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Abstract— A logical zonotope, which is a new set repre-
sentation for binary vectors, is introduced in this paper.
A logical zonotope is constructed by XOR-ing a binary
vector with a combination of other binary vectors called
generators. Such a zonotope can represent up to 2

𝛾 binary
vectors using only 𝛾 generators. It is shown that logical
operations over sets of binary vectors can be performed on
the zonotopes’ generators and, thus, significantly reduce
the computational complexity of various logical operations
(e.g., XOR, NAND, AND, OR, and semi-tensor products).
Similar to traditional zonotopes’ role in the formal ver-
ification of dynamical systems over real vector spaces,
logical zonotopes can efficiently analyze discrete dynamical
systems defined over binary vector spaces. We illustrate
the approach and its ability to reduce the computational
complexity in two use cases: (1) encryption key discovery
of a linear feedback shift register and (2) safety verification
of a road traffic intersection protocol.

I. Introduction

For several decades, logical systems have been used

to model complex behaviors in numerous applications.

By modeling a system as a collection of logical func-

tions operating in a binary vector space, we can design

models that consist of relatively simple dynamics but

still capture a complex system’s behavior at a sufficient

level of abstraction. Some popular approaches to mod-

eling logical systems are finite automatons, Petri nets,

or Boolean Networks (BNs).

An important form of analysis for logical systems

is reachability analysis. Reachability analysis allows

us to formally verify the behavior of logical systems

and provide guarantees that, for example, the system

will not enter into undesired states. One of the pri-

mary challenges of reachability analysis is the need to

exhaustively explore the system’s state space, which

grows exponentially with the number of state vari-

ables. To avoid exponential computational complexity,

many reachability analysis algorithms are based on a
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Fig. 1: Representing four points 𝑝0 , . . . , 𝑝3 by consid-

ering all combinations of turning off and on the two

generators 𝑔1 and 𝑔2 of a logical zonotope.

representation called Binary Decision Diagram (BDD).

Given a proper variable ordering, BDDs can evaluate

Boolean functions with linear complexity in the number

of variables [1]. While BDDs play a crucial role in

verification, they have well-known drawbacks, such as

requiring an externally supplied variable ordering [2],

[3]. Outside of BDDs, there are also approaches to

reachability analysis for logical systems modeled as

BNs, or Boolean Control Networks (BCNs) for sys-

tems with control inputs, that rely on the semi-tensor

product [4]. However, due to being point-wise and

scaling limitations of semi-tensor products, BCN-based

approaches become intractable for high-dimensional

logical systems [5]. In this work, we propose a novel

zonotope representation that significantly reduces the

exponential computational complexity of reachability

analysis.

In real vector spaces, zonotopes already play an

important role in the reachability analysis of dynamical

systems [6], [7]. Classical zonotopes are constructed

by taking the Minkowski sum of a real vector center

and a combination of real vector generators. Through

this construction, a set of infinite real vectors can be

represented by a finite number of generators. Then,

by leveraging the fact that the Minkowski sum of two

classical zonotopes can be computed by combining

their respective generators, researchers have formu-

lated computationally efficient approaches to reachabil-

ity analysis [7]. In this work, we take inspiration from

classical zonotopes and formulate logical zonotopes.

Similarly, logical zonotopes are constructed by XOR-

ing a binary vector center and a combination of binary

vector generators. In binary vector spaces, logical zono-

topes are able to represent up to 2
𝛾

binary vectors using

only 𝛾 generators, as illustrated in Figure 1 with 𝛾 = 2.

Moreover, we show that any logical operation on the
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generators of the logical zonotopes is either equivalent

to or over-approximates the explicit application of the

logical operation to each member of the represented

set. Based on these results, we formulate our logical

zonotope-based reachability analysis for logical sys-

tems.

Explicitly, the contributions of this work is summa-

rized by the following: (1) we present our formulation

of logical zonotopes, (2) we detail the application of

logical operations and forward reachability analysis to

logical zonotopes, (3) we illustrate the use of logical

zonotopes in two different applications. To recreate our

results, readers can use our publicly available logical

zonotope library1.

The remainder of the paper is organized as follows.

In Section II, we introduce the notation and preliminary

definitions. In Section III, we formulate logical zono-

topes and overview the supported operations. Then,

in Section IV, we illustrate the applications of logical

zonotopes. Finally, in Section V, we conclude the work.

II. Notation and Preliminaries

In this section, we introduce details about the nota-

tion used throughout this work and preliminary defi-

nitions for logical systems and reachability analysis.

A. Notation
The set of natural and real numbers are denoted by

N and R, respectively. We denote the binary set {0, 1}
by B. The XOR, NOT, OR, and AND operations are

denoted by ⊕,¬,∨, and ∧, respectively. Throughout

the rest of the work, with a slight abuse of notation,

we omit the ∧ from 𝑎 ∧ 𝑏 and write 𝑎 𝑏 instead. The

NAND, NOR, and XNOR are denoted by ∧∼,∨∼, and

⊙, respectively. Later, we use the same notation for

both the classical and Minkowski logical operators, as it

will be clear when the operation is taken between sets

or individual vectors. Like the classical AND operator,

we will also omit the Minkowski AND to simplify the

presentation. Matrices are denoted by uppercase letters,

e.g., 𝐺 ∈ B𝑛×𝑘 , and sets by uppercase calligraphic

letters, e.g., Z ⊂ B𝑛 . Vectors and scalars are denoted by

lowercase letters, e.g., 𝑏 ∈ B𝑛 with elements 𝑏1:𝑛 . The

identity matrix of size 𝑛 × 𝑛 is denoted 𝐼𝑛 . We denote

the Kronecker product by ⊗. The 𝑥 ∈ B𝑛 is an 𝑛 × 1

binary vector.

B. Preliminaries
For this work, we consider a system with a logical

function 𝑓 : B𝑛𝑥 × B𝑛𝑢 → B𝑛𝑥 :
𝑥(𝑘 + 1) = 𝑓

(
𝑥(𝑘), 𝑢(𝑘)

)
(1)

where 𝑥(𝑘) ∈ B𝑛𝑥 is the state and 𝑢(𝑘) ∈ B𝑛𝑢 is the

control input. The logical function 𝑓 can consist of

any combination of ⊕,¬,∨,∧∼,∨∼, ⊙, and ∧. We will

represent sets of states and inputs for (1) using logical

1https://github.com/aalanwar/Logical-Zonotope

zonotopes. As will be shown, logical zonotopes are

constructed using an Minkowski XOR operation, which

we define as follows.

Definition 1: (Minkowski XOR) Given two sets L1

and L2 of binary vectors, the Minkowski XOR is defined

between every two points in the two sets as

L1 ⊕ L2 = {𝑧1 ⊕ 𝑧2 |𝑧1 ∈ L1 , 𝑧2 ∈ L2}. (2)

Similarly, we define the Minkowski NOT, OR and AND

operations as follows.

¬L1 = {¬𝑧1 |𝑧1 ∈ L1}, (3)

L1 ∨ L2 = {𝑧1 ∨ 𝑧2 |𝑧1 ∈ L1 , 𝑧2 ∈ L2}, (4)

L1L2 = {𝑧1𝑧2 |𝑧1 ∈ L1 , 𝑧2 ∈ L2}. (5)

We aim to show how logical zonotopes can be used to

compute the forward reachable sets of systems defined

by (1). We define the reachable sets of system (1) by

the following definition.

Definition 2: (Exact Reachable Set) Given a set of

initial states X0 ⊂ B𝑛𝑥 and a set of possible inputs U𝑘 ⊂
B𝑛𝑢 , the exact reachable set R𝑁 of (1) after 𝑁 steps is

R𝑁 =
{
𝑥(𝑁) ∈ B𝑛𝑥

�� ∀𝑘 ∈ {0, ..., 𝑁 − 1} :

𝑥(𝑘 + 1) = 𝑓
(
𝑥(𝑘), 𝑢(𝑘)

)
, 𝑥(0) ∈ X0 , 𝑢(𝑘) ∈ U𝑘

}
.

Another commonly used operator for BCNs is the

semi-tensor product [8]. Since semi-tensor products are

useful in many applications, we have extended the

classical definition to logical zonotopes. The classical

definition for semi-tensor products is as follows.

Definition 3: (Semi-Tensor Product [9]) Given two

matrices 𝑀 ∈ B𝑚×𝑛
and 𝑁 ∈ B𝑝×𝑞 , the semi-tensor

product, denoted by ⋉, is computed as:

𝑀 ⋉ 𝑁 = (𝑀 ⊗ 𝐼𝑠1)(𝑁 ⊗ 𝐼𝑠2), (6)

where 𝑠1 = 𝑠/𝑛, and 𝑠2 = 𝑠/𝑝, with 𝑠 being the least

common multiple of 𝑛 and 𝑝.

III. Logical Zonotopes

In this section, we present logical zonotopes and

overview several different aspects of their use. We start

by defining the set representation of logical zonotopes.

Then, we go through the application of Minkowski

XOR, NOT, XNOR, AND, NAND, OR, and NOR on

logical zonotopes. Using these results, we show that

when using logical zonotopes for reachability analysis

on (1), we are able to compute reachable sets that

over-approximate the exact reachable sets. Finally, we

present an algorithm for reducing the number of gen-

erators of a logical zonotope.

A. Set Representation

Inspired by the classical zonotopic set representation

which is defined in real vector space [10], we propose

logical zonotopes as a set representation for binary

vectors. We define logical zonotopes as follows.

Definition 4: (Logical Zonotope) Given a point 𝑐∈B𝑛
and 𝛾∈N generator vectors in a generator matrix
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𝐺=
[
𝑔1 , . . ., 𝑔𝛾

]
∈ B𝑛×𝛾, a logical zonotope is defined

as

L =

{
𝑥 ∈ B𝑛

��� 𝑥 = 𝑐
𝛾
⊕
𝑖=1

𝑔𝑖𝛽𝑖 , 𝛽𝑖 ∈ {0, 1}
}
.

We use the shorthand notation L = ⟨𝑐, 𝐺⟩ for a logical

zonotope.

Example 1: Consider a logical zonotope

L =

〈 [
0

1

]
,

[
1 1

0 1

] 〉
.

With two generators, It represents the following four

points: [
0

0

]
,

[
0

1

]
,

[
1

0

]
,

[
1

1

]
by iterating over all possible binary values of 𝛽 ∈
{00, 01, 10, 11}.

Remark 1: Logical zonotopes are defined over B𝑛 and

are different from zonotopes [10], constrained zono-

topes [11], and hybrid zonotopes [12] which are all

defined over real vector space R𝑛 . Specifically, logi-

cal zonotopes are functional sets with Boolean sym-

bols [13].

Logical zonotopes L can enclose up to 2
𝛾

binary

vectors with 𝛾 generators. In the following section, we

will show that due to their construction, we can apply

logical operations to a set of up to 2
𝛾

binary vectors

with a reduced computational complexity.

B. Minkowski Logical Operations

Given two sets of binary vectors, we often need to

perform logical operations between the members of the

two sets. In order to perform these logical operations

efficiently, we define new logical operations that only

operate on the generators of logical zonotopes instead

of the members contained within the zonotopes. We

will go through each logical operation and show that

when applied to logical zonotopes, they either yield

exact solutions or over-approximations.

1) Minkowski XOR (⊕): Given the nature of the

logical zonotope construction, we are able to compute

the Minkowski XOR exactly and show that logical

zonotopes are closed under Minkowski XOR as follows.

Lemma 1: Given two logical zonotopes L1 = ⟨𝑐1 , 𝐺1⟩
and L2 = ⟨𝑐2 , 𝐺2⟩, the Minkowski XOR is computed

exactly as:

L1 ⊕ L2 =

〈
𝑐1 ⊕ 𝑐2 ,

[
𝐺1 , 𝐺2

] 〉
. (7)

Proof: Let’s denote the right hand side of (7) by L⊕.

We aim to prove that L1 ⊕ L2 ⊆ L⊕ and L⊕ ⊆ L1 ⊕ L2.

Choose any 𝑧1 ∈ L1 and 𝑧2 ∈ L2

∃�̂�1 : 𝑧1 = 𝑐1

𝛾1

⊕
𝑖=1

𝑔1,𝑖 �̂�1,𝑖 ,

∃�̂�2 : 𝑧2 = 𝑐2

𝛾2

⊕
𝑖=1

𝑔2,𝑖 �̂�2,𝑖 .

Let �̂�⊕,1:𝛾⊕=
[
�̂�1,1:𝛾1

, �̂�2,1:𝛾2

]
with 𝛾⊕=𝛾1+𝛾2. Given that

XOR is an associative and commutative gate, we have

the following:

𝑧1 ⊕ 𝑧2 = 𝑐1

𝛾1

⊕
𝑖=1

𝑔1,𝑖 �̂�1,𝑖 ⊕ 𝑐2

𝛾2

⊕
𝑖=1

𝑔2,𝑖 �̂�2,𝑖

= 𝑐⊕
𝛾1+𝛾2

⊕
𝑖=1

𝑔⊕,𝑖 �̂�⊕,𝑖 ,

where 𝑐⊕ = 𝑐1 ⊕ 𝑐2 and 𝐺⊕ =
[
𝐺1 , 𝐺2

]
with 𝐺⊕=

[
𝑔⊕,1 ,

. . ., 𝑔⊕,𝛾⊕
]
. Thus, 𝑧1 ⊕ 𝑧2 ∈ L⊕ and therefore L1 ⊕ L2 ⊆

L⊕. Conversely, let 𝑧⊕ ∈ L⊕, then

∃�̂�⊕ : 𝑧⊕ = 𝑐⊕
𝛾⊕
⊕
𝑖=1

𝑔⊕,𝑖 �̂�⊕,𝑖 .

Partitioning �̂�⊕,1:𝛾⊕ =
[
�̂�1,1:𝛾1

, �̂�2,1:𝛾2

]
, it follows that

there exist 𝑧1 ∈ L1 and 𝑧2 ∈ L2 such that 𝑧⊕ = 𝑧1 ⊕ 𝑧2.

Therefore, 𝑧⊕ ∈ L1 ⊕ L2 and L⊕ ⊆ L1 ⊕ L2.

2) Minkowski NOT (¬), and XNOR (⊙): Given that

we are able to do Minkowski XOR operation between

logical zonotopes, we will able to find the Minkowski

NOT with the following:

Corollary 1: Given a logical zonotope L = ⟨𝑐, 𝐺⟩, the

Minkowski NOT can be computed exactly as:

¬L = ⟨𝑐 ⊕ 1, 𝐺⟩. (8)

Proof: The proof follows directly from truth table

of XOR gate and ¬L = L ⊕ 1 = {𝑧 ⊕ 1|𝑧 ∈ L} which

results in inverting each binary vector in L.

Similarly, we can perform the Minkowski XNOR

exactly as follows.

L1 ⊙ L2 = ¬(L1 ⊕ L2). (9)

3) Minkowski AND: Next, we over-approximate the

Minkowski AND between two logical zonotopes as

follows.

Lemma 2: Given two logical zonotopes L1 = ⟨𝑐1 , 𝐺1⟩
and L2 = ⟨𝑐2 , 𝐺2⟩, the Minkowski AND can be over-

approximated by L∧ = ⟨𝑐∧ , 𝐺∧⟩:
L1L2 ⊆ L∧ . (10)

where 𝑐∧=𝑐1𝑐2 and

𝐺∧=
[
𝑐1𝑔2,1 , . . . , 𝑐1𝑔2,𝛾2

, 𝑐2𝑔1,1 , . . . , 𝑐2𝑔1,𝛾1
,

𝑔1,1𝑔2,1 , 𝑔1,1𝑔2,2 , . . . , 𝑔1,𝛾1
𝑔2,𝛾2

]
. (11)

Proof: Choose 𝑧1 ∈ L1 and 𝑧2 ∈ L2. Then, we have

∃�̂�1 : 𝑧1 = 𝑐1

𝛾1

⊕
𝑖=1

𝑔1,𝑖 �̂�1,𝑖 , (12)

∃�̂�2 : 𝑧2 = 𝑐2

𝛾2

⊕
𝑖=1

𝑔2,𝑖 �̂�2,𝑖 . (13)

AND-ing (12) and (13) results in

𝑧1𝑧2 =𝑐1𝑐2

𝛾2

⊕
𝑖=1

𝑐1𝑔2,𝑖 �̂�2,𝑖

𝛾1

⊕
𝑖=1

𝑐2𝑔1,𝑖 �̂�1,𝑖

𝛾1 ,𝛾2

⊕
𝑖=1, 𝑗=1

𝑔1,𝑖 𝑔2, 𝑗 �̂�1,𝑖 �̂�2, 𝑗 . (14)

Combining the factors in

�̂�∧=
[
�̂�1,1:𝛾1

, �̂�2,1:𝛾2
, �̂�1,1�̂�2,1 , . . . , �̂�1,𝛾1

�̂�2,𝛾2

]
results in having 𝑧1𝑧2 ∈ L∧ and thus L1L2 ⊆ L∧.

Remark 2: The term over-approximation in binary

vectors with L1 ⊆ L2 means that L2 contains at least

all the binary vectors contained in L1.
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TABLE I: Minkowski Logical Operation Complexity

Operation Complexity Type

XOR, NOT, XNOR O(𝑛) Exact

AND, NAND, OR, NOR O(𝑛𝛾1𝛾2) Over-approximation

4) Minkowski NAND (∧∼): Given that we are able to

do Minkowski AND and NOT operations, we will be

able to do the Minkowski NAND as follows.

Corollary 2: Given two logical zonotopes L1=⟨𝑐1 , 𝐺1⟩
and L2=⟨𝑐2 , 𝐺2⟩, the Minkowski NAND can be over-

approximated by:

L1 ∧∼ L2 = ¬(L1L2). (15)

Proof: The proof follows directly from truth table

of NAND function and Lemma 2.

5) Minkowski OR (∨), and NOR (∨∼): Given that

we are able to NAND two sets which is a universal

gate operation, we will be able to over-approximate the

following logical Minkowski operations as shown next:

L1 ∨ L2 = (¬L1) ∧∼ (¬L2), (16)

L1 ∨∼ L2 = ¬(L1 ∨ L2). (17)

6) Computational Complexity: For analyzing the com-

putational complexity of the Minkowski logical oper-

ations, we have two logical zonotopes L1 = ⟨𝑐1 , 𝐺1⟩
and L2 = ⟨𝑐2 , 𝐺2⟩, where 𝑐1 , 𝑐2 ∈ B𝑛 , 𝐺1 ∈ B𝑛×𝛾1

and

𝐺2 ∈ B𝑛×𝛾2
. In Lemma 1, we see that the Minkowski

XOR only consists of 𝑛 binary operations for XORing

the centers 𝑐1 and 𝑐2, resulting in a computational

complexity of O(𝑛). In other words, the complexity of

Minkowski XOR scales linearly with the dimension of

the binary vector space. Similarly, we see in Corollary 1

that applying the Minkowski NOT to a logical zono-

tope also has a computational complexity of O(𝑛). By

construction, XNOR also has complexity of O(𝑛). In

Lemma 2, we see that the Minkowski AND operation

consists of ANDing the centers and generators with

each other. Since each AND operation involves 𝑛 bi-

nary operations, the resulting computational complex-

ity is O(𝑛𝛾1𝛾2). Since the complexity of the Minkowski

AND operation dominates the Minkowski NAND, OR,

and NOR operations, they also have complexities of

O(𝑛𝛾1𝛾2). We list the operations and their correspond-

ing complexities in Table I.

C. Minkowski Semi-Tensor Product
Semi-tensor product has many application in differ-

ent fields and is often useful in the analysis of logical

systems [8]. In order to apply the Minkowski semi-

tensor product to logical zonotopes, we first need to

generalize logical zonotopes to logical matrix zono-

topes.

Definition 5: (Logical Matrix Zonotope) Given a ma-

trix 𝐶 ∈ B𝑚×𝑛
and 𝛾∈N generator matrices 𝐺𝑖 ∈ B𝑚×𝑛

in a generator list �̄�=
{
𝐺1 , . . . , 𝐺𝛾

}
, a logical matrix

zonotope is defined as

L =

{
𝑋 ∈ B𝑚×𝑛

��� 𝑋 = 𝐶
𝛾
⊕
𝑖=1

𝐺𝑖𝛽𝑖 , 𝛽𝑖 ∈ {0, 1}
}
.

We again use the shorthand notation L = ⟨𝐶, 𝐺⟩ for a

logical matrix zonotope.

We define the Minkowski semi-tensor product with

a slight abuse of the notation.

L1 ⋉ L2 = {𝑧1 ⋉ 𝑧2 |𝑧1 ∈ L1 , 𝑧2 ∈ L2} . (18)

We compute the Minkowski semi-tensor product be-

tween two logical matrix zonotopes as follows.

Lemma 3: Given two logical matrix zonotopes L1 =

⟨𝐶1 , �̄�1⟩ ∈ B𝑚×𝑛
and L2 = ⟨𝐶2 , �̄�2⟩ ∈ B𝑝×𝑞 ,

the Minkowski semi-tensor product can be over-

approximated by L⋉ =
〈
𝐶⋉ , �̄�⋉

〉
:

L1 ⋉ L2 ⊆ L⋉ , (19)

where

𝐶⋉=𝐶1 ⋉ 𝐶2 , (20)

�̄�⋉=
{
𝐶1⋉𝐺2,1 , . . . , 𝐶1⋉𝐺2,𝛾1

, 𝐺1,1⋉𝐶2 , . . . , 𝐺1,𝛾1
⋉𝐶2

𝐺1,1⋉𝐺2,1 , . . . , 𝐺1,𝛾1
⋉𝐺2,𝛾2

}
. (21)

Proof: With 𝑠 as the least common multiple of 𝑛
and 𝑝, 𝑠1 = 𝑠/𝑛, and 𝑠2 = 𝑠/𝑝, choose 𝑧 ∈ L1⋉L2. Then,

∃�̂�1 , �̂�2 such that

𝑧=
(
𝐶1

𝛾1

⊕
𝑖=1

𝐺1,𝑖 �̂�1,𝑖

)
⋉
(
𝐶2

𝛾2

⊕
𝑖=1

𝐺2,𝑖 �̂�2,𝑖

)
=

((
𝐶1

𝛾1

⊕
𝑖=1

𝐺1,𝑖 �̂�1,𝑖

)
⊗ 𝐼𝑠1

) ((
𝐶2

𝛾2

⊕
𝑖=1

𝐺2,𝑖 �̂�2,𝑖

)
⊗ 𝐼𝑠2

)
=

(
𝐶1⊗𝐼𝑠1

𝛾1

⊕
𝑖=1

𝐺1,𝑖 �̂�1,𝑖⊗𝐼𝑠1
) (
𝐶2⊗𝐼𝑠2

𝛾2

⊕
𝑖=1

𝐺2,𝑖 �̂�2,𝑖⊗𝐼𝑠2
)

=

(
𝐶1⊗𝐼𝑠1

) (
𝐶2⊗𝐼𝑠2

) 𝛾2

⊕
𝑖=1

(
𝐶1⊗𝐼𝑠1

) (
𝐺2,𝑖 �̂�2,𝑖⊗𝐼𝑠2

)
𝛾1

⊕
𝑖=1

(
𝐺1,𝑖 �̂�1,𝑖⊗𝐼𝑠1

) (
𝐶2⊗𝐼𝑠2

)
𝛾1 ,𝛾2

⊕
𝑖=1, 𝑗=1

(
𝐺1,𝑖 �̂�1,𝑖⊗𝐼𝑠1

) (
𝐺2, 𝑗 �̂�2, 𝑗⊗𝐼𝑠2

)
.

Combining the factors in

�̂�⋉=
[
�̂�1,1:𝛾1

, �̂�2,1:𝛾2
, �̂�1,1�̂�2,1 , . . . , �̂�1,𝛾1

�̂�2,𝛾2

]
results in having 𝑧 ∈ L⋉ and thus L1 ⋉ L2 ⊆ L⋉.

D. Logical Zonotope Containment and Generators Reduc-
tion

In certain scenarios, we might need to find a logical

zonotope that contains at least the given binary vectors.

One way to do that is as follows.

Lemma 4: Given a list S = {𝑠1 , . . . , 𝑠𝑝} of 𝑝 binary

vectors in B𝑛 , the logical zonotope L = ⟨𝑐, 𝐺⟩ with 𝑠𝑖 ∈
L,∀𝑖 = {1, . . . , 𝑝}, is given by

𝑐 = 𝑠1 , (22)

𝑔𝑖−1 = 𝑠𝑖 ⊕ 𝑐, ∀𝑖 = {2, . . . , 𝑝}. (23)

Proof: By considering the truth table of all values

of 𝛽, we can find that the evaluation of L results in

𝑐 = 𝑠1 at one point and 𝑔𝑖−1 ⊕ 𝑐 = 𝑠𝑖 ⊕ 𝑐 ⊕ 𝑐 = 𝑠𝑖 ,
∀𝑖 = {2, . . . , 𝑝}, at other points.

We propose Algorithm 1 for reducing the number

of generators while maintaining the same contained

individual vectors. We first compute all the different

binary vectors contained in the input logical zonotope
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Algorithm 1: Function reduce to reduce the

number of generators of a logical zonotope.

Input: A logical zonotope L = ⟨𝑐, 𝐺⟩ with large

number 𝛾 of generators

Output: A logical zonotope L𝑟 = ⟨𝑐𝑟 , 𝐺𝑟⟩ with

𝛾𝑟 ≤ 𝛾 generators

1 𝑐𝑟 = 𝑐 // Function reduce does not change the

center

2 S= evaluate(L) // Compute a list S of all

binary vectors contained in L
3 𝐺𝑟 = 𝐺 // Start with the same number of

generators

4 for 𝑖 = 1 : 𝛾 do
5 S𝑟= evaluate(L𝑟 \ 𝑔𝑖) // Compute a list S𝑟

of all binary vectors contained in L𝑟
without the generator 𝑔𝑖

6 if isequal(S , S𝑟) then
7 𝐺𝑟 = removeGenerator(𝐺𝑟 ,𝑔𝑖) // Remove

𝑔𝑖 from 𝐺𝑟

8 L𝑟 = ⟨𝑐𝑟 , 𝐺𝑟⟩

L in Line 2. Then, the algorithm checks the effect

of removing each generator by computing the binary

vectors contained in the logical zonotope without the

removed generator in Line 5. The chosen generator

is deleted if its removal does not remove any binary

vector in Lines 6 and 7.

E. Reachability Analysis

We aim to over-approximate the exact reachable re-

gion of (1) which is defined in Definition 2 as follows.

Theorem 1: Given a logical function 𝑓 : B𝑛𝑥 × B𝑛𝑢 →
B𝑛𝑥 in (1) and a set of possible inputs U𝑘 ⊂ B𝑛𝑢 and

starting from initial set R̂0 ⊂ B𝑛𝑥 where 𝑥(0) ∈ R̂0, then

the reachable region computed as

R̂𝑘+1 = 𝑓
(
R̂𝑘 ,U𝑘

)
(24)

using logical zonotopes operations over-approximates

the exact reachable set, i.e., R̂𝑘+1⊇R𝑘+1.

Proof: The logical function consists in general of

XOR and NOT operations and any logical operations

constructed from the NAND. ∀𝑥(𝑘) ∈ R𝑘 and 𝑢(𝑘) ∈ U𝑘 ,
we are able to compute Minkowski XOR and NOT

exactly using Lemma 1 and Corollary 1 and over-

approximate Minkowski NAND using Lemma 2 and

Corollary 2. Thus, R̂𝑘+1 ⊇ R𝑘+1.

In Algorithm 2, we overview an algorithm based

on Theorem 1 for 𝑁-step reachability analysis using

logical zonotopes. First, in Line 1, we use Lemma 4

to convert the initial set of points S0 to get an initial

logical zonotope R̄0 which is further reduced to R̂0

using Algorithm 2. Then, we iterate 𝑁 times to find

the 𝑁th-step reachable set as a logical zonotope.

Algorithm 2: Reachability analysis for N-steps

Input: A logical function 𝑓 , an initial set of

points S0, a set of control input points

S𝑢,𝑘 , ∀𝑘 = 1, . . . , 𝑁
Output: A reachable logical zonotope R̂𝑁 at the

N-th step

1 R̄0 = enclosePoints(S0) // Enclose the set of

points with a logical zonotope using Lemma 4

2 R̂0 = reduce(R̄0) // Reduce the number of

generators using Algorithm 1

3 Ū𝑘 = enclosePoints(S𝑢,𝑘), ∀𝑘 = 0, . . . , 𝑁 − 1

4 U𝑘 = reduce(Ū𝑘), ∀𝑘 = 0, . . . , 𝑁 − 1

5 for 𝑘 = 0 : 𝑁 − 1 do
6 R̂𝑘+1 = 𝑓 (R̂𝑘 ,U𝑘) // Apply Minkowski

logical operations

Fig. 2: LFSR 𝐴.

IV. Case Studies

To illustrate the use of operating over the generators

in logical zonotopes, we present two different use cases.

We first show how logical zonotopes can drastically

improve the complexity of exhaustively searching for

the key of an LFSR. Then, we formulate an intersec-

tion crossing problem, where we compare the compu-

tational complexity of BDDs, BCN-based semi-tensor

products, and logical zonotopes when verifying the

safety of four vehicles’ intersection crossing protocol.

The experiments were done on a processor 11
𝑡ℎ

Gener-

ation Intel(R) Core(TM) i7-1185G7 with 16.0 GB RAM.

A. Exhaustive Search for the Key of an LFSR
LFSRs are used intensively in many stream ciphers

in order generate pseudo random longer keys from the

input key. For simplicity we consider 60-bits LFSR 𝐴
initialized with the input key 𝐾𝐴 with length 𝑙𝑘 . The

operations on bit level are shown in Figure 2 where

𝐴[1] = 𝐴[60] ⊕ 𝐴[59] ⊕ 𝐴[58] ⊕ 𝐴[14],
output = 𝐴[60] ⊕ 𝐴[59].

Each bit 𝑖 of the output of the LFSR is XOR-ed with the

message 𝑚𝐴[𝑖] to obtain one bit of the ciphertext 𝑐𝐴[𝑖].
Now consider that we aim to obtain the input key 𝐾𝐴

using exhaustive search by trying out 2
𝑙𝑘

key values

that can generate the cipher 𝑐𝐴 from 𝑚𝐴 with worst-

case complexity O(2𝑙𝑘 ) where 𝑙𝑘 = 60 is the key length.

Instead, we propose to use logical zonotopes in Al-

gorithm 3 to decrease the complexity of the search
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TABLE II: Execution Time (seconds) of exhaustive key

search.

Key Size Algorithm 3 Traditional Search

30 1.97 1.18 × 10
6

60 4.76 1.26 × 10
15

120 7.95 1.46 × 10
33

algorithm. We start by defining a logical zonotope L𝐵,

which contains 0 and 1 in line 1. Initially, we assign a

logical zonotope to each bit of LFSR 𝐴 in line 4 except

the first two bits. Then, we set the first two bits of LFSR

𝐴 to one of the 2
2

options of comb list in line 6. Then,

we call the LFSR with the assigned key bits to get a list

of logical zonotopes G𝐴 with misuse of notations. The

pseudo-random output of logical zonotopes G𝐴 is XOR-

ed with the message 𝑚𝐴 to get a list of ciphertext logical

zonotopes C𝐴. If any cipher of the list 𝑐𝐴 is not included

in the corresponding logical zonotope C𝐴, then the

assigned two digits in line 6 are wrong, and we do

not need to continue finding values for the remaining

bits of LFSR 𝐴. After finding the correct two bits with

𝑐𝐴 ∈ C𝐴, we continue by assigning a zero to bit by

bit in line 12. Then we generate the pseudo-random

numbers G𝐴 and XOR-ed it with the 𝑚𝐴 to get the

list of cipher logical zonotopes C𝐴. The cipher logical

zonotopes C𝐴 are checked to contain the list of ciphers

𝑐𝐴 and assign K𝐴 in line 16, accordingly. We measured

the execution time of Algorithm 3 with different key

sizes in comparison to the execution time of traditional

search in Table II. To compute the execution time of the

traditional search, we multiply the number of iterations

by the average execution time of a single iteration.

B. Safety Verification of an Intersection Crossing Protocol
In this example, we consider an intersection where

four vehicles need to pass through the intersection,

while avoiding collision. For comparison, we encode

their respective crossing protocols as logical functions

and verify the safety of their protocols through reacha-

bility analysis using BDDs, a BCN semi-tensor product-

based approach, and logical zonotopes. We denote

whether vehicle 𝑖 is passing the intersection or not at

time 𝑘 by 𝑝𝑖(𝑘). Then, we denote whether vehicle 𝑖 came

first or not at time 𝑘 by 𝑐𝑖(𝑘). We use control inputs

𝑢
𝑝

𝑖
(𝑘) and 𝑢𝑐

𝑖
(𝑘) to denote the decision of vehicle 𝑖 to

pass or to come first at time 𝑘, respectively. For each

vehicle 𝑖 = 1, . . . , 4, the intersection passing protocol is

represented by the following:

𝑝𝑖(𝑘 + 1) = 𝑢𝑝
𝑖
(𝑘)¬𝑝𝑖(𝑘)¬𝑐𝑖(𝑘). (25)

Then, the logic behind coming first for each vehicle 𝑖 =
1, . . . , 4 is written as the following:

𝑐𝑖(𝑘 + 1) = ¬𝑝𝑖(𝑘 + 1)(𝑢𝑐𝑖 (𝑘) ∨ (¬𝑝𝑖(𝑘)𝑝𝑖(𝑘 + 1))). (26)

To perform reachability analysis, we initialize the

crossing problem with the following conditions: 𝑝1(0) =
1, 𝑝2(0) ∈ {0, 1}, 𝑝3(0) = 0, 𝑝4(0) ∈ {0, 1}, 𝑐1(0) =

Algorithm 3: Exhaustive search for LFSR key

using logical zonotopes

Input: A sequence of messages 𝑚𝐴 and its

ciphertexts 𝑐𝐴 with length 𝑙𝑚
Output: The used Key K𝐴 with length 𝑙𝑘 in

encrypting 𝑚𝐴

1 L𝐵 =enclosePoints([0 1]) // enclose the points

0 and 1 by a logical zonotope

2 comb = {00, 01, 10, 11}
3 for 𝑖 = 3 : 𝑙𝑘 do
4 K𝐴[𝑖] = L𝐵 // assign the logical zonotope L𝐵

to the key bits

5 for 𝑖 = 1 : 4 do
6 K𝐴[1 : 2] = comb[𝑖]
7 G𝐴 = LFSR(K𝐴) // generate pseudo random

numbers from the key K𝐴

8 C𝐴 = G𝐴 ⊕ 𝑚𝐴

9 if ¬contains (C𝐴,𝑐𝐴) then
10 continue; // continue if 𝑐𝐴 ∉ C𝐴
11 for 𝑗 = 3 : 𝑙𝑘 do
12 K𝐴[𝑗] = 0.

13 G𝐴 = LFSR(K𝐴) // generate pseudo

random numbers from the key K𝐴

14 C𝐴 = G𝐴 ⊕ 𝑚𝐴

15 if ¬contains (C𝐴,𝑐𝐴) then
16 K𝐴[𝑖] = 1 // assign if 𝑐𝐴 ∉ C𝐴

17 if isequal (K𝐴 ⊕ 𝑚𝐴,𝑐𝐴) then
18 return K𝐴

1, 𝑐2(0) ∈ {0, 1}, 𝑐3(0) = 0, 𝑐4(0) ∈ {0, 1}. To verify

the passing protocol is always safe, under any decision

made by each vehicle, we perform reachability analysis

under the following uncertain control inputs: 𝑢
𝑝

1
(𝑘) ∈

{0, 1}, 𝑢𝑝
2
(𝑘) = 0, 𝑢

𝑝

3
(𝑘) ∈ {0, 1}, 𝑢𝑝

4
(𝑘) = 0, 𝑢𝑐

1
(𝑘) ∈

{0, 1}, 𝑢𝑐
2
(𝑘) ∈ {0, 1}, 𝑢𝑐

3
(𝑘) ∈ {0, 1}, 𝑢𝑐

4
(𝑘) ∈ {0, 1}, 𝑘 =

0, . . . , 𝑁 .

Then, we construct BDDs for each formula and exe-

cute the reduced form of the BDDs with uncertainty

which is illustrated in Figure 3. For the semi-tensor

product-based approach with BCNs, we write state

𝑥(𝑘)=(⋉4

𝑖=1
𝑝𝑖(𝑘)) ⋉(⋉4

𝑖=1
𝑐𝑖(𝑘)). We write input 𝑢(𝑘) =

(⋉4

𝑖=1
𝑢
𝑝

𝑖
(𝑘))⋉ (⋉4

𝑖=1
𝑢𝑐
𝑖
(𝑘)). The structure matrix 𝐿, which

encodes (25)-(26), is a 2
8 × 2

16
matrix where 8 is the

number of the states and 16 is the number of states

and inputs. We perform reachability analysis for the

BCN using 𝑥(𝑘 + 1) = 𝐿 ⋉ 𝑢(𝑘) ⋉ 𝑥(𝑘) for all possible

combinations. For reachability analysis with logical

zonotopes, we represent each uncertain variable in (25)-

(26) with a logical zonotope. We first compute the initial

zonotope R̂0 using Lemma 4 which contains the initial

and certain states. Then, using Theorem 1, we compute

the next reachable sets as logical zonotopes.

The execution time and the size of the reachable sets
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TABLE III: Execution Time (seconds) and number of points in each set (size) for verifying an intersection crossing

protocol.

Zonotope BDD BCN

Steps 𝑁 Time Size Time Size Time Size

10 0.06 16 3.32 14 7.75 14

50 0.15 16 19.87 14 48.40 14

100 0.26 16 39.78 14 104.91 14

1000 1.84 16 406.60 14 1142.10 14

(a) 𝑝𝑖(𝑘 + 1) (b) 𝑐𝑖(𝑘 + 1)

Fig. 3: Reduced BDDs for the intersection crossing

example.

of the three approaches are presented in seconds in Ta-

ble III. We note that reachability analysis using logical

zonotopes provides better execution times when com-

pared with reachability analysis with BDDs and semi-

tensor products. Moreover, as the reachability analy-

sis’s time horizon increases, the reachability analysis’s

execution time with logical zonotopes increases slower

than the other two methods. The logical zonotopes-

based approach adds two extra points due to the over-

approximation.

V. Conclusion

This work proposes a novel set representation for bi-

nary vectors called logical zonotope. Logical zonotopes

can represent up to 2
𝛾

binary vectors using only 𝛾 gen-

erators. We prove that applying different Minkowski

logical operations to logical zonotopes always yields ei-

ther exact solutions or over-approximations. In general,

logical zonotopes allow for a variety of computationally

efficient analyses of logical systems. In future work, we

are investigating the potential of logical zonotopes for

exploring the practical application of logical zonotopes

in new use cases.
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