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Abstract— Decentralized stochastic optimization has become
a crucial tool for addressing large-scale machine learning and
control problems. In decentralized algorithms, all computing
nodes are connected through a network topology, and each node
communicates only with its direct neighbors. Decentralized
algorithms can significantly reduce communication overhead
by eliminating the need for global communication. However,
existing research on the linear speedup analysis of decentralized
stochastic algorithms is limited to the condition of network-
dependent learning rates, which rarely holds in practice since
the network connectivity is typically unknown to each node.
As a result, it remains an open question whether a linear
speedup bound can be achieved using network-independent
learning rates. This paper provides an affirmative answer.
By utilizing a new analysis framework, we prove that D-
SGD and Exact-Diffusion, two representative decentralized
stochastic algorithms, can achieve linear speedup with network-
independent learning rates. Simulations are provided to validate
our theories.

I. INTRODUCTION

In decentralized stochastic optimization, a network of n
nodes collaborates to solve the following problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(x) = Eξi∼Di
F (x; ξi).

The local cost function fi : Rd → R is kept privately by node
i and ξi is a random variable that represents the local data
following distribution Di. Each node i can evaluate stochastic
gradient ∇F (xi; ξi) locally, and must communicate in order
to access information from other nodes. Decentralized algo-
rithms operate on distributed data and communicate solely
with direct neighbors, effectively eliminating the need for
data sharing and centralized synchronization. As a result,
they have been widely applied across various domains,
including deep training with massive GPUs [1]–[5] and edge
computing with extensive embedded devices [6]–[8].

Various effective algorithms have been proposed to solve
problem (1), including D-SGD (also referred to as Dif-
fusion) [1], [2], [9]–[12], explicit bias-correction methods
such as EXTRA [13], Exact-Diffusion/NIDS [14]–[17], and
Gradient-Tracking [18]–[23]. All of these algorithms have
been proven to achieve linear speedup asymptotically. Linear
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speedup is a key feature of decentralized algorithms, wherein
the convergence accuracy improves linearly with the number
of nodes. For instance, when dealing with a strongly-convex
problem, D-SGD can accomplish an accuracy O(σ2/n)
with a constant learning rate where σ2 is the magnitude
of gradient noise, indicating that a more accurate solution
can be attained by increasing the number of nodes (e.g.,
machines) used.

The popularity of decentralized optimization is primarily
due to its linear speedup property. However, recent research
has shown that this property relies on the condition that it
uses network-dependent learning rates [2], [12], [17], [20],
[22]–[26] . These learning rates are strongly correlated with
the connectivity of the network topology, particularly the
second-largest eigenvalue of the mixing matrix (refer to
Sec. II-B), which is unknown to each node. Although several
methods [27], [28] have been proposed to estimate network
connectivity, implementing them may result in additional
communication overhead and ultimately reduce the efficiency
of decentralized optimization.

Recent research has focused on establishing the conver-
gence of decentralized optimization algorithms when learn-
ing rates are independent of network connectivity. For exam-
ple, Exact-Diffusion/NIDS [15], [29] and the decentralized
inexact proximal gradient method [30] have been demon-
strated to converge with network-independent learning rates.
However, these works only concentrate on deterministic
optimization problems. To the best of our knowledge, there
are currently no existing results that can achieve the linear
speedup property with network-independent learning rates in
decentralized stochastic optimization.

This paper presents a novel approach to achieving lin-
ear speedup in decentralized stochastic optimization using
network-independent learning rates. Our contribution com-
prises three key elements. First, we demonstrate that simply
adapting the analysis framework used in deterministic Exact-
Diffusion/NIDS [29] to stochastic scenarios is inadequate
for ensuring linear speedup, despite being capable of guar-
anteeing convergence. Second, we propose a new analysis
that enables Exact-Diffusion/NIDS to achieve linear speedup
with network-independent learning rates. Third, we apply the
same analysis framework to show that D-SGD can achieve
similar results. Our main results are listed in Table I.
Notations. We let xi ∈ Rd be the estimate of x ∈ Rd at
node i and introduce the augmented network quantities:

x ≜ col{x1, . . . , xn} ∈ Rnd,
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TABLE I: Comparisons of learning rates and the convergent
accuracy between various decentralized algorithms for strongly-
convex settings. We list the upper bound on the learning rate α
in the “Learning rate” column. The quantity λ ∈ (0, 1) denotes the
mixing rate of the network, see Eq. (4).

METHODS LEARNING RATE CONVERGENT ACC.

D-SGD [12] O( 1−λ
L

) O(ασ2

n
) +O(α2)

ED/NIDS [15] O( 1
L
) N.A.

ED/NIDS [17], [24] O( 1−λ
L

) O(ασ2

n
) +O(α2)

GT [20], [31] O(
(1−λ)2

L
) O(ασ2

n
) +O(α2)

GT [22], [23], [26] O( 1−λ
L

) O(ασ2

n
) +O(α2)

D-SGD (Thm.3) O( 1
L
) O(ασ2

n
) +O(α2)

ED/NIDS (Thm.2) O( 1
L
) O(ασ2

n
) +O(α2)

f(x) ≜
n∑

i=1

fi(xi),

∇f(x) ≜ col{∇f1(x1), . . . ,∇fn(xn)} ∈ Rnd,

∇F(x; ξ) ≜ col{∇F1(x1; ξ1), . . . ,∇Fn(xn; ξn)} ∈ Rnd.

We also define the combination (mixing) matrices as

W = [wij ] ∈ Rn×n and W ≜ W ⊗ Id ∈ Rnd×nd,

where wij represents the weight assigned to scale informa-
tion transmitted from node j to node i. If nodes i and j are
not directly connected, then wij = wji = 0. The symbol ⊗
denotes the Kronecker product. Additionally, given a positive
definite matrix A ∈ Rn×n and its eigen-decomposition
A = UΛUT , where Λ is a positive diagonal matrix, we
define A1/2 ≜ UΛ1/2UT . We let 1 ∈ Rn denote the vector
with each element being 1. Moreover, we let ∥ · ∥ denote
∥ · ∥2 throughout the paper.

II. DECENTRALIZED STOCHASTIC METHODS

This section describes the two studied decentralized algo-
rithms, namely D-SGD and Exact-Diffusion, and introduces
the assumptions required for their convergence analysis.

A. Decentralized stochastic algorithms

D-SGD. D-SGD was first developed in [9], [10] for control
and adaptive signal processing, and then studied for machine
learning applications [1], [2], [12]. Let x0 take any arbitrary
value, D-SGD will iterate as follows:

xk+1 = W
(
xk − α∇F(xk; ξk)

)
, k = 0, 1, 2, . . . (2)

where α is a constant learning rate. Note that the above
algorithm is also known as (adapt-then-combine) Diffusion
[10], [27], [32], [33] in the signal processing community.
Exact-Diffusion. Exact-Diffusion was first developed in
[14], [15] for decentralized deterministic optimization and
then studied under stochastic scenario [16], [24]. It aims
to remove the intrinsic bias in D-SGD caused by data
heterogeneity. Let x0 take any arbitrary value and ψ0 = x0,
Exact-Diffusion will iterate for k ≥ 0 as follows:

ψk+1 = xk − α∇F(xk; ξk), (3a)

ϕk+1 = ψk+1 + xk −ψk, (3b)

xk+1 = Wϕk+1. (3c)

Exact-Diffusion is also known as NIDS in [15] or D2 in [16].
We will refer to it as Exact-Diffusion throughout the paper.

B. Assumptions

We make the following standard assumptions to establish
our convergence results for D-SGD and Exact-Diffusion.

Assumption 1 (COMBINATION MATRIX). The weight matrix
W is assumed to be primitive, positive semidefinite, and
doubly stochastic. ■

Under Assumption 1, the weight matrix W has a single
eigenvalue at one, denoted by λ1 = 1. All other eigenvalues,
denoted by {λi}ni=2, are strictly less than one in magnitude
[33]. The mixing rate of the network is defined as

λ ≜
∥∥W − 1

n11
T
∥∥ = max

i∈{2,...,n}
|λi| < 1. (4)

The mixing rate λ reflects the network connectivity. The
scenario λ → 0 implies a densely-connected topology (e.g.,
for fully connected topology, we can choose W = 1

n11
T

and hence λ = 0). In contrast, the scenario λ → 1 implies a
sparsely-connected topology.

Assumption 2 (COST FUNCTION). Each function fi : Rd →
R is L-smooth and µ-strongly-convex for some L ≥
µ > 0. This implies that the aggregate function f(x) =
1
n

∑n
i=1 fi(x) is also L-smooth and µ-strongly convex. ■

Assumption 3 (GRADIENT NOISE). For all nodes indices i =
1, . . . , n and iterations k = 0, 1, . . ., we assume that

E
[
∇Fi(x

k
i ; ξ

k
i )−∇fi(x

k
i ) | Fk

]
= 0, (5a)

E
[
∥∇Fi(x

k
i ; ξ

k
i )−∇fi(x

k
i )∥2 | Fk

]
≤ σ2, (5b)

for some σ2 ≥ 0 where Fk ≜ {x0,x1, . . . ,xk} is the filtra-
tion generated by Algorithm 2 or (3). We also assume that
conditioned on Fk, the random data {ξti} are independent
of each other for all {i}ni=1 and {t}t≤k. ■

III. STABILITY ANALYSIS OF EXACT-DIFFUSION

Since the analysis of Exact-Diffusion is more challenging
than D-SGD, we will provide a detailed exploration of its
stability and linear speedup property. This analysis technique
can be easily adapted to D-SGD, see Sec. V.

A. Primal-dual update of Exact-Diffusion

To facilitate the analysis of Exact-Diffusion, we rewrite
recursion (3) into the following primal-dual form [29]:

vk+1 = xk − α∇F(xk; ξk)−Byk, (6a)

xk+1 = Wvk+1, (6b)

yk+1 = yk +Bvk+1, (6c)

where yk ∈ Rnd is the dual variable with y0 = 0 and B ≜
(I−W)1/2 ∈ Rnd×nd. Under our assumptions, there exists
a primal dual pair (x⋆,y⋆) satisfying [23]:

0 = α∇f(x⋆) +By⋆, (7a)
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0 = Bx⋆, (7b)

and we have that x⋆ = 1⊗x⋆ and x⋆ is the optimal solution
to (1). We refer to (7) as the optimality condition. Using
(6) and (7) and letting ṽk ≜ vk − x⋆, x̃k ≜ xk − x⋆, and
ỹk ≜ yk − y⋆, we get the following error recursion

ṽk+1 = x̃k − α
(
∇f(xk)−∇f(x⋆) + sk

)
−Bỹk, (8a)

x̃k+1 = Wṽk+1, (8b)

ỹk+1 = ỹk +Bṽk+1, (8c)

where sk ≜ ∇F(xk; ξk)−∇f(xk) ∈ Rnd.

B. Stability analysis

Given the error recursion (8), we are ready to derive
the range of learning rates that enable Exact-Diffusion to
converge. Adapting the analysis in [29] to recursion (8), we
obtain the following result.

Theorem 1 (A CONVERGENCE RESULT). Under Assumptions
1–3, if α ≤ 1

L , it then holds that

E ∥x̃k+1∥2 + E ∥ỹk+1∥2

≤ ρ
(
E ∥x̃k∥2 + E ∥ỹk∥2

)
+ nα2σ2, (9)

where ρ ≜ max{(1− µα)2, λ} ∈ (0, 1) .

Proof: See Appendix I. ■

Remark 1. Theorem 1 shows that Exact-Diffusion converges
for any network-independent learning rate α ≤ 1

L . Using
∥x̃k∥2 = n∥x̄k − x⋆∥2 +

∑n
i=1 ∥xk

i − x̄k∥2 where x̄k =
1
n

∑n
i=1 x

k
i and iterating (9), it holds that

E ∥x̄k − x⋆∥2 ≤ Cρk + α2σ2

1−ρ (10)

where C =
(
E ∥x̃0∥2+E ∥ỹ0∥2

)
/n. From (10), we observe

that the linear speedup term O(ασ2/n) cannot be attained
by letting α ≤ 1

L . In other words, a direct extension of the
analysis in [29] to stochastic scenario cannot ensure linear
speedup, despite being able to guarantee convergence. ■

IV. LINEAR SPEEDUP ANALYSIS OF EXACT-DIFFUSION

A. Fundamental transformation

To obtain linear speedup in Exact-Diffusion, we transform
(8) into an equivalent recursion. This transformation is
fundamental for establishing the linear speedup convergence
of Exact-Diffusion with network-independent learning rates.
We first introduce several notations:

x̄k ≜
1

n
(1Tn ⊗ Id)x

k =
1

n

n∑
i=1

xk
i , (11a)

ēkx ≜
1

n
(1Tn ⊗ Id)x̃

k = x̄k − x⋆, (11b)

s̄k ≜
1

n
(1Tn ⊗ Id)s

k =
1

n

n∑
i=1

ski , (11c)

∇f(xk) ≜
1

n
(1Tn ⊗ Id)∇f(xk) =

1

n

n∑
i=1

∇fi(x
k
i ). (11d)

Moreover, we introduce the diagonal matrix

Λ ≜

λ2 · · · 0
...

. . .
...

0 · · · λn

⊗ Id ∈ R(n−1)d×(n−1)d (12)

and Λb ≜ (I − Λ)1/2. It can be verified that matrices W
and B have the following eigen-decomposition

W = UΣU−1

=
[
1⊗ Id Û

]︸ ︷︷ ︸
U

[
Id 0
0 Λ

]
︸ ︷︷ ︸

Σ

[
1
n1

T ⊗ Id
ÛT

]
︸ ︷︷ ︸

U−1

, (13a)

B = UΣbU
−1

=
[
1⊗ Id Û

] [0 0
0 Λb

] [
1
n1

T ⊗ Id
ÛT

]
, (13b)

where matrix Û ∈ Rnd×(n−1)d satisfies the following prop-
erties:

ÛTÛ = I, (1T ⊗ Id)Û = 0, ÛÛT = I− 1
n11

T ⊗ Id. (14)

With the above notation, we can transform Exact-Diffusion
(8) into an equivalent but fundamental recursion.

Lemma 1 (TRANSFORMED ERROR RECURSION). Under As-
sumption 1, there exists a matrix V̂−1 ∈ C2(n−1)d×2(n−1)d

and a block diagonal matrix Γ ∈ C2(n−1)d×2(n−1)d so that

ēk+1
x = ēkx − α∇f(xk)− αs̄k, (15a)

x̂k+1 = Γx̂k−αV̂−1

[
ΛÛT

(
∇f(xk)−∇f(x⋆) + sk

)
ΛΛbÛ

T
(
∇f(xk)−∇f(x⋆) + sk

)],
(15b)

where

x̂k ≜ V̂−1

[
ÛTx̃k

ΛÛTỹk

]
. (16)

Moreover, we have ∥V̂∥2 = 2, ∥V̂−1∥2 ≤ 1
2λ , ∥Γ∥ =√

λ, ∥Λ∥ = λ, where λ = maxi∈{2,...,n} λi and λ is the
minimum non-zero eigenvalue of W .

The proof is omitted due to space constraints.
Before deriving our final result about linear speedup of

Exact-Diffusion, we first present two lemmas.

Lemma 2 (COUPLED ERROR INEQUALITY). Under Assump-
tions 1–3, if α ≤ 1

4L and we start from consensual initial-
ization x0 = 1⊗ x0, then we have

E ∥ēk+1
x ∥2≤ (1−µα)E∥ēkx∥2+3Lα

n E ∥x̂k∥2+α2σ2

n , (17a)

E ∥x̂k+1∥2≤
√
λE ∥x̂k∥2+α2λ2nσ2

λ + α2λ2L2

λ(1−
√
λ)

E ∥x̃k∥2.
(17b)

The proof is omitted due to space constraints.

Lemma 3 (UPPER BOUND OF ∥x̂0∥2). If x0 and y0 are
initialized as x0 = 1⊗ x0 and y0 = 0, then we have

∥x̂0∥2 ≤ α2

2λ(1− λ)
∥∇f(x⋆)∥2. (18)
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The proof is omitted due to space constraints.
We now show that Exact-Diffusion can achieve linear

speedup with network-independent learning rates.

Theorem 2 (EXACT-DIFFUSION CONVERGENCE). Under As-
sumptions 1–3, if α ≤ 1

4L and x0 = 1⊗ x0, it holds that

E ∥ēkx∥2 ≤ (1− µα)k E ∥ē0x∥2 + ασ2

nµ +O(α2). (19)

Proof: From Theorem 1, we obtain

E ∥x̃k∥2 ≤E ∥x̃k∥2 + E ∥ỹk∥2

≤ρ
(
E ∥x̃k−1∥2 + E ∥ỹk−1∥2

)
+ nα2σ2

≤ρk
(
∥x̃0∥2 + ∥ỹ0∥2

)
+ nα2σ2

1−ρ .

Using Lemma 2 and substituting the above inequality into
(17b), we get

E ∥x̂k+1∥2 ≤
√
λE ∥x̂k∥2 + α2λ2nσ2

λ + α4nσ2L2λ2

λ(1−
√
λ)(1−ρ)

+ α2L2λ2

λ(1−
√
λ)
ρk

(
∥x̃0∥2 + ∥ỹ0∥2

)
. (20)

Let

D ≜ α2L2λ2

λ(1−
√
λ)

(
∥x̃0∥2 + ∥ỹ0∥2

)
, (21)

F ≜ α2λ2nσ2

λ + α4nσ2L2λ2

λ(1−
√
λ)(1−ρ)

. (22)

By iterating (20), we get

E ∥x̂k∥2 ≤
√
λE ∥x̂k−1∥2 + ρk−1D + F

(a)

≤ (
√
λ)k∥x̂0∥2 + 1

1−
√
λ
(D + F )

≤∥x̂0∥2 + 1
1−

√
λ
(D + F )

(b)

≤ α2

2λ(1−λ)∥∇f(x⋆)∥2 + 1
1−

√
λ
(D + F ), (23)

where inequality (a) holds due to ρ < 1, and inequality (b)
holds due to Lemma 3. Using Lemma 2 and substituting (23)
into (17a), we have

E ∥ēkx∥2 ≤ (1− µα)E ∥ēk−1
x ∥2 + 3Lα

n E ∥x̂k−1∥2 + α2σ2

n

≤ (1− µα)E ∥ēk−1
x ∥2 + α2σ2

n

+ 3Lα
n ( α2

2λ(1−λ)∥∇f(x⋆)∥2 + 1
1−

√
λ
(D + F ))

≤ (1− µα)k−1∥e0x∥2 + ασ2

nµ

+3L
nµ

(
α2

2λ(1−λ)∥∇f(x⋆)∥2+ 1
1−

√
λ
(D+F )

)
. (24)

Substituting the definitions of D and F into the above
inequality, we get

E ∥ēkx∥2 ≤ (1− µα)k∥ē0x∥2+ ασ2

nµ + 3α2L
2nµλ(1−λ)∥∇f(x∗)∥2

+ 3α2L3λ2

nµλ(1−
√
λ)2

(∥x̃0∥2 + ∥ỹ0∥2)

+ 3α2Lλ2σ2

µλ(1−
√
λ)

+ 3α4L3λ2σ2

µλ(1−
√
λ)2(1−ρ)

= (1− µα)k∥ē0x∥2 + ασ2

nµ +O(α2), (25)

which is the result listed in (19). ■

Remark 2 (LINEAR SPEEDUP UNDER NETWORK-INDEPEN-
DENT LEARNING RATE). It is established in Theorem 2 that

the linear speedup term O(ασ2/n) can be achieved when
α ≤ 1

4L , a condition that is network independent. When
the learning rate α is sufficiently small, the term O(ασ2/n)
dominates (19), which improves linearly with the number of
nodes n. ■

Remark 3 (TIGHTER UPPER BOUND). While the analysis in
Theorem 2 establishes the linear speedup property of Exact-
Diffusion, it is not sharp due to using loose bounds to
simplify the derivations. For example, the bound (23) does
not imply convergence to zero error for constant learning
rate and deterministic scenario in which σ2 = 0, which
contradicts the results in [14], [15], [29]. With a refined
(but lengthy) analysis, we can establish the following tighter
bound for α ≤ 1

4L :

E ∥ēkx∥2 ≤ (1− µα)k∥ē0x∥2

+ ρk0

(
∥x̃0∥2 + ∥ỹ0∥2 + ∥∇f(x⋆)∥2

)
O(α3)

+ ασ2

nµ + 3α2Lλ2σ2

µλ(1−
√
λ)
( α2L2

(1−
√
λ)(1−ρ)

+ 1). (26)

where ρ0 = max{
√
λ, 1 − µα}, and ρ = max{(1 −

µα)2, λ} < 1. With the above bound, when σ2 = 0, Exact-
Diffusion will converge to 0 exponentially fast as k → ∞.
This is consistent with [14], [15], [29]. We omit the analysis
details due to space limits. ■

V. LINEAR SPEEDUP ANALYSIS OF D-SGD

The convergence framework for Exact-Diffusion discussed
in Sec. IV can also be adapted to D-SGD to show the linear
speedup with network-independent learning rates. Before
presenting the result, we let x∞ ∈ Rnd denote the fixed
point of the deterministic D-SGD algorithm:

x∞ = W[x∞ − α∇f(x∞)]. (27)

Theorem 3 (D-SGD CONVERGENCE). Under Assumptions 1–
3, if α ≤ 1

4L and x0 = 1⊗ x0, then it holds that

E ∥ēkx∥2 ≤ (1− µα)k∥ē0x∥2 + ασ2

nµ +O(α2). (28)

Proof: The proof of Theorem 3 follows similar, but
simpler, than the proof of Theorem 2. We omit it due to
space limits. ■

Remark 4 (LINEAR SPEEDUP UNDER NETWORK-INDEPEN-
DENT LEARNING RATE). It is established in Theorem 3 that
the linear speedup term O(ασ2/n) can be achieved when
α ≤ 1

4L , which is network independent. ■

Remark 5 (TIGHTER UPPER BOUND). Similar to Remark 3, we
can also establish a much tighter bound for D-SGD. Under
Assumptions 1–3, if α ≤ 1

4L , then it holds that

E ∥ēkx∥2 ≤ (1− µα)k E ∥ē0x∥2 + ασ2

nµ + 3α2Lλ2

nµ(1−λ)2 ∥∇f(x∞)∥2

+ 3α2Lσ2

2µ(1−λ) (
2αλ2L2

µ(1−λ)(2−µα) + 1) + ρk1∥x0 − x∞∥2O(α3),

where ρ1 = max{1 − µα, λ} < 1. Comparing with Exact-
Diffusion (26), D-SGD suffers from an additional intrinsic
bias O( α2

(1−λ)2 ) when using a constant learning rate even
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Fig. 1: Performances of D-SGD and Exact-Diffusion over ring, 2D-
Grid and exponential graphs with 160 nodes. The spectral gap 1−λ
is 0.00025, 0.00403 and 0.11111 for ring, 2D-Grid and exponential
graphs respectively.

when σ2 = 0. This result is expected and consistent with
previous works, see e.g., [24]. We omit the analysis of the
above inequality due to space limits. ■

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to val-
idate our findings. We consider an ℓ2-regularized logistic
regression problem, where the objective function for each
node i is given by fi(x) = E[ln(1+exp(−yih

T
i x))]+ρ∥x∥2.

Here, (hi, yi) represents the training dataset stored in node i,
where hi ∈ Rd denotes the feature vector and yi ∈ {−1,+1}
denotes the label. To begin, we generate a local solution x⋆

i ,
as x⋆

i = (x⋆+vi)/∥x⋆∥, where vi ∼ N (0, σ2
vId). Then, using

x⋆
i , we generate local data with different distributions. To

accomplish this. we generate each feature vector hi at node
i as hi ∼ N (0, Id), and produce the corresponding label yi
as follows: create a random variable zi ∼ U(0, 1), and set
yi = 1 if zi ≤ 1 + exp(−yih

T
i x), and yi = −1 otherwise.

In this setup, the solution x⋆
i controls the distribution of the

labels, while σ2
v governs data heterogeneity.

Network-independent learning rates. We start by vali-
dating our findings on network-independent learning rates.
For this, we solve the logistic regression problem across
various network topologies, all using the same learning rate.
Specifically, we set the number of nodes as n = 160, the
feature dimension to d = 5, and σv = 0.1. We conduct
experiments on ring, 2D-Grid, and exponential graphs. The
constant learning rate of each algorithm is set to 1/(4L),
which is solely determined by f(x) and is unaffected by
network topology. We run each simulation ten times, plotting
the average performance with a solid line and the standard
deviation with a shaded area in Fig. 1. We measure the
relative error on the y-axis as ∥x̃k∥2/∥x⋆∥2. The results
show that both Exact-Diffusion and D-SGD converge using
a constant and network-independent learning rate, regardless
of network topology, which validates our findings.
Linear speedup. We next simulate over the ring graphs of
sizes n = 16, n = 160, and n = 1600. For each n, we
set the learning rate to 1/(4L), a value independent of the
network topology. The remaining parameters are identical
to those used in the previous experiment. The performance
of D-SGD and Exact Diffusion are depicted in Fig. 2. The
relative error is shown on the y-axis. When the number of

Fig. 2: Performances of D-SGD and Exact-Diffusion over ring
graphs with 16, 160 and 1600 nodes.

nodes n is increased by tenfold (10× n), the relative errors
of both D-SGD and Exact-Diffusion are reduced by 90%
roughly, validating our results about linear speedup.

VII. CONCLUSION

This paper presents a new analysis for achieving linear
speedup in strongly-convex decentralized stochastic opti-
mization using network-independent learning rates. This
analysis applies to both Exact-Diffusion and D-SGD. Numer-
ical results are provided to validate our theoretical findings.

APPENDIX I
PROOF OF THEOREM 1

From (8), it holds that

∥ṽk+1∥2 = ∥x̃k − α∇f(xk) + α∇f(x⋆)− αsk −Bỹk∥2

= ∥x̃k − α∇f(xk) + α∇f(x⋆)− αsk∥2 + ∥Bỹk∥2

− 2⟨Bỹk, x̃k − α∇f(xk) + α∇f(x⋆)− αsk⟩,

and

∥ỹk+1∥2 = ∥ỹk +Bṽk+1∥2

= ∥ỹk∥2 + ∥Bṽk+1∥2 + 2⟨ỹk,Bṽk+1⟩
= ∥ỹk∥2 + ∥Bṽk+1∥2 + 2⟨Bỹk,

x̃k − α∇f(xk) + α∇f(x⋆)− αsk −Bỹk⟩.

Summing up ∥ṽk+1∥2 and ∥ỹk+1∥2, we get

∥ṽk+1∥2I−B2 + ∥ỹk+1∥2

=∥x̃k − α∇f(xk) + α∇f(x⋆)− αsk∥2 + ∥ỹk∥2I−B2 .

Under our assumptions, it holds that

∥ỹk∥2I−B2 ≤ λ∥ỹk∥2,
∥x̃k+1∥2 = ∥ṽk+1∥2W2 ≤ ∥ṽk+1∥2W = ∥ṽk+1∥2I−B2 .

Using the above two bounds, taking expectations, and using
Assumption 3, we get

E ∥x̃k+1∥2 + E ∥ỹk+1∥2

≤E ∥ṽk+1∥2I−B2 + E ∥ỹk+1∥2

=E ∥x̃k − α∇f(xk) + α∇f(x⋆)− αsk∥2 + E ∥ỹk∥2I−B2

≤E ∥x̃k − α∇f(xk) + α∇f(x⋆)∥2

+ α2 E ∥sk∥2 + λE ∥ỹk∥2

≤E ∥x̃k − α∇f(xk) + α∇f(x⋆)∥2

143



+ α2nσ2 + λE ∥ỹk∥2. (29)

Since 0 < α ≤ 1
L ≤ 2

L+µ , we have 2
α − µ ≥ L. Let µ′ = µ,

L′ = 2
α−µ, then f is also µ′-strongly convex and L′-smooth.

As a result, it holds that [34]

⟨∇f(x)−∇f(x⋆),x− x⋆⟩
≥ µL′

µ+L′ ∥x− x⋆∥2 + 1
µ+L′ ∥∇f(x)−∇f(x⋆)∥2 (30)

Expanding the first term in (29), we have

∥x̃k − α∇f(xk) + α∇f(x⋆)∥2

=∥(xk − x⋆)− α(∇f(xk)−∇f(x⋆))∥2

=∥xk − x⋆∥2 − 2α⟨xk − x⋆,∇f(xk)−∇f(x⋆)⟩
+ α2∥∇f(xk)−∇f(x⋆)∥2

(a)

≤ (1− 2α µ′L′

µ′+L′ )∥xk − x⋆∥2

(α2 − 2α 1
µ′+L′ )∥∇f(xk)−∇f(x⋆)∥2

=(1− αµ)2∥xk − x⋆∥2 (31)

where inequality (a) holds because of (30). The result (9)
can be attained by substituting (31) to (29).
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