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Abstract— This paper derives robust, nonparametric back-
stepping controllers for nonlinear systems that include func-
tional uncertainties known to lie in a reproducing kernel
Hilbert space (RKHS) of vector-valued functions. In contrast
to the classical backstepping control architecture, including its
robust formulations, the proposed controllers are defined in
terms of the operator kernel underlying the RKHS. Hence,
the proposed controllers do not require a regressor vector
or other finite-dimensional parameterizations to capture un-
certainties, and guarantee robustness to substantially larger
classes of uncertainties. Furthermore, the proposed approach
relieves the user from seeking bases that provide a parametric
representation of the functional uncertainty. The qualitative
behavior and validation of performance guarantees for the
proposed controllers are shown through numerical examples.

I. INTRODUCTION

A. Motivation

Contemporary treatments of both robust adaptive control
[1]–[3], and, more generally, robust control for linear and
nonlinear systems [4]–[6], focus for a large part on cases
where the system uncertainty is characterized by a finite
number of real parameters. Recently, several researchers
studying robust adaptive control theory have noted the advan-
tages of framing such problems in terms of a nonparametric
control theory in which the system uncertainty is described
by some unknown function that resides in a suitable function
space. Early proponents of such a philosophy include [7]–
[9]. More recent efforts along these lines include methods
based on Gaussian processes like [10]–[14] or methods based
on approximating a limiting distributed parameter system
(DPS) in [15]–[19] that is represented by a partial differential
equation (PDE), among many others. In all cases, one of the
central themes of these nonparametric methods is to frame
the adaptive control problem in a way that techniques of
the theory of RKHS, and particularly associated methods of
approximation and learning theory, can be brought to bear.
This paper continues this trend.

In this paper, we study how analysis tools from RKHS
theory can be used to develop general methods of nonpara-
metric robust control theory. The key novelty of the proposed
results lies in that the uncertainty class is lifted from a subset
of an Euclidean space to a subset of an RKHS. Hence,
the uncertainty class is now nonparametric and considerably
broader than state-of-the-art.
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B. Summary of New Results

The key theoretical results of this paper generalize to an
RKHS setting two sets of classical results, namely robust
control laws for affine-in-the-control dynamical systems and
backstepping control laws. Thus, the proposed results lift
some iconic results in the control literature, namely Lemmas
2.26 and 2.28 of [5], to a nonparametric setting assuming
that the uncertainty classes are subsets of an RKHS.

In the first part of this paper, we address the problem
of designing robust control laws for affine-in-the-control
dynamical systems. To this goal, we consider uncertainty
classes of the form

CR ≜ {f ∈ H | ∥f∥H ≤ R} (1)

where H = H(X,U) is an RKHS of vector-valued functions
from the state space X ≜ Rn to the space of control values
U ≜ Rm, and R ≥ 0. Thus, in Theorem III.1, we provide
a feedback control law for affine-in-the-control plants such
that if no matched uncertainty were present, then the closed-
loop plant trajectory x(·) is steered to zero, and if the plant
is affected by matched uncertainties in CR, then

lim sup
t→∞

∥x(t)∥X ≈ O(∥f∥H) ≈ O(R). (2)

As explained in Section III, Theorem III.1 holds for
general vector-valued control inputs and uncertainties, while
the result in Lemma 2.26 of [5] only holds for m = 1
and scalar-valued matched uncertainties. More importantly,
Lemma 2.26 of [5] makes the a priori assumption that we
can write the matched uncertainty as the product of user-
defined regressor vector Φ(·) by an unknown vector Θ,
that is, f(x) = Φ(x)TΘ for all x ∈ X, where Φ(x) ≜
[ϕ1(x), . . . , ϕN (x)]

T ∈ RN is a known collection of basis
functions. Furthermore, Lemma 2.26 of [5] guarantees the
performance bound

lim sup
t→∞

∥x(t)∥X ≈ O(∥Θ∥RN ) ≈ O(R), (3)

Although (2) and (3) closely resemble one another, a sub-
stantial difference lies in the fact that (3) yields for functional
uncertainties f in the uncertainty class

CΦN ,R ≜
{
g ∈ H | g = ΦTΘ, ∥Θ∥RN ≤ R

}
, (4)

which is a subset of CR. Consequently, the proposed results
are more advantageous for the following reasons. Firstly, if
H is infinite-dimensional, then CΦN ,R is always a proper
subset of CR. Thus, the proposed control laws guarantee
satisfactory performance despite uncertainties that are im-
possible to counter by means of existing results, such as
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those in [5] and variations thereof. Secondly, the definition
of the uncertainty class CR is basis-free and not determined
by a finite set of real parameters. For this reason, we say
that the proposed control systems are nonparametric. Finally,
the proposed feedback control systems are also basis-free. In
other words, while (3) only holds for uncertainties having a
very specific form in terms of a known basis, (2) yields the
same form of performance guarantee for any function in H
with ∥f∥H ≤ R.

In the second part of this paper, the robust control laws
for affine-in-the-control dynamical systems are leveraged to
construct backstepping control laws for dynamical systems
in cascaded forms. Similarly to existing results on robust
backstepping control, both parts of these plants in the
cascaded form are affected by uncertainties. In contrast to
existing approaches, which assume a fixed basis, the func-
tional uncertainties are assumed to lie in possibly infinite-
dimensional RKHSs. Specifically, part of the system’s dy-
namics is affected by uncertainties in the class CR1

(H1)
and the cascaded part of the system’s dynamics is affected
by uncertainties in the class CR2(H2). In these cases, as
shown by Theorem IV.1, which generalizes Lemma 2.28 of
[5], an ultimate performance guarantee for the backstepping
problem is given by

lim sup
t→∞

(∥x(t)∥X + ∥ξ(t)∥U) ≈ O(∥F∥H1
+ ∥G∥H2

) (5a)

≈ O(R1 +R2) (5b)

for all functional uncertainties F ∈ CR1
(H1) and G ∈

CR2(H2). This guarantee is basis-free, as are the definitions
of the feedback laws and the uncertainty classes. In contrast,
the corresponding expression in Lemma 2.28 of [5] holds
only for fixed choices of bases, the feedback controllers are
expressed in terms of these selections of bases, and they hold
for typically smaller uncertainty classes defined in terms of
the basis selection. Theorem IV.2 provides a special case of
Theorem IV.1 under tighter assumptions on the functional
uncertainties affecting the plant. Indeed, whereas Theorem
IV.1 assumes that the uncertainties in the plant model are
functions of time, the state, and the control input, Theorem
IV.2 assumes that uncertainties are functions of time and the
plant state only.

For brevity, proofs are omitted. Complete proofs and
extended discussions on results can be found in Chapter 5
of [20].

II. NOTATION AND PRELIMINARIES

In this paper, we denote by L(W1,W2) the collection of all
bounded linear operators between the normed vector spaces
W1, W2. We use the typeface H for any generic Hilbert
space, H for an RKHS of real, vector-valued functions, and
H for an RKHS of scalar-valued functions. If g : Rn → R
is a real-valued function, then we define ∇g as the Jacobian
of g with respect to its argument x.

This paper uses analysis tools from the theory of RKHS.
Good general accounts of this theory can be found in [21]–
[23]. Let H ≜ H(Ω,U) denote a Hilbert space of functions

defined over Ω ⊆ X ≜ Rn that take values in U ≜ Rm.
Initially, we let Ω ≡ X. We subsequently restrict Ω to proper
subsets of X in some cases. By definition, a Hilbert space
H is an RKHS if each evaluation operator Ex : f ∈ H 7→
f(x) ∈ U is a bounded linear operator Ex ∈ L(H,U) for
each x ∈ X. The reproducing property of the RKHS states
that, for each x ∈ X, there is a bounded linear operator
Kx : U → H such that, for all u ∈ U and f ∈ H,

(Kxu, f)H = (u, f(x))U = (u,Exf)U, (6)

where (·, ·)S denotes an inner product over some inner
product space S. This identity implies that the adjoint
K∗

x ≜ (Kx)
∗ is given by K∗

x = Ex. The reproducing kernel
K(x, y) ∈ L(U) is defined to be

K(x, y) = ExKy = ExE
∗
y = KxKy, (7)

where Ky(·) ≜ K(·, y).
There are many ways to construct such operator kernels

K(x, y) ∈ L(U). Diagonal kernels are among the simplest
ones and take the form

K(x, y) ≜ diag (K1(x, y), . . . ,Km(x, y)) , (8)

where each kernel Ki : X × X → R is scalar-valued
and defines the RKHS (also known as native space) Hi

of scalar-valued functions over X. Such an operator-valued
kernel defines the native space H ≜ H1 × . . . × Hm that
is the Cartesian product of the native spaces H1, . . . ,Hm.
It is natural to build such spaces in terms of well-known
native spaces of scalar-valued kernels, including exponential,
Sobolev-Matern, Wendland, and inverse multiquadric, to
name a few, as described in [24]. However, we emphasize
that this paper applies to non-diagonal operator kernels as
well. See the operator kernel studied recently in [19] for an
example of a generic nondiagonal, operator-valued kernel.

The results presented in this paper use types of multipli-
cation operators between RKHSs of vector-valued functions.
Suppose that both the RKHS H1 and H2 consist of functions
that map from X into U ≜ Rm, and M(x) ∈ Rm×m is an
m ×m matrix function. We say that the operator M given
by

(Mf)(x) = M(x)f(x) for all x ∈ X.

is a multiplication operator from H1 to H2 if it is a bounded
linear operator, that is, M ∈ L(H1,H2). A typical bound
on the operator norm ∥M∥ is denoted by M̄∞ ∈ [0,∞), for
which we have ∥M∥ ≤ M̄∞ < ∞.

III. ROBUST CONTROL LYAPUNOV FUNCTIONS IN
REPRODUCING KERNEL HILBERT SPACES

Consider the plant model

ẋ(t) = a(x(t)) + b(x(t))
(
u(t) + Ex(t)f

)
, x(0) = x0,

(9)
for all t ≥ 0, where x(t) ∈ Rn ≜ X denotes the state
vector, u(t) ∈ Rm ≜ U denotes the control input, a : X →
X denotes the drift function, b : X → Rn×m denotes the
control influence operator, and f ∈ H ≜ H(X,U) denotes
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the functional uncertainty. The RKHS H is induced by the
operator-valued kernel K(x, y) ∈ L(U) for all x, y ∈ X, and
it contains functions that map X into U. In this section, we
seek a feedback control law µ : X → U such that u(t) =
µ(x(t)), t ≥ 0, is bounded and drives the state x(t) → 0 as
t → ∞, or, at least, assures uniform ultimate boundedness
of the controlled trajectory.

To construct regulators for (9), we recall the notion of
control Lyapunov function (CLF).

Definition III.1 (Control Lyapunov Functions). The con-
tinuously differentiable function V : X → R is a control
Lyapunov function for (9) with f ≡ 0 if there exist class
K∞ functions γ1(·) and γ2(·) such that

γ1(∥x∥X) ≤ V (x) ≤ γ2(∥x∥X) for all x ∈ X, (10)

and there exists a class K∞ function γ3(·) such that

∂V (x)

∂x
[a(x) + b(x)α(x)] ≤ −γ3(∥x∥X) (11)

for all x ∈ X, where α : X → U and ∥ · ∥X denotes a norm
on X.

Definition III.1 requires that f ≡ 0 in (9). It follows from
Definition III.1 that if a CLF exists, then x(t) ≡ 0 is an
asymptotically stable equilibrium point of (9) with f ≡ 0
and u(t) = α(x(t)), t ≥ t0. In the presence of a functional
uncertainty f , one must resort to the notion of robust CLF
(RCLF). For the statement of this definition, note that the
nonlinearities in (9) have the form Ex(t)f ≡ f(x(t)), t ≥ 0.
Furthermore, let D̊ denote the interior of a set D ⊂ X.

Definition III.2 (Classical Robust Control Lyapunov Func-
tions). The continuously differentiable function V : X → R
is a robust control Lyapunov function for (9) with Ex(t)f ≡
f(x(t)), t ≥ 0, if (10) is verified and there exists a class
K∞ function γ3(·) such that

∂V (x)

∂x
[a(x) + b(x) (α(x) + f(x))] ≤ −γ3(∥x∥) (12)

for all x ∈ X \ D, where D is closed, bounded, and such
that 0 ∈ D̊, and α : X → U.

It follows from Definition III.2 that if a RCLF exists, then
(9) with Ex(t)f ≡ f(x(t)), t ≥ 0, is uniformly ultimately
bounded. There are many examples of Lyapunov functions,
CLFs, and RCLFs, such as (9) with f ≡ 0 or (9) with
Ex(t)f ≡ f(x(t)), t ≥ 0. Such examples can be found in
classical treatises on adaptive control including, such as [5],
[6], [25], [26] to name a few. In many instances, as described
in [5], RCLF is constructed based on the assumption that
f lies in a known finite-dimensional space. This section
addresses for the first time the problem of constructing
an RCLF V (·) in closed form for a system as general as
(9), whose uncertainty f is not restricted to a fixed finite-
dimensional subspace whose basis is known.

The next theorem captures the first original contribution
of this paper. This result is a generalization to vector-valued
uncertainty in a native space of a well-known approach to

robust control exemplified by Lemma 2.26 in [5]. It is used
subsequently in the same text for the development of robust
backstepping methods. Lemma 2.26 treats the case when
m = 1 and the scalar functional uncertainty is defined in
terms of a fixed, finite number of regressors.

Theorem III.1. Consider the nonlinear dynamical model in
(9). Let the RKHS H(X,U) be induced by the matrix-valued
kernel K : X × X → L(U). Assume that f ∈ H(X,U) and
let V (·) denote a CLF for (9) with f ≡ 0, and let α : X → U
be such that (11) is verified. If u(t) = µ(x(t)), t ≥ t0, where

µ(x) ≜ α(x)− βK(x, x)bT(x)

[
∂V (x)

∂x

]T
for all x ∈ X,

(13)

where β > 0, guarantees global uniform boundedness of (9)
with u(t) = µ(x(t)), t ≥ t0, and

lim sup
t→∞

∥x(t)∥ ≤ γ−1
1 ◦ γ2 ◦ γ−1

3

(
∥f∥H
4β

)
, (14)

where the class K∞ functions γ1(·), γ2(·), and γ3(·) verify
(10) and (11).

Theorem III.1 assumes the existence of a CLF for (9)
with f ≡ 0 and the associated asymptotically stabilizing
feedback control law. As discussed in [6], the assumption
on the existence of a CLF is a standard assumption to
deduce RCLFs. Once a CLF is identified, the feedback-
stabilizing control law can be produced, for instance, by
applying Theorem 6.7 in [27].

Next, we review Lemma 2.26 [5] and make a few obser-
vations to better understand the implications of casting this
problem in terms of native space embedding.

Example III.1 (Comparison to [5, Lemma 2.26]). The
approach in [5] assumes that the functional uncertainty is
scalar with m = 1 and that the functional uncertainty is
expressed in terms of a fixed, finite collection of known basis
functions, so that

f(x) ≜ ΘT
NΦN (x) =

N∑
k=1

θkϕk(x) for all x ∈ X, (15)

where ΘN ≜ [θ1, . . . , θN ]
T and ΦN (x) ≜

[ϕ1(x), . . . , ϕN (x)]
T. This means that the uncertainty

is parameterized by a fixed, finite number N > 0 of real
parameters ΘN , and the uncertain function f is contained
in HN ≜ span {ϕ1(x), . . . , ϕN (x)} = span (ΦN (x)).

With the parameterization of uncertainty in (15), the
approach in [5] proposes the feedback control law

µ(x) ≜ α(x)− βΦT
N (x)ΦN (x)bT(x)

[
∂V (x)

∂x

]T
, (16)

for all x ∈ X, which is qualitatively similar to (13). Note
that the inner product ΦT

N (x)ΦN (x) in (16) is replaced with
the operator kernel K(x, x) ∈ L(U) in (13), which does not
depend on the basis nor on the dimension N .
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Lemma 2.26 of [5] shows that, employing (16) with m =
1,

lim sup
t→∞

∥x(t)∥ ≤ γ−1
1 ◦ γ2 ◦ γ−1

3

(
∥ΘN∥∞

4β

)
. (17)

If we assume that ∥ΘN∥∞ ≤ R, where R ≥ 0 is known,
then (17) reduces to

lim sup
t→∞

∥x(t)∥ ≤ γ−1
1 ◦ γ2 ◦ γ−1

3

(
R

4β

)
(18)

for all affine-in-the-control uncertain systems with m = 1
and functional uncertainty f residing in the parametric
uncertainty class

CΦN ,R ≜ {f = ΘT
NΦN (·) | ΘN ∈ RN , ∥ΘN∥∞ ≤ R}.

(19)

We emphasize that the uncertainty class (19) depends on
the dimension N and on the choice of basis in ΦN (·).
Theorem III.1, in contrast, allows for a broader uncertainty
class since it holds for all systems whose uncertainty lies in
the uncertainty class

CR ≜

{
h : Rn → Rm

∣∣∣∣ ∥h∥H ≤ R

}
⊂ H. (20)

The uncertainty class CΦN ,R is smaller than the uncer-
tainty class CR since CΦN ,R is tied to the dimension N and
the choice of basis ΦN . To be more specific, suppose, without
loss of generality, that the basis of N functions in ΦN is
contained in a finite-dimensional scalar-valued native space
H such that ∥ϕi∥H = 1 for 1 ≤ i ≤ N . Then, it holds that

CR′,ΦN
⊂ CR (21)

for a constant R′ ≜ R/
√

∥KN∥N , where

KN ≜
[
⟨ϕi, ϕj⟩H

]
∈ RN×N (22)

denotes the Grammian matrix. The relationship (21) follows
from the fact that f = ΦT

NΘN for any f ∈ CΦN ,R′ and some
ΘN such that ∥ΘN∥∞ ≤ R′. Thus,

∥f∥2H = ΘT
NKNΘN ≤ ∥ΘN∥22∥KN∥2

≤ ∥ΘN∥2∞∥KN∥2N ≤ N(R′)2∥KN∥2 ≤ R2,

which implies that f ∈ CR. If H is infinite-dimensional,
then no such converse result holds: CR ̸⊂ CΦN ,R′ for any
N,R,R′ > 0. △

In light of Theorem III.1, we extend for the first time Def-
inition III.2 to plant models affected by infinite-dimensional
matched uncertainties.

Definition III.3 (Robust Control Lyapunov Functions). The
continuously differentiable function V : X → R is a robust
control Lyapunov function for (9) if (10) is verified and there
exists a class K∞ function γ3(·) such that

∂V (x)

∂x
[a(x) + b(x) (α(x) + f(x))] ≤ −γ3(∥x∥) (23)

for all x ∈ X \ D, where D is closed, bounded, and such
that 0 ∈ D̊, and α : X → U.

IV. ROBUST NONPARAMETRIC BACKSTEPPING

In this section, we show how the results in Section III can
be employed to extend classical robust parametric backstep-
ping methods for nonlinear systems, whose uncertainties lie
in RKHSs. Consider plant models in the form

ẋ(t) = a(x(t)) + b(x(t))
(
ξ(t) + E1,x(t)F (·, ξ(t), u(t), t)

)
,

x(t0) = x0, t ≥ t0, (24a)

ξ̇(t) = u(t) + E2,x(t)G(·, ξ(t), u(t), t), ξ(t0) = ξ0, (24b)

where x(t) ∈ Rn ≜ X, u(t) ∈ Rm ≜ U, and F : X ×
U × U × [t0,∞) → U and G : X × U × U × [t0,∞) → U
denote functional undertainties. The plant model (24a) and
(24b) modifies (9) by introducing a cascaded architecture and
generalizes the structure of the system studied in (2.292)
of [5, p. 82] by considering uncertainties F (·, ξ, u, t) and
G(·, ξ, u, t) in infinite-dimensional native spaces.

The functional uncertainties F (·, ξ, u, t) and G(·, ξ, u, t) in
(24a) and (24b) are assumed to lie in different RKHSs, H1

and H2, respectively, for fixed ξ, u, and t. Thus, two different
evaluation operators, namely E1,x and E2,x are employed.
This way, for each x ∈ X and for each f ∈ H1, we let
E1,xf = f(x) ∈ U, and E2,xh = h(x) ∈ U for each
h ∈ H2. Two alternative assumptions are considered for
the definition of functional uncertainties.

Assumption 1. It holds that F (·, ξ, u, t) ∈ H1 for each
(ξ, u, t) ∈ U × U × [t0,∞), where H1 ≜ H1(X,U) is an
RKHS of vector-valued functions induced by the operator
kernel K1 : X × X → L(U). Similarly, we assume that
G(·, ξ, u, t) ∈ H2 ≜ H2(X,U) for each (ξ, u, t) ∈ U×U×
[t0,∞), where H2 ≜ H2(X,U) is an RKHS of vector-valued
functions induced by the operator kernel K2 : X × X →
L(U). We assume that the uncertainties are bounded in the
sense that there exist F̄∞, Ḡ∞ ∈ (0,∞) such that

∥F (·, ξ, u, t)∥H1 ≤ sup
(ξ,u,t)∈U×U×[t0,∞)

∥F (·, ξ, u, t)∥H1 ≤ F̄∞,

(25)
∥G(·, ξ, u, t)∥H2 ≤ sup

(ξ,u,t)∈U×U×[t0,∞)

∥G(·, ξ, u, t)∥H2 ≤ Ḡ∞.

(26)

Assumption 2. We assume that, in (24a), F (x, ξ, u, t) ≜
f(x, t) where f(·, t) ∈ H1 for all t ∈ [t0,∞), and in (24b),
G(x, ·, u, t) = g(·, t) ∈ H2(X,U). Finally, we assume that
there exist f̄∞, ḡ∞ ∈ (0,∞) such that

∥f(·, t)∥H2
≤ ∥f∥L∞([t0,∞),H1) ≤ f̄∞, (27)

∥g(·, t)∥H2
≤ ∥g∥L∞([t0,∞),H2) ≤ ḡ∞. (28)

The systematic development of a nonlinear controller for
the system given by (24a) and (24b) begins, as in the
last section, by assuming that we have an RCLF for the
subsystem in (24a). Thus, we assume that there exist V :
X → R positive-definite and µ : X → U such that

∂V (x)

∂x

(
a(x) + b(x)

(
µ(x) + E1,xF (·, ξ, u, t)

))
≤ −W (x) + λ (29)
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for all x ∈ X, u ∈ U, ξ ∈ U, and t ∈ [t0,∞), for some
λ ∈ [t0,∞), and for some function W (·) that is positive
definite and radially unbounded.

The next result provides sufficient conditions for a feed-
back control law to assure uniform ultimate boundedness of
(24a) and (24b) under Assumption 1.

Theorem IV.1 (Robust Nonparametric Backstepping). Con-
sider the dynamical model given by (24a) and (24b), and
suppose that Assumption 1 is verified. Suppose that there
exist V : X → R positive-definite and µ : X → U
such that (29) is verified. Assume that the matrix function
∂µT(x)

∂x b(x) ∈ L(U × U) defines the bounded linear mul-
tiplication operator M : H1 → H2 with operator norm
∥M∥ ≤ M̄∞. Then, (24a) and (24b) with control input

u(t) = −cz(t) +
∂µ(x(t))

∂x
(a(x) + b(x)ξ(t))

− bT(x(t))
∂V (x(t))

∂x

T

− βK2(x(t), x(t))z(t), t ≥ t0,

(30)

where z(t) ≜ ξ(t)−µ(x(t)), is uniformly ultimately bounded.

The next result provides sufficient conditions for a feed-
back control law to assure uniform ultimate boundedness of
(24a) and (24b) under Assumption 2. In this case, (24a) and
(24b) reduce to

ẋ(t) = a(x(t)) + b(x(t))
(
ξ(t) + E1,x(t)F (·, t)

)
,

x(t0) = x0, t ≥ t0, (31)

ξ̇(t) = u(t) + E2,ξ(t)G(·, t), ξ(t0) = ξ0, (32)

respectively. Note that, despite (24a), (31) allows only for
uncertainties in the state x in the matched uncertainty f(x, t),
with f(·, t) ∈ H1. Similarly, despite (24b), (32) admits only
uncertainties in the state ξ in the matched uncertainty g(η, t),
with g(·, t) ∈ H2.

Theorem IV.2. Consider the dynamical model given by
(31) and (32), and suppose that Assumption 2 is verified.
Suppose that there exist V : X → R positive-definite and
µ : X → U such that (29) is verified. Assume that the matrix
function ∂µ(x)

∂x b(x) ∈ L(U × U) defines the bounded linear
multiplication operator M : H1 → H2 with operator norm
∥M∥ ≤ M̄∞. Then, (31) and (32) with control input

u(t) = −cz(t) +
∂µ(x)

∂x
(a(x) + b(x)ξ(t))

− bT(x)
∂V (x)

∂x

T

− βK2(x(t), x(t))z(t), t ≥ t0,

(33)

where z(t) ≜ ξ(t)−µ(x(t)), is uniformly ultimately bounded.

V. NUMERICAL EXAMPLE

Consider the dynamical model

ẋ(t) = ξ(t) + f(x(t))δ(t), x(t0) = x0, t ≥ t0, (34)

ξ̇(t) = u(t), ξ(t0) = ξ0. (35)

The goal is to regulate the trajectories of (34) and (35).
The dynamical model (34) and (35) is in the same form

as (24a) and (24b) with n = 1, m = 1, X = R, U = R,
a(x) = 0, b(x) = 1, F (x, ξ, u, t) = f(x)δ(t), f ∈ H, where
H is an RKHS of scalar-valued functions over Ω that is
induced by the scalar-valued kernel K(x, y) for x, y ∈ R,
and G(x, ξ, u, t) = 0. We fix the bounds ∥f∥H ≤ f̄∞ ≤ R
and |δ(t)| ≤ δ̄∞ ≤ 1. We finally choose V (x) ≜ 1

2x
2,

x ∈ X, and α(x) = −c1x, where c1 > 0, so that V̇ (x) =
−c1|x|2 = −W (x) and W (x) ≜ c1x

2. It follows from
Theorem III.1 that the feedback control law (13) guarantees
uniform ultimate boundedness of the closed-loop system. It
is easy to show that the ultimate bound on the trajectories
of (34) and (35) with control law (13) are such that

c1|x|2 + c|z|2 ≤ (1 + M̄2
∞)f̄2

∞
4β

(36)

for all t ≥ t0 large enough.
Since the functional uncertainty is unknown, the integer

N ∈ N and a collection of centers ΞN ⊂ Ω are selected
randomly. With this random choice of N and ΞN , we define
the subspace

HN = span{Kξi(·) | ξi ∈ ΞN ⊂ Ω}. (37)

Thus, the functional uncertainty f ∈ HN has a coordinate
representation given by

f(x) =

N∑
i=1

θiKξi(x), (38)

where ΘN = [θ1, . . . , θN ]
T ∈ RN is a coefficient vector.

Initially, the vector ΘN ∈ RN is chosen randomly. Since
∥f∥H =

√
ΘT

NKNΘN , where KN ≜ [K(ξi, ξj)] denotes the
Grammian matrix of HN , and the norm of f is rescaled
so that ∥f∥H = R. Notice that from the assumption that
|δ(t)| ≤ 1, we have ∥fδ(t)∥H ≤ ∥f∥H |δ(t)| ≤ ∥f∥H = R.
For this specific example, in order to make the disturbance
destabilizing, we choose δ(t) = cos(t). The remaining
simulation parameters are R = 1, c1 = 5, c = 8, and β = 10.

The effect of multiple kernels is investigatd. The first
kernel used to construct the controller and subspace HN is
the normalized Gaussian kernel

K(x, y) = exp

(
−∥x− y∥2

2l2

)
, (x, y) ∈ X× X, (39)

with l = 0.5. An alternative kernel investigated is the 3/2
Matern Sobolev kernel

K(x, y) =

(
1 +

√
3∥x− y∥

l

)
exp

(
−
√
3∥x− y∥

l

)
,

(x, y) ∈ X× X. (40)

A hundred simulations were performed with such ran-
domized f for each kernel function. Figure 1 illustrates the
maximum steady-state error in x(·) across different sim-
ulations. We emphasize how conventional approaches that
use explicitly some known basis for the subspace containing
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Fig. 1. Maximum steady-state error for the state x(·) employing the
Gaussian kernel across 100 random simulations. Conventional parametric
approaches derive a different basis-dependent controller for each case. The
upper bound is given by

√
(1 + M̄2

∞)f̄2
∞/4βc1.
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Fig. 2. Maximum steady-state error for the state x(·) employing the
3/2 Matern-Sobolev kernel across 100 random simulations. The difference
between this case and the Gaussian Kernel is negligible.

uncertainty use a different controller, which depends on the
basis, for each data point in the figure. This paper introduces
one single controller that is employed for all uncertainty
cases. Figure 2 depicts the analogous results when the 3/2
Matern-Sobolev kernel defines the RKHS.

VI. CONCLUSION

This paper provided a novel method to construct back-
stepping controllers. By viewing the unknown parts of the
system as elements of a real, vector-valued native space
determined by an operator kernel, the proposed controllers
guarantee convergence across classes of functions that are
substantially broader than the parametric classes typically
used in classical backstepping control. The performance of
the proposed control systems has been verified over 200
random simulations and different kernel functions.
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