
On the security of randomly transformed quadratic programs
for privacy-preserving cloud-based control

Philipp Binfet, Nils Schlüter, and Moritz Schulze Darup

Abstract— Control related data, such as system states and
inputs or controller specifications, is often sensitive. Meanwhile,
the increasing connectivity of cloud-based or networked control
results in vast amounts of such data, which poses a privacy
threat, especially when evaluation on external platforms is
considered. In this context, a cipher based on a random affine
transformation gained attention, which is supposed to enable
privacy-preserving evaluations of quadratic programs (QPs)
with little computational overhead compared to other methods.

This paper deals with the security of such randomly trans-
formed QPs in the context of model predictive control (MPC).
In particular, we show how to construct attacks against this
cipher and thereby underpin concerns regarding its security
in a practical setting. To this end, we exploit invariants under
the transformations and common specifications of MPC-related
QPs. Our numerical examples then illustrate that these two
ingredients suffice to extract information from ciphertexts.

Index Terms— Control Systems Privacy, Cyber-Physical Se-
curity, Quadratic Programming, Model Predictive Control

I. INTRODUCTION
The privacy-preserving evaluation of a control related

functionality is the main focus of encrypted control. In this
context, quadratic programs (QPs) are of special interest,
because they serve as the corner stone for solutions in
many decision-making problems, where model predictive
control (MPC) is a famous example. Roughly speaking, data
privacy can be achieved via several cryptographic methods.
Noteworthy are homomorphic encryption [1], [2], secure
multi-party computation [3], and differential privacy [4].
However, these methods come with specific drawbacks such
as large overhead in terms of computation or communication
or a privacy-accuracy trade-off. Nonetheless, QPs have been
addressed with these methods, for example in [5], [6].

A cipher which lately received attention is called random
affine transformation (RT), random matrix encryption or
affine masking. This method does not suffer from the afore-
mentioned drawbacks and it can be used for a confidential
evaluation of optimization problems, e.g., on a cloud. The
application of RT ciphers to linear programming is addressed
in [7]–[9], whereas QPs are considered in [10], [11]. A more
general formulation for QPs can be found in [12] and [13],
where the latter has a focus on linear MPC, as it is the
case for [14]. Finally, also nonlinear MPC [15] and federated
learning [16] have been considered in this context. Despite
the fact that we collect these results under the umbrella of RT
ciphers here, we point out that there are differences between
them in terms of key reusage and additional permutations.

Philipp Binfet, Nils Schlüter, and Moritz Schulze Darup are with the
Control and Cyber-physical Systems Group, Department of Mechanical
Engineering, TU Dortmund University, Germany. E-mail correspondence
to {philipp.binfet, nils.schlueter, moritz.schulzedarup}@tu-dortmund.de.

At this point, one may already suspect that the advantages
of RTs do not come for free. In order to confirm that intuition,
this paper deals with the construction of concrete attacks on
the RTs applied to MPC, where QPs are solved sequentially.
For the confidential evaluation of these QPs, we consider RTs
over real numbers (as in the literature above) and allow for
different keys in every problem instance. An extension with
additional permutations is shown later. This way, many of the
publications which use RTs are addressed. Now, as pointed
out in [17], the “vector-ciphertexts” resulting from such
an RT can be made secure. However, applying this cipher
to QPs results in transformed QPs with slightly different
“matrix-ciphertexts” for the parameters (such as the Hessian),
which contain invariants. We show that certain information
is inevitably leaked from ciphertexts. Furthermore, based
on the invariants in combination with ciphertexts and little
additional knowledge (justified by Kerckhoffs’ principle) one
can break the cipher entirely. Our findings are illustrated by
an application to setpoint and tracking MPC problems.

In the remainder of the paper, we first specify the trans-
formed/encrypted QP and the corresponding RT (Section II).
Then, Section III analyzes the peculiarities of these QPs on
which the attacks in Section IV are based.

II. PROBLEM STATEMENT

We are interested in solving various instances of the QP

z∗k := argmin
z

1

2
z⊤Hkz + f⊤

k z s.t. Gkz ≤ ek (1)

where k ∈ N distinguishes the (time-) varying parameters

Hk ∈ Rl×l, Gk ∈ Rq×l, fk ∈ Rl, and ek ∈ Rq (2)
with constant dimensions l, q ∈ N. Further, we want to
outsource this optimization to a cloud. Here, the (honest-but-
curious) cloud represents any external computation platform
that is interested in learning the QP parameters Hk, Gk, fk,
and ek as well as the optimizer z∗k but executes computa-
tions as specified. In order to establish privacy, it has been
proposed in the literature (e.g., [13]) to use an RT of the
optimization variable according to

z = Rky + rk, (3)

where an invertible matrix Rk ∈ Rl×l and a vector rk ∈ Rl

are randomly chosen for each k. With this at hand, one can
transmit the transformed parameters

H̃k := R⊤
k HkRk, G̃k := GkRk, (4a)

f̃k := R⊤
k (fk +Hkrk), ẽk := ek −Gkrk. (4b)

to the cloud, which then solves

y∗k := argmin
y

1

2
y⊤H̃ky + f̃⊤

k y s.t. G̃ky ≤ ẽk (5)

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3872



instead of (1). Finally, based on the returned optimizer y∗k, we
easily recover the desired optimizer z∗k via (3). Correctness
of this scheme can be easily verified (cf. [11, Thm. 1]).
However, the question of interest in this paper is whether the
privacy of the original QP parameters (2) (and optimizers z∗k)
is indeed protected.

In this context, many authors conclude that (4) establishes
privacy of (2) from the following observation. Assume the
cloud came up with a guess Ĥk, Ĝk, f̂k, êk, R̂k, and r̂k
for the original QP parameters that is consistent with the
transformations (4) and the data available to the cloud in
terms of H̃k, G̃k, f̃k, and ẽk, i.e.,

H̃k = R̂⊤
k ĤkR̂k, G̃k = ĜkR̂k, (6a)

f̃k = R̂⊤
k (f̂k + Ĥkr̂k), ẽk = êk − Ĝkr̂k. (6b)

Then, the cloud could easily generate infinitely many ad-
ditional consistent guesses Ȟk, Ǧk, f̌k, ěk, Řk, and řk by
choosing any invertible matrix R̃k ∈ Rl×l and any vector
r̃k ∈ Rl and by specifying the additional guesses via

Ȟk := R̃⊤
k ĤkR̃k, Ǧk := ĜkR̃k, (7a)

f̌k := R̃⊤
k (f̂k + Ĥkr̃k), ěk := êk − Ĝkr̃k, (7b)

Řk := R̃−1
k R̂k, řk := R̃−1

k (r̂k − r̃k). (7c)
Clearly, (7a) and (7b) just reflect another transformation of
the form (4) using the chosen R̃k and r̃k. The relations (7c)
provide suitable updates of the guessed transformations.
Now, (6) and (7) imply that even if one can solve the
nonlinear system of equations underlying the transforma-
tions (4), there exist infinitely many other solutions, and it
seems impossible to select the one that actually applies. In
other words, privacy stems from ambiguity of the applied
transformation. We will double-check this argumentation for
popular problem specifications arising in model predictive
control in the following.

A. Problem specifications for predictive control

Classical MPC leads to a sequence of optimal control
problems in the form (1), where Hk and Gk are constant
(see, e.g., [18, Eq. (7)]). This is summarized in the following
specification for later reference.

Specification 1: The matrices Hk and Gk in (1) are con-
stant, i.e., Hk = H0 and Gk = G0 for every k ∈ N.
Furthermore, the optimization variable z typically represents
the predicted input sequence in MPC, which is, among other
constraints, often subjected to box constraints of the form

z ≤ z ≤ z. (8)
Such or similar constraints lead to constant parts in ek, as
specified next.

Specification 2: At least the first qfix ∈ N elements of the
constraint vectors ek are constant, i.e.,

ek =

(
efix

evark

)
for every k ∈ N (9)

with efix ∈ Rqfix and evark ∈ Rqvar , where qvar := q − qfix.
Finally, for classical MPC, the vectors ek and fk are

affine in the current system state xk [18, Eq. (7)]. Hence,
ek and fk are (almost) constant whenever the states xk are
(almost) constant. The latter applies, for instance, if the state

converges to a setpoint. Thus, we also consider the following
specification, where we assume exactly constant vectors for
analysis purposes.

Specification 3: The vectors fk and ek in (1) are constant
for every k in some set K ⊆ N, i.e., fj = fk and ej = ek
for all j, k ∈ K.

We will investigate the implications of Specifications 1,
2, and 3 on the desired privacy in the upcoming sections.
Before doing so, we present a variant of the transformations
in (4) which can increase the security.

B. Additional random permutations

Inspired by [19, Sect. 3.2], we will also briefly discuss the
combination of the transformations (4) with random permu-
tations of the inequality constraints in (1). More precisely,
for every k ∈ N, a permutation matrix Pk ∈ {0, 1}q×q (in
addition to Rk and rk) is randomly chosen which results in

G̃′
k := PkGkRk and ẽ′k := Pk(ek −Gkrk) (10)

instead of the corresponding transformations in (4). Accord-
ingly, we substitute the constraints G̃ky ≤ ẽk in (5) with
G̃′

ky ≤ ẽ′k. Note that, in light of such permutations, the
assumed order of the constant and varying parts of ek in (9)
is without loss of generality.

III. PROBLEM ANALYSIS

Before discussing possible attacks against the presented
scheme, we analyze the transformed QP and the data avail-
able to the cloud. To avoid technicalities, we make the
following assumption throughout the remaining paper.

Assumption 1: The matrices Hk are positive definite and
the rank of Gk is l for every k ∈ N.

A. Invariants and their relation to the dual problem(s)

We begin by pointing out two invariants regarding the
transformed parameters (4). These are closely related to the
dual of the QP (1), which is well-known to be

λ∗
k = argmin

0≤λ

1

2
λ⊤GkH

−1
k Gkλ+ (GkH

−1
k fk+ ek)

⊤λ. (11)

Interestingly, the duals of (1) and (5) are equal. In fact, this
immediately follows from the invariants summarized next.

Lemma 1: The transformed parameters (4) are related to
the original parameters via

G̃kH̃
−1
k G̃⊤

k = GkH
−1
k G⊤

k and (12a)

G̃kH̃
−1
k f̃k + ẽk = GkH

−1
k fk + ek (12b)

for any choice of Rk and rk.
Proof: The invariants immediately follow from substi-

tuting the expressions (4) for H̃k, G̃k, f̃k, and ẽk.
Moreover, the invariants (12) are closely related to Specifi-
cations 1 and 3 as detailed next.

Lemma 2: If Specification 1 applies, then G̃kH̃
−1
k G̃⊤

k is
constant for every k ∈ N. Further, if Specifications 1 and 3
apply, then G̃kH̃

−1
k f̃k + ẽk is constant for every k ∈ K.

Proof: Specification 1 obviously implies that the right-
hand side in (12a) is constant for every k ∈ N. Due to the
invariant, this property directly translates to G̃kH̃

−1
k G̃⊤

k . The
proof for G̃kH̃

−1
k f̃k + ẽk being constant for every k ∈ K

under Specifications 1 and 3 is analogous.

3873



Based on Lemma 2, the cloud obtains necessary conditions
for checking whether certain specifications apply. Before
exploiting this feature in Section IV, we briefly note that
invariants similar to (12) also arise if the permuted param-
eters G̃′

k and ẽ′k (as specified in (10)) replace G̃k and ẽk
in (4). In fact, we then find

G̃′
kH̃

−1
k (G̃′

k)
⊤ = PkGkH

−1
k G⊤

k P
⊤
k and (13a)

G̃′
kH̃

−1
k f̃k + ẽ′k = Pk

(
GkH

−1
k fk + ek

)
. (13b)

Finally, also the set of active constraints (or, if permutations
are involved, the set’s cardinality) is invariant under (4).

B. Consistent and correct guesses
Next, we focus on the systematic derivation of guesses

(for Ĥk, Ĝk, f̂k, êk, R̂k, and r̂k) that are consistent with the
observed data according to (6). It is easy to see that a trivial
solution to this task is

Ĥk := H̃k, Ĝk := G̃k, R̂k := Il, (14a)

f̂k := f̃k, êk := ẽk, r̂k := 0. (14b)

While trivial, the family of associated guesses (7) includes
the original parameters as apparent from the (existing but
typically unknown) transformation with R̃k := R−1

k and
r̃k = −R̃krk, which indeed leads to the correct guess

Ȟk = Hk, Ǧk = Gk, Řk = Rk, (15a)

f̌k = fk, ěk = ek, řk = rk. (15b)

Remarkably, any consistent guess can, in principle, be trans-
formed into a correct guess via (7) as formalized in the
following lemma.

Lemma 3: Assume a consistent guess satisfying (6) is
known. Then, the transformation (7) with R̃k := R̂kR

−1
k

and r̃k := r̂k − R̃krk yields a correct guess satisfying (15).
Proof: We initially note that Řk = Rk and řk = rk

immediately results when substituting R̃k and r̃k in (7c).
Further, substituting R̃k in (7a) and using (6a) and (4a)
proves Ȟk = Hk and Ǧk = Gk. Analogously, we can prove
f̌k = fk and ěk = ek by exploiting (4b) and (6b).

While consistent with the data, the trivial guess (14) is
not very helpful if Specification 1 applies because, up until
this point, consistency has only been defined with respect
to isolated instances k (typically leading to guesses that are
not consistent across different instances, e.g., Ĥ0 ̸= Ĥk). In
order to avoid this issue, we derive another consistent guess
based on the invariant (12a), which promotes cross-instance
consistency according to Lemma 2. This novel guess builds
on a singular value decomposition (SVD) of the matrix on
the left-hand side of (12a) leading to

G̃kH̃
−1
k G̃⊤

k = ŨkΣ̃kṼ
⊤
k , (16)

where Ũk :=
(
ũ1,k . . . ũq,k

)
∈ Rq×q and Ṽk are orthog-

onal and where

Σ̃k =

(
D̃k 0
0 0

)
∈ Rq×q with D̃k := diag(σ̃1,k, . . . , σ̃l,k).

The singular values σ̃1,k ≥ ... ≥ σ̃l,k > 0 are l in number,
since Assumption 1 immediately implies that GkH

−1
k G⊤

k is
of rank l. Due to (12a), the same applies to G̃kH̃

−1
k G̃⊤

k

yielding l positive σ̃i,k. We then find the following theorem.

Theorem 4: The guess with the parameters

Ĥk := D̃−1
k , Ĝk :=

(
ũ1,k . . . ũl,k

)
, and R̂k := Ĝ⊤

k G̃k

is consistent with (6a).
Proof: To prove the claim, we first note that

Ĝ⊤
k Ũk =

(
Il 0

)
by construction of Ĝk. Furthermore, since

G̃kH̃
−1
k G̃⊤

k is positive semi-definite with rank l, the first
l columns of Ṽk are equivalent to those of Ũk. Hence,
Ĝ⊤

k Ṽk =
(
Il ∗

)
. Next, we multiply (16) with Ĝ⊤

k from
the left and with Ĝk from the right to obtain

R̂kH̃
−1
k R̂⊤

k =
(
Il 0

)
Σ̃k

(
Il
∗

)
= D̃k.

Since only square matrices are involved and D̃k is regular
by construction, this relation implies invertibility of R̂k and
D̃−1

k = R̂−⊤
k H̃kR̂

−1
k . With this at hand, we find

R̂⊤
k ĤkR̂k = R̂⊤

k D̃
−1
k R̂k = H̃k,

which proves the first equation in (6a). It remains to prove
G̃k = ĜkR̂k. Hence, we define Ỹk :=

(
ũl+1,k . . . ũq,k

)
and note that Ỹ ⊤

k Ũk =
(
0 Iq−l

)
and Ỹ ⊤

k Ṽk =
(
0 ∗

)
. As

a consequence, we find Ỹ ⊤
k ŨkΣ̃kṼ

⊤
k Ỹk = 0. Due to (16),

this also implies Ỹ ⊤
k G̃kH̃

−1
k G̃⊤

k Ỹk = 0. Now, due to positive
definiteness of H̃−1

k , the latter relation holds if and only if
Ỹ ⊤
k G̃k = 0. Furthermore, we have ĜkĜ

⊤
k = Iq− ỸkỸ

⊤
k due

to ŨkŨ
⊤
k = Iq . Hence, we obtain

ĜkR̂k = ĜkĜ
⊤
k G̃k = (Iq − ỸkỸ

⊤
k )G̃k = G̃k,

which completes the proof.
Theorem 4 indicates that finding consistent guesses ac-

cording to (6) can be decoupled. In fact, consistent Ĥk, Ĝk,
and R̂k can be identified by only considering (6a) and f̂k,
êk, and r̂k only appear in (6b). In particular, once consistent
Ĥk, Ĝk, and R̂k have been found, (6b) can be rewritten in
terms of the linear equations(

Iq 0 −Ĝk

0 R̂⊤
k R̂⊤

k Ĥk

)êk
f̂k
r̂k

 =

(
ẽk
f̃k

)
(17)

with the unknowns f̂k, êk, and r̂k. These equations are, e.g.,
solved by f̂k := R̂−⊤

k f̃k, êk := ẽk, and r̂k := 0. However,
having q+ l equations for q+2l unknowns, it is immediately
clear that the system of equations is underdetermined and (in-
finitely many) more solutions exist. Moreover, the particular
solution mentioned above is typically inconsistent with the
Specifications 2 and 3. As a consequence, we investigate (17)
in more detail in the next section.

C. Exploiting linear dependencies of parameters

Similar to Specification 1, also Specifications 2 and 3 call
for consistent guesses across multiple problem instances. In
the following, we will analyze the effect of these specifi-
cations on (17), assuming throughout that Specification 1
applies as well. For ease of presentation, we begin by analyz-
ing the effect of Specification 3. In this context, we assume
that the index set K contains s elements and enumerate
them by k1, . . . , ks. Then, taking êk1 = · · · = êks and
f̂k1 = · · · = f̂ks into account, (17) results in the following
relation:

3874



eq

Iq 0 −Ĝ0 0
...

...
. . .

Iq 0 0 −Ĝ0

0 R̂⊤
k1

R̂⊤
k1
Ĥ0 0

...
...

. . .
0 R̂⊤

ks
0 R̂⊤

ks
Ĥ0




êk1

f̂k1

r̂k1

...
r̂ks

 =



ẽk1

...
ẽks

f̃k1

...
f̃ks


. (18)

At this point, we note that based on R̂k1 , Ĥ0, and Ĝ0 (e.g.,
obtained via Theorem 4) one can construct the coefficient
matrix in (18) because the remaining keys R̂k2

, R̂k3
, . . . , R̂ks

follow from Ĝ0 and G̃k with k ∈ K. Now, at first glance,
this system of equations looks overdetermined with (q+ l)s
equations and q+ l(s+1) unknowns. However, it is easy to
show (but omitted here for brevity) that the rank of the matrix
in (18) is only q + ls. Hence, the system of equations (18)
is again underdetermined and l (independent) equations are
again missing. In contrast to (17), however, where l equations
were missing for each k ∈ N, here l equations are missing
to identify all unknowns for all instances k ∈ K.

In addition, we can exploit that the simultaneous applica-
tion of Specifications 1 and 3 also implies identical QPs (1)
for k ∈ K and consequently z∗k1

= · · · = z∗ks
. We can make

use of this relationship by noting that, once a guess ẑ∗ki
for

any original optimizers z∗ki
is known, we can immediately

derive r̂ki
:= ẑ∗ki

− R̂ki
y∗ki

, êki
:= ẽki

+ Ĝ0r̂ki
, and

f̂ki
:= R̂−⊤

k f̃ki
− Ĥ0r̂ki

.
It remains to comment on the effects of Specification 2.

Although this specification addresses all k ∈ N, we consider
the same set K as above for convenience. In this context, (17)
leads to a system of linear equations similar to (18) and also
with the same right-hand side but with the unknown vectors

êfix, êvark1
, . . . , êvarks

, f̂k1
, . . . , f̂ks

, r̂k1
, . . . , r̂ks

. (19)

Hence, we (initially) have qfix + (qvar + 2l)s unknowns here
but again (q + l)s equations. Now, assuming

qfix > l and s ≥ qfix

qfix − l
, (20)

the number of equations exceeds (or matches) the number of
unknowns. However, even if (20) holds, one can show that
the rank deficiency of the coefficient matrix characterizing
the system of linear equations is again l. Still, once we have a
guess for either êfix or any of the f̂ki

or r̂ki
, we can compute

all unknowns (19). We make use of this feature in Section IV.

D. Partially resolving permutations
As apparent from (13), the invariants (12) exploited above

lose some of their informative value if permutations are
involved. Nevertheless, if Specification 1 applies, the entries
of G̃′

kH̃
−1
k (G̃′

k)
⊤ and G̃′

0H̃
−1
0 (G̃′

0)
⊤ differ only in their

position. Thus, whenever these matrices contain at least q
distinct entries, which is often the case, it is straightforward
to identify relative permutations ∆Pk,0 := PkP

⊤
0 such that

G̃′
kH̃

−1
k (G̃′

k)
⊤ = ∆Pk,0G̃

′
0H̃

−1
0 (G̃′

0)
⊤∆P⊤

k,0.

Moreover, if also Specification 3 applies, the identification
can even be simplified based on relations like

G̃′
kH̃

−1
k f̃k + ẽ′k = ∆Pk,0

(
G̃′

0H̃
−1
0 f̃0 + ẽ′0

)
.

Now, suppose that P0 (or any other “absolute” permutation)
is known. Then one can resolve all other permutations by
evaluating Pk = ∆Pk,0P0. This eventually allows computing
G̃k = P⊤

k G̃′
k and ẽk = P⊤

k ẽ′k such that we deal with the
unpermuted problem again.

IV. ATTACK SCENARIOS

In this section, we consider an exemplary application of
the transformed QP (5) in the context of privacy-preserving
MPC and illustrate how our theoretical findings about the
transformation itself and the transformed parameters (4) can
be used to launch attacks. The control scheme will be
applied to a mobile robot, for which we briefly clarify the
corresponding system model, the MPC setup, and the cloud-
based solution of the resulting QP next.

A. Specification and cloud-based realization of MPC
We assume linear discrete-time system dynamics modeled

by x(k + 1) = Ax(k) +Bu(k) with

A := I2 ⊗
(
1 1
0 1

)
and B := I2 ⊗

(
0.5
1

)
,

where “⊗” denotes the Kronecker product. The system is
subject to the state and input constraints x ≤ x(k) ≤ x and
u ≤ u(k) ≤ u, respectively, with

x = −x :=
(
20 5 20 5

)⊤
and u = −u :=

(
1 1

)⊤
. (21)

In each time-step k, we minimize the cost function
k+N−1∑
κ=k

∥y(κ)− yref(κ)∥2Q + ∥u(κ)− u(κ− 1)∥2R

subject to the dynamics and constraints from above
for N = 5 prediction steps, where the outputs
y(k) := (x1(k) x3(k))

⊤ reflect the robot’s position. The
weighting matrices are chosen as Q = I2 and R = 0.1I2. As
for the references, we will first consider yref(k) = 0 reflecting
a setpoint and then a sinusoidal reference representing a
circle with radius 10 traversed in counterclockwise direction
with a period of 20 time steps. For both numerical exper-
iments, the robot’s initial state is x(0) = (10 − 2 10 2)

⊤

and u(−1) = 0. Now, reformulating the control task in terms
of the QP (1) is straightforward, and we omit details for
brevity. We just note that (after condensation) the decision
variables z reflect the predicted input sequences in terms of
u(k), . . . , u(k +N − 1). Furthermore, for every k ∈ N, the
QP parameters (2) can be stated as

Hk= H0, Gk = G0 :=

−Il
−Il
∗

, ek :=

 −z
−z

ε(x(k))

, (22a)

fk := φ(x(k), u(k − 1), yref(k), . . . , yref(k +N − 1)) (22b)

with ε : Rn → R2nN and φ := Rn+m+Np → Rl, where
m = 2, n = 4, and p = 2 reflect the input, state, and output
dimension of the system at hand and where the number
of decision variables is l = mN = 10. The constraint
vectors z and z result from stacking the input constraints
in (21). Finally, in each time step, we apply the optimal
input u∗(k) (the first m entries of z∗k) to the system and

3875



Fig. 1. Output trajectories (top), input sequences (middle), and norms
of (12b) (bottom) for the first (left, setpoint) and second (right, tracking)
experiment, respectively.

repeat the procedure at the next sampling instant k + 1. For
an overview, the resulting system trajectories and inputs for
both references are illustrated in the upper and middle charts
of Figure 1, respectively.

Finally, a cloud-based solution of the QPs via (5) is
realized as follows. First, we randomly and independently
choose Rk and rk for each k. Since suitable distributions
are typically not specified in the corresponding literature, we
sample floating point numbers uniformly from the interval
[−10, 10] for simplicity here. Then, the cloud receives the
transformed parameters H̃k, G̃k, ẽk, and f̃k (computed
according to (4)), solves (5), and returns y∗k to the client,
where z∗k is recovered via (3).

B. Preparing and launching attacks

Summarizing Section III, we rely mostly on the relations
between the transformed and original parameters stemming
from Specifications 1 to 3 here. Via Lemma 2, we can see
that constant G̃kH̃

−1
k G̃⊤

k (for all k ∈ N) and G̃kH̃
−1
k f̃k+ ẽk

(for all k in some set K ⊆ N) are strong indicators for
the validity of Specification 1 and 3, respectively. Here (due
to (22a)), the cloud will observe constant G̃kH̃

−1
k G̃⊤

k for all
k in both experiments and will thus (correctly) assume that
Specification 1 applies. Regarding the second invariant, we
depict ∥G̃kH̃

−1
k f̃k + ẽk∥2 in the bottom charts of Figure 1.

Remarkably, because fk and ek depend on the current state,
some properties of the system’s behavior are leaked in-
evitably. For instance, the convergence time to the reference

and, in case of the tracking problem, the fact that the motion
is periodic are revealed. Moreover, ∥G̃kH̃

−1
k f̃k + ẽk∥2 is

(almost) constant for all k ∈ K1 := {8, 9, . . . , 20} in the first
experiment and for various triplets such as {15, 20, 25} or
K2 := {10, 30, 50} in the second one. A closer investigation
of the involved vectors reveals that in the first experiment
also G̃kH̃

−1
k f̃k + ẽk is constant for all k ∈ K1, and the

cloud will thus (correctly) assume that Specification 3 applies
at these time steps. Regarding the second experiment, the
situation is slightly more complicated. In fact, while the norm
is (almost) constant for both of the above triplets, the vectors
G̃kH̃

−1
k f̃k + ẽk vary for the first triplet but are (almost)

constant for k ∈ K2. Based on these observations, the cloud
not only gets an indication for the validity of Specification 3
during some time steps for the second experiment, but it can
even infer the (correct) reference period of 20 time steps.

Now, in order to launch an actual attack aiming for
a reconstruction of the original QP parameters, the cloud
could make use of Theorem 4 to derive consistent guesses
for H0, G0, and all Rk. However, due to the special but
common structure of G0 from (22a), the cloud can obtain a
more powerful guess more easily. In fact, it will receive the
transformed matrices G̃⊤

k =
(
R⊤

k −R⊤
k ∗

)
and observe

that the second square block is always a negation of the
first one. Having already a strong indication for a constant
Gk = G0 and likely knowing about the common structure in
MPC, it will simply pick the first square block of G̃k as the
(correct) guess R̂k. Immediately, this leads to the (likewise
correct) guesses Ĝ0 = G̃kR̂

−1
k and Ĥ0 = R̂−⊤

k H̃kR̂
−1
k .

In order to completely break the cipher, it remains to
reconstruct ek, fk, and rk. Hence, the cloud builds up the
system of equations (18) for the steps in Ki with i ∈
{1, 2}. Now, as pointed out in Section III-C, it is necessary
to add l additional equations to avoid that the system is
underdetermined. As proposed, the cloud will add a guess for
the constant z∗k during the instances in Ki, respectively. For
the first experiment, the lower left chart in Figure 1 suggests
that the system converges to an equilibrium. Hence, ẑ∗k = 0
is a reasonable guess here. In the absence of more reasonable
alternatives, the cloud will use the same guess for the second
example, although it is most likely erroneous there. After
adding ẑ∗k = 0, the cloud solves (18) and obtains êk, f̂k, and
r̂k for all k ∈ Ki.

Finally, to also address the steps not contained in the sets
Ki, the cloud (correctly) assumes that Specification 2 holds,
which is reasonable based on the assumed structure of Ĝ0.
In fact, the blocks Il and −Il typically refer to constant
box constraints as in (8). This corresponds to qfix = 2l
implying that the first condition in (20) is satisfied and
that the second holds whenever s ≥ 2. Hence, the cloud
straightforwardly includes all remaining time steps k in the
system of equations for the unknowns (19) and adds an
already solved one from Ki to ensure that the system is
determined. After solving for these unknowns, all ẑ∗k can
be computed via (3). The first two components of ẑ∗k are
illustrated in the middle charts of Figure 1. As apparent, the
inputs applied to the system are accurately reconstructed for

3876



the first experiment. In the second experiment, despite the
erroneous guess ẑ∗k = 0 for k ∈ K2, only a constant offset
is present in the reconstructed input sequences (the shape of
the signals is accurately recovered). Note that the magnitude
of the error in each component varies with the choice of ẑ∗k .
Since z∗k,2 ≈ 0 = ẑ∗k,2 for all k ∈ K2, the second component
of the inputs is almost correctly reconstructed here.

C. Scenarios with permutations

We briefly address the case, where the transformations are
accompanied by permutations according to (10). While this
simple modification significantly complicates a reconstruc-
tion, we pointed out in Section III-D that relative permuta-
tions such as ∆Pk,0 can often be identified with moderate
effort. This is indeed the case in our experiments, even
though the special structure of G0 (together with the choices
for Q and R) leads to ambiguous entries in G̃′

kH̃
−1
k (G̃′

k)
⊤.

Hence, picking up the assumption from Section III-D that
P0 is known, we can resolve all permutations for the experi-
ments at hand and subsequently handle the reconstruction of
the QP parameters as before. Regarding the identification
of an unknown P0, we note that the special structure of
G0 excludes many realizations of P0. However, without
additional knowledge, the problem of uniquely identifying
P0 is intractable.

D. Remarks on the attacks and additional knowledge

We conclude this section with some remarks on the
proposed attacks. As apparent from Figure 1, the cloud is, in
principle, able to infer crucial characteristics of the control
system and to recover the majority of the sensitive data.
However, the cloud is currently not able to verify its guesses
without additional knowledge. In fact, this corresponds to
a ciphertext-only setup which is assumed in the literature.
Still, having suitable additional knowledge (e.g., exactly
knowing that Gk or ek have the structure in (22a)) seems
reasonable for many real-world applications. Further, it is
in line with Kerckhoffs’ principle [20, Sect. 1.2], which
(translated to this setup) states that the security of a cipher
should not depend on an attackers’ knowledge about the
control system. Especially, knowledge about the plant, which
has been excluded here, is well-suited to validate the guesses
from Section IV-B resulting in a more targeted attack.

Furthermore, the most important observation resulting
from our analysis is that only little information, which might
even be public or easy to obtain, can enable to completely
break RT ciphers in the context of QPs. Remarkably, this
major issue is not present in other cryptosystems (such as
homomorphic encryption [1], [2]), which could be used to
ensure a privacy-preserving evaluation of QPs at the price of
a higher computational load.

V. CONCLUSIONS AND OUTLOOK

This paper deals with the security of random affine trans-
formations in the context of model predictive control, where
it is used for the private evaluation of quadratic programs.
We show that the arising ciphertexts still contain information
that can be exploited for an attack and, most importantly,

that little additional information can suffice to break all
ciphertexts even though keys are not reused in our setup.

In future work, additional equality constraints (as in [10])
and a more detailed treatment of permutations are of interest.
In this context, system knowledge, closed-loop effects, and
the implementation over floating point numbers (see [17]),
entail valuable angles of attacks that we neglected here.

ACKNOWLEDGMENT
Financial support by the German Research Foundation and

the Daimler and Benz Foundation under the grants SCHU
2940/4-1 and 32-08/19 is gratefully acknowledged.

REFERENCES
[1] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast

fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[2] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Intl. Conference on the
Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[3] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure multiparty
computation and secret sharing. Cambridge University Press, 2015.

[4] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[5] A. B. Alexandru, K. Gatsis, Y. Shoukry, S. A. Seshia, P. Tabuada,
and G. J. Pappas, “Cloud-based quadratic optimization with partially
homomorphic encryption,” IEEE Transactions on Automatic Control,
vol. 66, no. 5, pp. 2357–2364, 2020.

[6] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private
distributed convex optimization via functional perturbation,” IEEE
Trans. Control Syst. Technol., vol. 5, no. 1, pp. 395–408, 2016.

[7] J. Vaidya, “Privacy-preserving linear programming,” in Proc. of the
ACM symposium on Applied Computing, 2009, pp. 2002–2007.

[8] J. Dreier and F. Kerschbaum, “Practical privacy-preserving multiparty
linear programming based on problem transformation,” in Proc. of the
Int. Conf. on Privacy, Security, Risk and Trust, 2011, pp. 916–924.

[9] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. of the IEEE
Infocom, 2011, pp. 820–828.

[10] L. Zhou and C. Li, “Outsourcing large-scale quadratic programming
to a public cloud,” IEEE Access, vol. 3, pp. 2581–2589, 2015.

[11] Z. Xu and Q. Zhu, “Secure and Resilient Control Design for Cloud
Enabled Networked Control Systems,” in Proc. of the ACM Workshop
on Cyber-Physical Systems-Security and/or Privacy. Association for
Computing Machinery, 2015, p. 31–42.

[12] P. C. Weeraddana, G. Athanasiou, C. Fischione, and J. S. Baras, “Per-
se privacy preserving solution methods based on optimization,” in
Proc. of the Conference on Decision and Control, 2013, pp. 206–211.

[13] A. Sultangazin and P. Tabuada, “Symmetries and isomorphisms for
privacy in control over the cloud,” IEEE Transactions on Automatic
Control, vol. 66, no. 2, pp. 538–549, 2020.

[14] A. M. Naseri, W. Lucia, and A. Youssef, “A Privacy Preserving
Solution for Cloud-Enabled Set-Theoretic Model Predictive Control,”
in Proc. of the European Control Conference, 2022, pp. 894–899.

[15] K. Zhang, Z. Li, Y. Wang, and N. Li, “Privacy-preserved nonlin-
ear cloud-based model predictive control via affine masking,” arXiv
preprint arXiv:2112.10625, 2021.

[16] H. Hayati, C. Murguia, and N. van de Wouw, “Privacy-preserving fed-
erated learning via system immersion and random matrix encryption,”
arXiv preprint arXiv:2204.02497, 2022.

[17] N. Schlüter, P. Binfet, and M. Schulze Darup, “Cryptanalysis of
Random Affine Transformations for Encrypted Control,” in Proc. of
the IFAC World Congress, 2023, pp. 12 031–12 038.

[18] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[19] S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing
of large-scale quadratic programs,” in Proc. of the ACM on Asia Conf.
on Computer and Communications Security, 2016, pp. 281–292.

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

3877


