→ R (0 ≤ t ≤ n) is the sum of all
monomials with total degree t and distinct variables,

et(x) =
∑
j∈Dt

n

xj1xj2 . . . xjt (2)

where Dt
n = {j ∈ Nt | 1 ≤ j1 < j2 < . . . < jt ≤ n}. These

polynomials relate the roots of a polynomial, say B(z) in
(1), to its coefficients via Vieta’s formula [3, p.192]:

ek(−z) = bn−m+k/bn−m, 0 ≤ k ≤ m (3)

Allowing for repeated variables in the monomials of (2) leads
to the t-th complete homogeneous symmetric polynomial ηt :
Cn 7→ R, the sum of all monomials of total degree t

ηt(x) =
∑
j∈Sn

t

xj1
1 xj2

2 . . . xjn
n (4)

where Sn
t = {j ∈ Nn

0 | j1 + j2 + . . .+ jn = t}. The first
few samples of these polynomials are given by

η0(x) = 1
η1(x) =

∑n
i=1 xi

η2(x) =
∑

1≤i1≤i2≤n xi1xi2 .

By convention, ηk(x) ≡ 0 for k < 0. A closely related family
of polynomials are the power sums Πt : Cn 7→ R where

Πt(x) = xt
1 + xt

2 + . . .+ xt
n. (5)

The last family of combinatorial polynomials that we will use
are the tth complete exponential Bell polynomials, Bt(x) :
Ct 7→ R, defined as

Bt (x) =
∑
j∈Jt

n!

j1!j2! . . . jt!

(x1

1!

)j1 (x2

2!

)j2
· · ·

(xt

t!

)jt
(6)

where Jt = {j ∈ Nt
0 | j1 + 2j2 + · · ·+ tjt = t}. The first

few samples of these polynomials are

B0(x) = 1

B1(x) = x1

B2(x) = x2
1 + x2.
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It follows from (6) that Bell polynomials are non-negative
on the non-negative orthant, i.e.

x1, x2, · · · , xt ≥ 0 ⇒ Bt(x) ≥ 0. (7)

One relationship between the three families of polyno-
mials, complete homogeneous symmetric polynomials (4),
power sum polynomials (5) and Bell polynomials (6) is given
by the identity [3, p.433]

ηt(p) =
1

t!
Bt (Π1, 1!Π2, · · · , (t− 1)! Πt) . (8)

The importance of combinatorial polynomials in linear
control theory stems from their ability to provide alternative
representations for the inverse Z transform. For example,
consider the following lemma.

Lemma 1 ([18]): The impulse response of (1) is given by

ht = (b ∗ η(p))t =
n∑

k=0

bkηt−k(p). (9)

Unlike the conventional partial fractions expansions, the
representation (9) allows for multiple poles as well as zero-
pole cancellations in the same compact expression.

IV. EXTERNAL POSITIVITY CONDITIONS

In this section, a sufficient condition is derived which
ensures that a transfer function (1) of arbitrary order is EP.
This condition is obtained and described using the concept
of majorization, introduced next.

Definition 2: We say that x ∈ Rn (weakly) majorizes y ∈
Rn and write x ≻w y, if

k∑
i=1

x↓
i ≥

k∑
i=1

y↓i

for all k = 1, 2 · · · , n.
The majorization inequality in Definition 2 can be interpreted
as the components of x are generally greater than or more
spread out than those of y. Majorization has an important
consequence described by Karamata’s inequality below.

Lemma 2 ([20]): Let I ⊆ R, x, y ∈ In and g : I → R
be convex and increasing on I. If x ≻w y, then

n∑
i=1

g(xi) ≥
n∑

i=1

g(yi).

We are now ready to present our main results.
Theorem 1: All linear systems on the form (1) with non-

negative numerator coefficients and poles satisfying

p+ ≻w |po| (10)

are externally positive.
Proof: Since bk ≥ 0 for all 0 ≤ k ≤ n, the impulse

response (9) is non-negative if ηt(p) ≥ 0 holds for all t ∈ N0.
Due to (8), this condition is equivalent to

Bt (Π1, 1!Π2, · · · , (t− 1)!Πt) ≥ 0, t ∈ N0. (11)

By (7), this inequality holds if

Πt(p) ≥ 0, t ∈ N0. (12)

It hence remains to show that (12) holds true to prove that
(1) is EP. To this aim, we observe that

Πt(p) =

n∑
i=1

pti

=

n+∑
i=1

(
p+i

)t
+

no∑
i=1

(poi )
t

=

n+∑
i=1

(
p+i

)t
+

no∑
i=1

|poi |
t
cos(Arg(poi )t)

≥
n∑

i=1

(
p+i

)t − n∑
i=1

|poi |
t
. (13)

Now, from the majorization inequality (10) and the fact that
the scalar function g(x) := xt is both increasing and convex
in I = R+, Lemma 2 can be used to deduce

n∑
i=1

(
p+i

)t ≥ n∑
i=1

|poi |
t
.

Therefore the right-hand side of (13) is non-negative and (12)
holds true. This proves that the system (1) is EP.

An attractive feature of Theorem 1 is that the external
positivity conditions involving the zeros and poles are decou-
pled from each other. As long as the numerator coefficients
are positive, external positivity is guaranteed by a single
condition (10) on the system poles. As we will see in
Section V, this simplifies the control synthesis considerably.
Although the requirement that all numerator coefficients are
non-negative limits the use of Theorem 1 for analysis, it
does not exclude any systems when it comes to control
design. The reason is that a controller can always meet this
requirement by multiplying B(z) with a suitable polynomial
(see Lemma 3 in Section V).

When the system poles are real, the condition (10) is both
necessary and sufficient for systems of up to order four, as
shown by Proposition 4 in the appendix. Proposition 5 in
appendix demonstrates that the condition (10) in Theorem 1
is optimal in an interesting sense: it provides the largest circle
around the origin where the poles can be placed arbitrarily
while ensuring all the systems with non-negative numerator
coefficients are EP. The following example illustrates these
points for a third-order system.

Example 1: Consider a third-order strictly proper system
(1) with arbitrary but non-negative numerator coefficients.
We fix a positive pole at p1 = 0.9 and let it be dominant, i.e.,
p1 > |p2|, |p3|. This system satisfies the necessary condition
offered in Proposition 1 for being EP. The regions in which
placing the two other poles p2, p3 proves the system to be EP
using Theorem 1 are shown in Figure 1. As it can be seen,
Theorem 1 exposes all the EP systems in case of real poles
and yields the largest disk centered at the origin that contains
the complex-conjugate poles that result in an EP system.
This result holds regardless of the numerator polynomial,
as long as its coefficients are non-negative. For comparison,
Proposition 2 only detects the set of poles in the square
{(p2, p3) | 0 ≤ p2, p3 < 0.9} in the upper-right corner of
Figure 1a as EP.
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(b) Complex-conjugate poles.

Fig. 1: The region of poles that results in an EP system in
Example 1. The region specified by Theorem 1 is always a
subset of the exact region and the two coincide in case of
real poles in this example.

V. NON-OVERSHOOTING TRACKING
CONTROLLER DESIGN

In this section, we use the results of Section IV to design
an output-feedback controller that renders the closed-loop
system stable and externally positive with a unit steady-
state gain. Such a controller tracks reference set-points
monotonically with no overshoot or undershoot. Consider
a two-parameter compensator as [19, p.101]

U(z) = C1(z)R(z)− C2(z)Y (z) (14)

where R(z) = Z−1{rt} and Y (z) = Z−1{yt} are the
reference input and plant output respectively, and

C1(z) = Kc
N(z)

D(z)
, C2(z) =

F (z)

G(z)
(15)

are the controller transfer functions. The control signal U(z)
obtained from (14) is fed as input to the plant (1). The control
law (14) constitutes the most general linear time-invariant

output-feedback control structure and results in the closed-
loop transfer function [19, §5.6]

Hcl(z) =
KcN(z)G(z)B(z)

D(z)B(z)F (z) +D(z)A(z)G(z)
. (16)

In order to render the closed-loop externally positive, we
need to assume that the plant does not have any zeros in
z ∈ [1,+∞), according to the following proposition.

Proposition 3 ([4]): An output-feedback controller exists
that results in a stable externally positive closed-loop system,
if and only if the plant (1) does not have any real positive
non-minimum-phase zeros, i.e. in the range z ∈ [1,+∞).

For simplicity, we first assume that B(z) does not have any
non-negative zeros and then extend the result to also handle
the plant zeros in the range z ∈ [0, 1). In the remainder of
this Section, we will show that it is possible to find controller
polynomials N(z), D(z), F (z), G(z) and a static gain Kc

for the control law (14) which results in a closed-loop system
(16) that is stable, externally positive, and has a unit steady-
state gain.

A. Stability

For the closed-loop system (16) to be internally stable,
it is required that all the roots of D(z) on or outside the
unit circle are contained in the roots of G(z) [19, p.103].
Therefore, we let

D(z) = G(z)D̂(z) (17)

where D̂(z) is a Schur stable polynomial. By this choice,
the closed-loop system is internally stable if and only if

Â(z) = B(z)F (z) +A(z)G(z) (18)

has all its roots inside the unit circle. This is always possible
to achieve with deg(G) = n − 1 if B(z) and A(z) are
relatively prime [7, p.180]. By (17)-(18), the closed-loop
system (16) takes the form

Hcl(z) = Kc
N(z)B(z)

Acl(z)
(19)

where

Acl(z) = D̂(z)Â(z) =

ncl∏
i=1

(z − pcli ) (20)

denotes the closed-loop denominator polynomial.

B. External positivity

We use the results of Theorem 1 to ensure the closed-loop
system (16) is EP. As Theorem 1 requires the numerator
coefficients to be non-negative, we multiply B(z) by an
appropriate polynomial N(z) to make all the coefficients of
the closed-loop numerator N(z)B(z) non-negative. This is
always possible, as shown in the following lemma.

Lemma 3 ([12]): There is a polynomial N(z) of degree
at most k ≤ k̄ such that N(z)B(z) has non-negative
coefficients, where

k̄ =
∑
i∈I+

(⌈π/Arg(zi)⌉ − 2) (21)
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and I+ = {i ∈ [1,m] | Im(zi) > 0}. If B(z) is a second-
order polynomial, then the minimum order of such multiplier
is equal to (21).

Such a multiplier polynomial can be expressed as N(z) =∑k
i=0 νiz

k−i, where the coefficients ν = [ν0, . . . , νk]
T ∈ Rk

are found from the inequality

Tbν ≥ 0 (22)

where Tb ∈ R(k+n+1)×(k+1) is a Toeplitz matrix that satisfies
[Tb]ij = bi−j if i − j ∈ [0, n] and [Tb]ij = 0 otherwise.
Inequality (22) can be easily verified using a linear program
that is feasible with k = k̄ given by (21). In addition, one
may use a simple bisection search over k to find the least-
order multiplier that satisfies (22). Once deg(N) = k is
found, one needs to ensure that

deg(D) = deg(G) + deg(D̂) = n− 1 + deg(D̂) ≥ k

to make C1(z) in (15) proper. Thereby, the order of closed-
loop system (19) can be chosen as

ncl = deg(Acl) = deg(D̂) + deg(Â)

≥ max{k − n+ 1, 0}+ 2n− 1

= max{k + n, 2n− 1}. (23)

The ncl closed-loop poles are assigned in the unit circle such
that the real non-negative ones (weakly) majorize the rest,
i.e., pcl+ ≻w

∣∣pclo∣∣. This makes the closed-loop system (19)
EP according to Theorem 1. There is still a degree of freedom
left in how to divide the set of chosen closed-loop poles
between D̂(z) and Â(z) in (20). Among the ncl poles, 2n−1
are allocated to Â(z) as

Â(z) =

2n−1∑
i=0

âiz
2n−1−i =

2n−1∏
i=1

(z − pcli ) (24)

and the remaining ncl−(2n−1) are allocated to D̂(z). Once
Â(z) in (18) is determined by (24), the coefficients f and
g of the polynomials F (z) and G(z) are determined in a
simple pole-placement process from the unique solution of
the algebraic equation [16]

M

[
f
g

]
= â (25)

where â is given by (24) and M =
[
Tb Ta

]
∈ R2n×2n.

C. Unit steady-state gain

The last step to complete the controller design is to adjust
the closed-loop steady-state gain to guarantee the reference
tracking error rt − yt tends to zero asymptotically. This is
done by choosing the controller static gain Kc > 0 such that
Hcl(1) = 1, i.e.

Kc =
Acl(1)

N(1)B(1)
(26)

D. Control synthesis procedure in summary

In summary, the proposed control synthesis procedure
comprises the following steps.

1) Use linear programming (possibly combined with bi-
section) to find N(z) of order k ≤ k̄ that satisfies (22).

2) Choose ncl ≥ max{k + n, 2n − 1} closed-loop poles
inside the unit circle, such that the non-negative ones
weakly majorize the other ones.

3) Use 2n − 1 of the chosen closed-loop poles to form
Â(z) as in (24). Obtain F (z) and G(z) from (25).

4) Use the remaining ncl − (2n− 1) closed-loop poles to
form D̂(z). Obtain D(z) from (17).

5) Determine the controller static gain Kc via (26).

VI. DISCUSSION

To provide additional insight into the proposed control
synthesis procedure, this section discusses some key aspects
of our approach supported by numerical examples.

A. Plants with positive zeros

The control synthesis procedure proposed in Section V
can be easily extended to handle the plant zeros in the
range z ∈ [0, 1). Assume that the first m̂ plant zeros are
in z ∈ [0, 1) and the rest are located in z ∈ C\[0, 1).
The plant’s numerator can then be factorized as B(z) =
K

∏m̂
i=1 (z − zi)B̂(z) where B̂(z) does not have any real

non-negative roots. The multiplier N(z) is then designed to
make all the coefficients of N(z)B̂(z) non-negative. The first
m̂ closed-loop poles are chosen as pcli ∈ (zi, 1) to make
Hcl

1 (z) = K
∏m̂

i=1(z − zi)/(z − pcli ) a series connection
of first-order systems that are all EP [16]. The remaining
ncl − m̂ poles are chosen as before based on Theorem 1,
to make Hcl

2 (z) = N(z)B̂(z)/
∏ncl

i=m̂+1(z − pcli ) EP. Now,
since the closed-loop system can be written as the product
of the two EP transfer functions Hcl

1 (z) and Hcl
2 (z) (later

multiplied by some Kc > 0), it is itself EP. Everything else
in the controller synthesis remains the same.

B. Controller order

The order of the two-parameter compensator (14) is

O := deg(D) + deg(G)

= deg(D̂) + 2 deg(G)

= ncl − deg(Â) + 2 deg(G)

= ncl − (2n− 1) + 2(n− 1)

= ncl − 1

≥ max{k + n− 1, 2n− 2}. (27)

The lowest controller order O = 2n− 2 is achievable when
n ≥ 1 and all the plant zeros are located on the left half-
plane. For these systems, all the coefficients of B(z) are non-
negative and hence no multiplier is needed, i.e. N(z) = 1
and k = 0. In contrast, much higher controller orders may
be needed for plants that have complex-conjugate zeros with
positive real parts, as demonstrated in the following example.

Example 2: Consider a plant with the second-order nu-
merator B(z) with complex-conjugate zeros z1,2 = u ± iv
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Fig. 2: The order of controllers designed for monotonic
tracking of the system described in Example 2 using two
different synthesis techniques.

where u > 0. If the zeros approach the real axis i.e.
Arg(zi) → 0, one has k̄ → +∞ in (21). Therefore according
to Lemma 3, the minimum multiplier order k tends to
+∞ and thereby, the controller order O in (27) also grows
arbitrarily large when the plant zeros approach the real axis.
The controller orders provided in Section V and in [4] are
compared for a fixed u = Re(z1,2) = 2 and different values
of v = Im(z1,2) in Figure 2. As it can be seen, the synthesis
procedure in this paper provides much smaller controller
orders than that of [4]. In addition, the control design in
Section V allows for a flexible assignment of the closed-loop
poles inside the unit circle based on Theorem 1. In contrast,
the closed-loop poles in [4] are all located at pcli ∈ {0, ρ},
where ρ = 0.5 was chosen for this experiment.

It seems natural to require an increasingly high controller
order for plants with non-minimum phase complex-conjugate
zeros very close to the real axis, since Proposition 3 estab-
lishes that monotonic tracking is impossible when the non-
minimum phase zeros are located on the real axis.

C. Settling time

In discrete-time linear systems, the spectral radius of poles

ρ(Hcl) = max
i

|pcli | (28)

is a good measure of the decay rate of the closed-loop system
response and roughly determines its settling time [18]. Sim-
ilarly to [13], the control synthesis proposed in Section V-D
is always able to obtain any desired decay rate ρ(Hcl) =
ρ ∈ [0, 1). This may require setting pcli = zi for 1 ≤ i ≤ m̂
when the plant has positive zeros. Note that such pole-zero
cancellations still result in an internally stable controller.

D. Sensitivity

In pole-placement-based controller designs, robustness to
model uncertainties and disturbances is usually handled by
a suitable assignment of the closed-loop poles [1]. For ex-
ample, to have a reasonable peak on the sensitivity function

S(z) =
B(z)G(z)

A(z)G(z) +B(z)F (z)
=

B(z)G(z)

Â(z)

one typically matches the high-frequency process poles by
corresponding closed-loop poles [1]. Such design rules re-
main fully functional in our controller synthesis approach
as well, because of the freedom in choosing the closed-
loop pole locations. One just needs to be careful in Step 3
of the procedure to include the poles assigned for treating
sensitivity and robustness in Â(z) rather than in D̂(z).

E. MIMO systems

The proposed design method has a direct extension to
MIMO systems where ut ∈ Rlu , rt ∈ Rlr and yt ∈ Rly .
The difference is that Lemma 3 is replaced by the following
lemma to make the numerator coefficients of all channels
non-negative using the same multiplier polynomial N(z).

Lemma 4 ([11]): The polynomial N(z)B(z) has non-
negative coefficients, where K > 0, N(z) = (z + 1)k and

k =

⌈ (
m
2

)
maxi{|bn−i|/

(
m
i

)
}

minz∈[0,1]{(1− z)mB(z/(1− z))}

⌉
−m. (29)

Let H = NrD
−1
r and H = D−1

l Nl be any right and
left co-prime factorizations of the plant H(z) ∈ Cly×lu .
Choosing the controller in (14) as[

C1 C2

]
= (Y −Q2Nl)

−1
[
Q1 X +Q2Dl

]
(30)

makes the closed-loop system Hcl = NrQ1 internally stable,
where Q1 and Q2 are arbitrary stable transfer matrices,
|Y −Q2Nl| ≠ 0, and X and Y are stable solutions to the Dio-
phantine equation XNr+Y Dr = I [19, §5.6]. With suitable
conditions and a high enough order of N(z) in Lemma 4,
one can make all channels in the closed-loop system EP by
choosing Q1 ∈ Clu×lr e.g., as [Q1]ij = N(z)Γ(z)/Acl(z)
where Γ(z) is the product of all the denominators in Nr

and Acl(z) is the desired closed-loop denominator with poles
assigned based on Theorem 1.

VII. DESIGN EXAMPLE

We conclude this section with a numerical example that
demonstrates how the control synthesis procedure developed
in Section V is applied in a simple case.

Example 3: We would like to control the unstable plant
H(z) =

(
z2 − z + 1.25

)
/(z − 0.1)(z − 1.5) to obtain a

stable closed-loop system with monotonic reference tracking
and zero steady-state error. For this purpose, we follow the
control design procedure in Section V-D. First, the maximum
multiplier order (21) is calculated as k̄ = ⌈π/ tan−1(2)⌉ −
2 = 1. Considering N(z) = ν0z + ν1 of order k = k̄ = 1,
the linear condition (22) given by ν1 ≥ ν0 ≥ (4/5)ν1 ≥ 0
is satisfied with ν0 = ν1 = 1. Hence, N(z) = z + 1. We
choose ncl = 3 closed-loop system poles

pcli ∈ {0, 0.1, 0.2} (31)

to obtain a small settling time according to (28) and a low
sensitivity by matching the high-frequency pole p1 = 0.1 in
H(z). With deg(Â) = 2n − 1 = 3 and we find F (z) =
0.97z − 0.098 and G(z) = 0.025z + 0.81. Since there are
ncl−(2n−1) = 0 poles remaining, D̂ = 1 and D(z) = G(z).
Finally, Kc = 0.288 is obtained from (26).
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Fig. 3: The closed-loop step response of the system consid-
ered in Example 3 using two different controllers.

Figure 3 compares the step response of the designed
controller with that of a controller designed via the method
in [16]. Since the controller in [16] can only place the poles
in the region pcli ∈ (0.5, 1) our approach obtains a faster
step-response. In addition, our procedure allows us to match
the high-frequency pole of the open-loop system and obtain
a maximum sensitivity of Ms = 1.9389, roughly half that of
the design from [16] which has M ′

s = 4.1309.

VIII. CONCLUSION
We have proposed a syntheis procedure for output-

feedback controllers that ensures a stable and externally pos-
itive closed-loop system. The framework is based on theoret-
ical developments that combine results from combinatorics,
majorization, and the theory of exactifying multipliers. It is
applicable to all systems that admit monotonic tracking, and
the resulting controllers can follow a set-point reference with
no overshoot, no undershoot, and no steady-state error. The
design technique can also account for important performance
objectives in the time and frequency domain. Numerical
examples demonstrate its advantages over the previous state-
of-the-art.
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trom. Advanced PID control. Vol. 461. ISA-The In-
strumentation, Systems, and Automation Society Re-
search Triangle Park, 2006.

[2] Luca Benvenuti and Lorenzo Farina. “Positive Dy-
namical Systems: New Applications, Old Problems”.
In: International Journal of Control, Automation and
Systems (2023), pp. 1–8.

[3] Charalambos A Charalambides. Enumerative combi-
natorics. CRC Press, 2002.

[4] Swaroop Darbha and Shankar P Bhattacharyya. “Con-
troller synthesis for sign-invariant impulse response”.
In: IEEE Transactions on Automatic Control 47.8
(2002), pp. 1346–1351.

[5] Ross Drummond, Matthew C Turner, and Stephen R
Duncan. “External positivity of linear systems by
weak majorisation”. In: 2019 American Control Con-
ference (ACC). IEEE. 2019, pp. 5191–5196.

[6] Huanchao Du, Zejun Yang, and Ruixia Liu. “New
results for linear systems with complex poles to have
nondecreasing step responses”. In: Mechanical Sys-
tems and Signal Processing 177 (2022), p. 109187.

[7] G.C. Goodwin, S.F. Graebe, and M.E. Salgado. Con-
trol System Design. 1st. USA: Prentice Hall PTR,
2000. ISBN: 0139586539.
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APPENDIX

Lemma 5: If system (1) is externally positive, then
n∑

i=1

pi ≥
m∑
i=1

zi. (32)

Proof: For each time instant t ∈ N0, the inequality
ht ≥ 0 constitutes a necessary condition for H(z) to be EP.
For t = n − m + 1, Lemma 1 implies that this condition
reads

hn−m+1 =

n∑
k=0

bkηn−m+1−k(p)

= bn−mη1(p) + bn−m+1η0(p)

= bn−me0(−z)η1(p) + bn−me1(−z)η0(p)

= K

n∑
i=1

pi −K

m∑
i=1

zi ≥ 0. (33)

where we have used (3) and the fact that bk = 0 for k <
n−m in (1). Dividing both sides of (33) by K > 0 results
in (32).

Proposition 4: In (1) let n ≤ 4 and pi ∈ R for 1 ≤ i ≤
n. Then all the systems on the form (1) with non-negative
numerator coefficients are externally positive if and only if
(10) holds.

Proof: We only prove this result for n = 4, as the
other cases (n = 1, 2, 3) can be proved in a similar way.
Since sufficiency is already established by Theorem 1, the
proof follows by showing that condition (10) is necessary for
H(z) to be EP under the stated assumptions. To this end, we
expand the inequality (10) as

k∑
i=1

p+↓
i ≥

k∑
i=1

|po↓i |, k = 1, 2, . . . , n. (34)

The proof is divided into 5 different cases, depending on the
number of non-negative poles n+ ∈ [0, n].
Case n+ = 1: In this case, the inequality (34) is satisfied for
all k = 1, 2, . . . , n if and only if it is satisfied for k = n.
Therefore, inequality (10) is reduced to p+1 ≥ |po1| + |po2| +
|po3|, which is equivalent to

n∑
i=1

pi ≥ 0 (35)

as poi ≤ 0 for 1 ≤ i ≤ n. Now if (35) is violated, the
necessary condition (32) is violated for the systems satisfying
bk ≥ 0 and bn−m+1 = 0, because −bn−m+1/bn−m =∑m

i=1 zi = 0 holds by (3). Hence, such systems would not
be EP, even though they satisfy bk ≥ 0 for all 0 ≤ k ≤ n.
This proves that (10) is necessary in this case.
Case n+ = 2: In this case, inequality (34) can be written as

max
i

p+i ≥ max
i

|poi | (36)

for k = 1 and as (35) for k = 2, 3, 4. Condition (36) is
necessary for H(z) to be EP, according to Proposition 1 and
condition (35) was shown to be necessary above.
Case n+ = 3: In this case, inequality (34) can be written as
(36) for k = 1 and as

k∑
i=1

p+↓
i ≥ |po↓1 | (37)

for k = 2, 3, 4. Since
∑k

i=1 p
+↓
i ≥ maxi p

+
i , the inequality

(37) follows from (36) which is known to be necessary from
Proposition 1.
Case n+ = 4: All the systems in this case satisfy (10) and
are EP.

Proposition 5: In (1) fix the first nx poles in R++. All the
systems (1) with the remaining n−nx ≥ nx poles satisfying

|pi| ≤
p1 + p2 + · · ·+ px

n− nx
:= r, nx < i ≤ n (38)

that have non-negative numerator coefficients are EP. Fur-
thermore, the constant r in (38) is the maximum achievable.

Proof: It is first shown that such systems satisfy (10)
and are therefore EP due to Theorem 1. It is enough to
show this for the extreme case when pi = −r < 0 for all
nx < i ≤ n, which maximizes the right-hand side of (34)
and minimizes its left-hand side by not adding more positive
zeros in p+, i.e. n+ = nx. For all 1 ≤ k ≤ nx, one can write

nx∑
i=1

pi ≤
k∑

i=1

p+↓
i + (nx − k) max

k+1≤i≤nx

{p+↓
i }

≤
k∑

i=1

p+↓
i +

nx − k

k

k∑
i=1

p+↓
i =

nx

k

k∑
i=1

p+↓
i . (39)

Using (39) one can bound the the right-hand side of (34) as
k∑

i=1

|po↓| = kr =

nx∑
i=1

kpi
n− nx

≤
k∑

i=1

nxp
+↓
i

n− nx
≤

k∑
i=1

p+↓
i

which verifies (34). It remains to show (34) for nx < k ≤ n.
However since p+↓

i = 0 for nx < i ≤ n and po↓i = 0 for
n − nx < i ≤ n, it is enough to show that (34) holds for
k = n− nx. This is simply done by noting

∑n−nx

i=1 |po↓| =
(n− nx)r =

∑nx

i=1 pi =
∑n−nx

i=1 p+↓
i .

To show that r is the largest possible constant in (38),
we use contradiction: If |pi| > r were allowed, one could
choose pi < −r for nx < i ≤ n and deduce that

n∑
i=1

pi <

nx∑
i=1

pi − (n− nx)r = 0. (40)

Equality (40) indicates that system (1) would no longer be EP
with numerators satisfying bk ≥ 0 and bn−m+1 = 0. Because
according to (3), one has −bn−m+1/bn−m =

∑m
i=1 zi = 0

which violates the necessary condition (32).
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