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Abstract— We consider the problem of estimating the possi-
bly non-convex cost of an agent by observing its interactions
with a nonlinear, non-stationary and stochastic environment.
For this inverse problem, we give a result that allows to estimate
the cost by solving a convex optimization problem. To obtain
this result we also tackle a forward problem. This leads to
the formulation of a finite-horizon optimal control problem for
which we show convexity and find the optimal solution. Our
approach leverages certain probabilistic descriptions that can
be obtained both from data and/or from first-principles. The
effectiveness of our results, which are turned in an algorithm,
is illustrated via simulations on the problem of estimating the
cost of an agent that is stabilizing the unstable equilibrium of
a pendulum.

I. INTRODUCTION

Inferring the intents of an agent by observing its inter-
actions with the environment is crucial to many scientific
domains, with applications spanning across e.g., engineering,
psychology, economics, management and computer science.
Inverse optimal control/reinforcement learning (IOC/IRL)
refers to both the problem and the class of methods to infer
the cost/reward driving the actions of an agent by observing
its inputs/outputs [1]. Tackling this problem is relevant to
sequential decision-making [2] and can be useful to design
data-driven control systems with humans-in-the-loop as well
as incentive schemes in sharing economy settings [3].

In this context, a key challenge in IOC/IRL lies in the fact
that the underlying optimization can become ill-posed even
when the environment dynamics is linear, deterministic and
the cost is convex. Motivated by this, we propose an approach
to estimate possibly non-convex costs when the underlying
dynamics is nonlinear, non-stationary and stochastic. The
approach leverages probabilistic descriptions that can be
obtained directly from data and/or from first-principles. Also,
the results allow to obtain cost estimates by solving a convex
optimization problem.

Related works: we briefly survey a number of works
related to the results and methodological framework of this
paper and we refer to e.g., [1] for a detailed review on
inverse problems across learning and control. As remarked in
[4], IOC methods were originally developed to find control
histories to produce desired outputs. More recently, driven
by the advances in computational power to process datasets,
IOC and IRL methods have gained considerable attention.
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In [5] a maximum entropy-based approach is proposed for
stationary Markov Decision Processes (MDPs), which is
based on a backward/forward pass scheme (see also [6]
for linear multi-agent games). In [7] a local approximation
of the reward is used and in [8] Gaussian processes are
exploited, leading to a method that requires matrix inversion
operations and to optimization problems that are not convex
in general. Instead, in [9] manipulation tasks are considered
and path integrals are used to learn the cost, while in [10]
learning is achieved via deep networks for stationary MDPs.
A model-based IRL approach for deterministic systems is
presented in [11] for online cost estimation and [12] tackles
the IRL problem in the context of deterministic multiplayer
non-cooperative games. The framework of linearly solvable
MDPs is instead leveraged in [13] and, while it has the
advantages of avoiding solving forward MDPs in each itera-
tion of the optimization and of yielding a convex optimiza-
tiopn problem, it also assumes that the agent can specify
directly the state transition. We also recall [14], where a
risk-sensitive IRL method is proposed for stationary MDPs
assuming that the expert policy belongs to the exponential
distribution. Also, in the context of IOC, [15] considers
stochastic dynamics and proposes an approach to learn the
parameter of a control regularizer. The IOC problem for
known nonlinear deterministic systems with quadratic cost
function in the input is also considered in [16]. Finally, as we
shall see, in order to obtain our results on the inverse problem
we also solve a forward problem that involves optimizing,
over probability functions, costs that contain a Kullback-
Leibler divergence term. We refer to e.g., [2] for a survey on
this class of problems in the context of sequential decision-
making across learning and control.

Contributions: we introduce a number of results to es-
timate the possibly non-convex and non-stationary cost of
an agent by observing its interactions with the environment,
which can be nonlinear, non-stationary and stochastic, and
for which just a probabilistic description is known. This
probabilistic description can be obtained directly from data.
Specifically, by leveraging a probabilistic framework, we
give a result that enables to estimate the cost by solving an
optimization problem that is convex even when the dynamics
is nonlinear, non-stationary and stochastic. In order to obtain
our result on the inverse problem, which leverages maximum
likelihood arguments, we also tackle a forward problem. This
leads to formulation of a finite-horizon optimal control prob-
lem with randomized policies as decision variables. For this
problem, we find the optimal solution and show that this is a
probability mass function with an exponential twisted kernel
(this is a class of policies that is often assumed in works
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on IRL). Also, we turn our result on cost estimation in an
algorithm and its effectiveness is illustrated via simulations
on the problem of estimating the cost of an agent that is
stabilizing the unstable equilibrium of a pendulum.

While our results are inspired by works on IRL/IOC, this
paper offers a number of key technical novelties. First, we
do not require that the agent can specify its state transitions
and we do not assume that the expert policy is stationary.
Despite this, our approach leads to an optimization problem
to estimate the cost that we prove to be convex. Moreover,
our approach does not require running and solving forward
problems in each iteration of the optimization and it does
not require the underlying dynamics to be deterministic.

II. MATHEMATICAL PRELIMINARIES AND PROBLEM
FORMULATION

Sets are in calligraphic and vectors in bold. A random
variable is denoted by V and its realization is v. We denote
the probability mass function, or simply pmf, of V by p(v)
and we let D be the convex subset of pmfs. Whenever
we take the sums involving pmfs we always assume that
the sum exists. The expectation of a function h(·) of V
is Ep[h(V)] :=

∑
v h(v)p(v), where the sum is over the

support of p(v); whenever it is clear from the context, we
omit the subscript in the sum. The joint pmf of V1 and
V2 is denoted by p(v1,v2) and the conditional pmf of
V1 with respect to V2 is p (v1 | v2). Countable sets are
denoted by {wk}k1:kn , where wk is the generic set element,
k1 (kn) is the index of the first (last) element and k1 : kn
is the set of consecutive integers between (including) k1

and kn. A pmf of the form p(v0, . . . ,vN ) is compactly
written as p0:N (by definition pk:k := pk(vk)). We use the
shorthand notation pk|k−1 to denote pk(vk | vk−1). Also,
functionals are denoted by capital calligraphic characters
with arguments within curly brackets. We make use of the
Kullback-Leibler (KL [17]) divergence, a measure of the
proximity of the pair of pmfs p(v) and q(v), defined as
DKL (p || q) :=

∑
v p(v) ln (p(v)/q(v)). We also recall here

the chain rule for the KL-divergence:

Lemma 1. Let V and Z be two (possibly, vector) random
variables and let f(v, z) and g(v, z) be two joint pmfs. Then,
the following identity holds:

DKL (f(v, z) || g(v, z)) = DKL (f(v) || g(v)) +

Ef(v) [DKL (f(z | v) || g(z | v))] .
(1)

A. Set-up of the Control Problem

We let Xk ∈ X ⊆ Zn be the system state at time step
k and Uk ∈ U ⊆ Zp be the control input at time step k.
Throughout the paper, the time indexing is chosen so that
the control input uk is determined based on information
available up to k − 1 and when input uk is applied, the
system transitions from state xk−1 to state xk. We let: (i)
∆k := (xk−1,uk) be the input-state data pair collected
from the system when it is in state xk−1 and uk is applied;
(ii) ∆0:N := ({∆k}1:N ,xN ) be the dataset over the time
horizon T := 0 : N . We also denote by p0:N := p(∆0:N )

the joint pmf of the dataset. We use the wording dataset
to denote a sequence of input-state data. Sometimes, in
applications one has available a collection of datasets, which
we term as database in what follows.

Remark 1. As noted in [18], p0:N is a black box type model
that can be obtained directly from the data and does not
require assumptions on the underlying dynamics.

We now make the standard assumption that the Markov
property holds. Then, p0:N can be conveniently partitioned:

p0:N = p0 (x0)

N∏
k=1

pk|k−1 = p0 (x0)

N∏
k=1

p
(x)
k|k−1p

(u)
k|k−1, (2)

where we used the shorthand notation p
(x)
k|k−1 :=

p
(x)
k (xk | uk,xk−1), p

(u)
k|k−1 := p

(u)
k (uk | xk−1) and

pk|k−1 := p
(x)
k|k−1p

(u)
k|k−1 = p (xk,uk | xk−1). Also, it is

useful to define the joint pmf p̄k−1:k := pk−1(xk−1,uk). We
say that (2) is the probabilistic description of the system.

Remark 2. In (2), the pmf p(x)
k (xk | uk,xk−1) describes

in probabilistic terms the evolution of system, while
p

(u)
k (uk | xk−1) is the randomized policy from which, at time

step k, the control input is sampled.

We let ck : X → R be the cost, at time-step k, associated
to a given state, xk. Then, the expected cost incurred when
the system is in state xk−1 and input uk is applied is given
by E

p
(x)

k|k−1

[ck(Xk)]. To address the inverse problem for cost
estimation (see Section II-B for the problem statement) we
first tackle the following forward problem:

Problem 1. Given a joint pmf

q0:N := q0 (x0)

N∏
k=1

q
(x)
k (xk | uk,xk−1) q

(u)
k (uk | xk−1) .

(3)

Find the sequence of pmfs,
{
p

(u)
k|k−1

∗}
1:N

, such that:{
p

(u)
k|k−1

∗}
1:N
∈ arg min{

p
(u)

k|k−1

}
1:N

{
DKL (p0:N || q0:N )

+

N∑
k=1

Ep̄k−1:k

[
E
p
(x)

k|k−1

[ck(Xk)]

]}
s.t. p

(u)
k|k−1 ∈ D ∀k ∈ T .

(4)

Throughout the paper we make the following standard

Assumption 1. The optimal cost of Problem 1 is bounded.

For our derivations, it is also useful to introduce
q

(x)
k|k−1 := q

(x)
k (xk | uk,xk−1), q(u)

k|k−1 := q
(u)
k (uk | xk−1)

and qk|k−1 := q
(x)
k|k−1q

(u)
k|k−1 = q (xk,uk | xk−1).

As we shall see, the solution of Problem 1 is a sequence
of randomized policies. At each k, the control input applied
to the system, i.e. u∗k, is sampled from p

(u)
k|k−1

∗
. In the
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cost functional of Problem 1, minimizing the second term
minimizes the expected agent cost, while minimizing the
first term amounts at minimizing the discrepancy between
p0:N and q0:N . Hence, the first term in the cost functional
can be thought of as a regularizer, biasing the behavior of
the closed loop system towards the pmf q0:N . Typically,
q0:N acts as passive dynamics [19], [20] or expresses desired
behavior from demonstration databases [21] See also [2] for a
survey on sequential decision-making problems that involve
minimizing this class of cost functionals.

B. The Inverse Control Problem

The inverse control problem we consider consists in esti-
mating both the cost-to-go for the agent, say c̄k(·), and the
agent cost ck(·) given a set of observed states/inputs sampled
from p

(x)
k|k−1 and from the agent policy. In what follows, we

denote by x̂k and ûk the observed state and control input at
time-step k. We also make the following:

Assumption 2. There exist some wk := [wk,1, . . . , wk,F ]T

such that c̄k (xk) = −wk
Th (xk), where h(xk) :=

[h1(xk), . . . , hF (xk)]T and hi : X → R are known func-
tions, i = 1, . . . , F .

In what follows, we say that h(xk) is the features vector.
The assumption, which is rather common in the literature
see e.g., [5], [6], [9], [11], [13], formalizes the fact that the
cost-to-go can be expressed as a linear combination of given,
possibly nonlinear, features [22]. With our results in Section
III-B we propose a maximum likelihood estimator for the
cost (see e.g., [23] for a maximum likelihood framework for
linear systems in the context of data-driven control).

III. MAIN RESULTS

A. Computing the Optimal Policy for Problem 1

With the next result we give the solution to Problem 1.

Theorem 1. Consider Problem 1 and let Assumption 1 hold.
Then:

(i) the problem has the unique solution {p(u)
k|k−1

∗
}1:N , with

p
(u)
k|k−1

∗
=

p̄
(u)
k|k−1 exp

(
−E

p
(x)

k|k−1

[c̄k(Xk)]

)
∑

uk
p̄

(u)
k|k−1 exp

(
−E

p
(x)

k|k−1

[c̄k(Xk)]

) ,
(5)

where

p̄
(u)
k|k−1 := q

(u)
k|k−1 exp

(
−DKL

(
p

(x)
k|k−1 || q

(x)
k|k−1

))
,

and where c̄k : X → R is obtained via the backward

recursion

c̄k(xk) = ck(xk)− ĉk(xk),

ĉk(xk) = ln

(
E
q
(u)

k+1|k

[
exp

(
−DKL

(
p

(x)
k+1|k || q

(x)
k+1|k

)
−E

p
(x)

k+1|k
[c̄k+1(Xk+1)]

)])
,

DKL

(
p

(x)
N+1|N || q

(x)
N+1|N

)
+ E

p
(x)

N+1|N
[c̄N+1(XN+1)] = 0;

(6)

(ii) the corresponding minimum is given by:

−
N∑
k=1

Ep̄k−1
[ĉk−1(Xk−1)] , (7)

where p̄k−1 := pk−1(xk−1).

Sketch of the proof. The full proof is omitted here for brevity
and will be presented elsewhere. We give here a sketch of
the proof, which is by induction.
Step 1. Consider the cost functional in (4). By means of
Lemma 1, Problem 1 can be recast as the sum of the
following two sub-problems:

min
{p(u)

k|k−1
}1:N−1

{
DKL (p0:N−1 || q0:N−1)

+

N−1∑
k=1

Ep̄k−1:k

[
E
p
(x)

k|k−1

[ck(Xk)]

]}
s.t. p

(u)
k|k−1 ∈ D ∀k ∈ 1 : N − 1,

(8a)

and
min

p
(u)

N|N−1

{
Ep̄N−1

[
DKL

(
pN |N−1 || qN |N−1

)
+EpN|N−1

[cN (XN )]
] }

s.t. p
(u)
N |N−1 ∈ D.

(8b)

Hence, the minimum of (8b) is Ep̄N−1

[
CN
{
p

(u)
N |N−1

∗}]
,

with C
{
p

(u)
N |N−1

∗}
being the optimal cost obtained by

solving

min
p
(u)

N|N−1

DKL
(
pN |N−1 || qN |N−1

)
+ EpN|N−1

[c̄N (XN )]

s.t. p
(u)
N |N−1 ∈ D,

(9)

where we set c̄N (xN ) := cN (xN ) + ĉN (xN ), ĉN (xN ) = 0.
This corresponds to the recursion in (6) at k = N .
Step 2. The next step is to show that the problem in (9) can
be conveniently written as

min
p
(u)

N|N−1

{
E
p
(u)

N|N−1

[
DKL

(
p

(x)
N |N−1 || q

(x)
N |N−1

)
+ E

p
(x)

N|N−1

[c̄N (XN )]
]

+ α(xN−1)

}
s.t. p

(u)
N |N−1 ∈ D,

(10)
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where α(xN−1) := DKL

(
p

(u)
N |N−1 || q

(u)
N |N−1

)
. By studying

the second variation of the cost functional, it can be shown
that this is strictly convex in the decision variable p(u)

N |N−1.
Hence, since the subset D is convex, the problem in (10) is
a convex optimization problem.
Step 3. We find the solution to the problem in (9) by using
the equivalent formulation given in (10). Since the problem
in (10) is convex with a strictly convex cost functional,
the unique optimal solution can be found by imposing the
stationarity conditions on the Lagrangian, which is given by:

L(p
(u)
N |N−1, λN ) = E

p
(u)

N|N−1

[
DKL

(
p

(x)
N |N−1 || q

(x)
N |N−1

)
+

E
p
(x)

N|N−1

[c̄N (XN )]
]

+DKL

(
p

(u)
N |N−1 || q

(u)
N |N−1

)
+ λN

(∑
uk

p
(u)
N |N−1 − 1

)
,

(11)

where λN is the Lagrange multiplier corresponding to the
constraint p(u)

N |N−1 ∈ D. Now, by imposing the first order

stationarity conditions on L(p
(u)
N |N−1, λN ), it can be shown

that the unique optimal solution is given by:

p
(u)
N |N−1

∗
=

p̄
(u)
N |N−1 exp

(
−E

p
(x)

N|N−1

[c̄N (XN )]

)
∑

uN
p̄

(u)
N |N−1 exp

(
−E

p
(x)

N|N−1

[c̄N (XN )]

) .
(12)

This is the optimal solution given in (5) for k = N , with
c̄N (xN ) generated via the backward recursion in (6). Hence,
the minimum for the sub-problem in (8b) is

Ep̄N−1

[
CN
{
p

(u)
N |N−1

∗}]
= −Ep̄N−1

[ĉN−1(XN−1)] , (13)

where

ĉN−1(xN−1)

:= ln

(
E
q
(u)

N|N−1

[
exp

(
−DKL

(
p

(x)
N |N−1 || q

(x)
N |N−1

)
− E

p
(x)

N|N−1

[c̄N (XN )]
)])

.

This is the optimal cost for k = N given in (7). Next, we
make use of the minimum found for the sub-problem (8b)
to solve the sub-problem corresponding to k ∈ 1 : N − 1.
Step 4. It can be shown that the problem in (8a) can be again
split as the sum of two sub-problems: one sub-problem for
the time-steps up to N−2 and a sub-problem for k = N−1.
Moreover, the latter sub-problem is again independent on the
former and has the same structure as (8b). Then, following
the arguments used in Step 3, we have that the unique optimal

solution for the sub-problem at k = N − 1 is

p
(u)
N−1|N−2

∗

=

p̄
(u)
N−1|N−2 exp

(
−E

p
(x)

N−1|N−2

[c̄N−1(XN−1)]

)
∑

uN−1
p̄

(u)
N−1|N−2 exp

(
−E

p
(x)

N−1|N−2

[c̄N−1(XN−1)]

) .
(14)

Hence, (14) is the optimal solution given in (5) for k = N−1,
with c̄N−1(xN−1) obtained via the backward recursion in
(6). We can now draw the desired conclusions.
Step 5. By iterating Step 4 we find that, at each of the
remaining time steps in the window 1 : N − 2, Problem 1
can always be split in sub-problems, where the sub-problem
corresponding to the last time instant in the window can
be solved independently on the others. Hence, the optimal
solution for the sub-problem is

p
(u)
k|k−1

∗
=

p̄
(u)
k|k−1 exp

(
−E

p
(x)

k|k−1

[c̄k(Xk)]

)
∑

uk
p̄

(u)
k|k−1 exp

(
−E

p
(x)

k|k−1

[c̄k(Xk)]

) . (15)

This is the optimal solution given in (5) at time k, with
c̄k(xk) obtained from the backward recursion in (6). Part
(i) of the result is then proved. Moreover, the corresponding
optimal cost at time k is −Ep̄k−1

[ĉk−1(Xk−1)]. Hence, the
optimal cost Problem 1 is −

∑N
k=1 Ep̄k−1

[ĉk−1(Xk−1)] and
this proves part (ii) of the result.

Remark 3. The optimal solution given in Theorem 1 has
an exponential twisted kernel. This class of policies is also
known in the literature as soft-max/Boltzmann policies and
are often assumed in IRL/IOC works, see e.g., [5], [14], [24].

B. Estimating the Cost

Next, we show that the cost c̄k(·) can be estimated by
observing a sequence of states sampled from p

(x)
k|k−1 when

control inputs sampled from p
(u)
k|k−1

∗
are applied. This can

be useful in settings where one has access to observations of
e.g., an expert. By estimating c̄k(·) one can also bypass the
computation of the cost-to-go via the backward recursion in
Theorem 1. With the next result, we propose an estimator
for the cost-to-go. The estimator does not require any linear-
ity/stationary assumption and the underlying dynamics can
be stochastic and obtained directly from data.

Theorem 2. Let Assumption 2 hold and let ∆̂ =
{(x̂0, û1), . . . , (x̂M−1, ûM )} be a sequence of data, with
x̂k ∼ p

(x)
k|k−1, ûk ∼ p

(u)
k|k−1

∗
and where p

(u)
k|k−1

∗
is from

Theorem 1. Then, the maximum likelihood estimate for
c̄k (xk), say c̄∗k (xk), is given by c̄∗k (xk) = −w∗k

Th(xk),
where w∗k is obtained by solving the convex optimization
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problem

w∗ :=
[
w∗T1 , . . . ,w∗TM

]T ∈
arg min

w

{
M∑
k=1

(
−Ep(xk|x̂k−1,ûk)

[
wT
k h(xk)

]
+ ln

(∑
uk

q̄
(u)
k|k−1(x̂k−1,uk)

exp
(
Ep(xk|x̂k−1,uk)

[
wT
k h(xk)

]) ))}
,

(16)
and where

q̄
(u)
k|k−1(x̂k−1,uk) := (q(uk | x̂k−1)

exp (−DKL (p(xk | x̂k−1,uk) || q(xk | x̂k−1,uk)))) ,
(17)

Sketch of the proof. The result is based on maximum
likelihood, leveraging the structure of the policy of Theorem
1. Convexity follows from the fact that the feasibility domain
is convex and the cost function is a linear combination of
the log-sum-exp function and of a linear function (in the
decision variables). The proof, omitted here for brevity, will
be presented elsewhere.

Remark 4. The problem in (16) is an unconstrained convex
optimization problem with a twice differentiable cost. Con-
straints on the wk’s can be added to capture application-
specific requirements, such as dwell-time constraints.

Next, we propose an estimator when the cost, which we
simply denote by c(·), is stationary. The result (the proof of
which is omitted here for brevity) implies that the cost can
be estimated from a greedy policy obtained via Theorem 1.
Note that, in this case, the decision variable in the resulting
optimization is ws ∈ RF rather than w ∈ RF×M .

Corollary 1. Let Assumption 2 hold and consider p(u)
k|k−1

∗

obtained at each k from Theorem 1 with N = 1. Further, let
the cost be stationary. Then, the maximum likelihood estimate
for the cost is c∗(xk) = −w∗s

Th(xk), where w∗s is given by:

w∗s ∈ arg min
ws

{
M∑
k=1

(
−Ep(xk|x̂k−1,ûk)

[
wT
s h(xk)

])
+

M∑
k=1

ln

(∑
uk

q̄
(u)
k|k−1(x̂k−1,uk)

exp
(
Ep(xk|x̂k−1,uk)

[
wT
s h(xk)

]))}
.

(18)
with ws ∈ Rf and q̄(u)

k|k−1(x̂k−1,uk) defined in Theorem 2.

Corollary 1 implies that, rather conveniently, the cost can
be learned from a greedy policy rather than from the optimal
policy. The result can be also turned into an algorithmic
procedure with its main steps given in Algorithm 1.

Algorithm 1 Pseudo-code from Corollary 1
Inputs: observed data û1, . . . , ûM and x̂0, . . . , x̂M ,

f -dimensional features vector h(xk),
p

(x)
k|k−1, q(x)

k|k−1, q(u)
k|k−1

Output: c̄∗ (xk)
for k = 1 to M do

Compute q̄(u)
k|k−1(x̂k−1,uk) using (17)

end for
Compute w∗s by solving the problem in (18)

IV. APPLICATION EXAMPLE

We illustrate the effectiveness of our results by consider-
ing the problem of stabilizing a pendulum on its unstable
equilibrium point. Specifically, given a suitable cost, we first
used Theorem 1 to compute the optimal policy and then we
leveraged Corollary 1 to estimate the cost used in the policy.
The pendulum dynamics (only used to generate data) is:

θk = θk−1 + ωk−1dt+Wθ

ωk = ωk−1 +
(g
l

sin(θk−1) +
uk
ml2

)
dt+Wω,

(19)

where θk is the angular position, ωk is the angular velocity
and uk is the torque applied on the hinged end. The parame-
ter l is the length of the rod, m is the mass of the pendulum,
g is the gravity and dt is the discretization step. Also, Wθ

and Wω capture Gaussian noise on the state variables. In our
experiments we set Wθ ∼ N (0, 0.05) and Wω ∼ N (0, 0.1).
As in [2] we let Xk := [θk, ωk]T . Also, Xk ∈ X and uk ∈ U ,
where the set X := [−π, π] × [−5, 5] and U := [−2.5, 2.5]
are discretised in 50× 50 and 20 bins respectively.

The target pendulum we wanted to control had parameters
m = 1kg, l = 0.6m, and dt = 0.1s. We also considered a
different (i.e., source) pendulum with parameters m = 0.5kg,
l =0.5m, and dt = 0.1s. We obtained the pmfs p(x)

k|k−1 and

q
(x)
k|k−1 from a database collected following the process from

[2], leveraging the source code that was provided therein.
We obtained q(u)

k|k−1 by controlling the source pendulum via
Model Predictive Control (MPC) with a receding horizon
window width of 20 steps. The action space was U and the
cost function at each k was

∑
t∈k:k+H−1(θ2

k + 0.1ω2
k) +

θ2
k+H + 0.5ω2

k+H . Then, as in [2], we added Gaussian noise
to the MPC control inputs so that q(u)

k|k−1 was N (ũk, 0.2),
with ũk being the control input computed via MPC.

Given this set-up, we first computed p(u)
k|k−1

∗
for the target

pendulum using Theorem 1 with N = 1 and using as cost:

c(xk) = (θk − θd)2 + 0.01(ωk − ωd)2, (20)

with θd = 0 and ωd = 0 (θd = 0 corresponds to the unstable
equilibrium). Then, the control input to the target pendulum
was obtained by sampling from p

(u)
k|k−1

∗
. In Figure 1 the

behavior is shown for the angular position of the controlled
pendulum and the corresponding control input. The figure
clearly illustrates that the unstable equilibrium is stabilized.
Next, we illustrated the effectiveness of Algorithm 1 in
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Fig. 1. Target pendulum angular position and corresponding control input.
Figure obtained from 20 simulations. Bold lines represents the mean and the
shaded region is confidence interval corresponding to the standard deviation.

Fig. 2. Angular position and control input for the target pendulum when
this is controlled by a policy using the estimated cost. Figure obtained by
running 20 simulations. Bold lines and shaded area defined as in Figure 1.

reconstructing the cost given in (20) that was used for policy
computation. To this aim, we used a dataset of 300 data-
points collected from a single simulation where the target
pendulum was controlled by the policy computed above. We
defined the features as h(xk) = [| θk − θd |, | ωk − ωd |]T .
We then obtained from Algorithm 1 the weights w∗s =
[−3.3,−2.03]T and hence the estimated cost was c∗(xk) =
3.3 | θk − θd | +2.03 | ωk − ωd |. Note that the weight was
higher for θk than for ωk, consistently with the cost in (20).
Finally, with this estimated cost, we used Theorem 1 with
N = 1 to obtain a new policy, which we used on the target
pendulum. Simulations (in Figure 2) illustrate that this policy
with the estimated cost effectively stabilizes the pendulum.

V. CONCLUSIONS

We considered the problem of estimating the possibly non-
convex cost of an agent by observing its interactions with a
nonlinear, non-stationary, and stochastic environment. Using
probabilistic descriptions from data and/or first-principles,
we formulated a convex optimization problem to estimate
the cost. To solve the inverse problem, we also formulated a
convex finite-horizon optimal control problem and found its

optimal solution. The results were turned into an algorithm
and illustrated through simulations, with future work focus-
ing on environment learning and constrained control tasks.
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