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Abstract— We present a multivariable extremum seeking
(ES) algorithm for static and dynamic maps that achieves
unbiased convergence to the optimum exponentially, referred to
as exponential ES. The conventional ES approach, which uses
constant amplitude sinusoids, results in steady-state oscillations
around the optimum and is unable to guarantee unbiased
convergence. In contrast, our ES approach employs exponential
decay and growth functions to gradually decrease the amplitude
of the perturbation signal and increase the amplitude of the
demodulation signal, respectively. This eliminates the steady-
state oscillation. To achieve unbiased convergence, we choose
an adaptation gain that is sufficiently larger than the decay rate
of the perturbation so that the learning process outpaces the
perturbation’s waning. The stability analysis is based on state
transformation, averaging, and singular perturbation methods
applied to the transformed system resulting in local stability of
the transformed system as well as local exponential stability of
the original system. For numerical simulation, we consider the
problem of source seeking by a 2D velocity actuated point.

I. INTRODUCTION

Extremum Seeking (ES), due to its model-free nature
and convergence guarantees, has been a uniquely effective
optimization technique for locating and tracking the optima
of cost functions in static and dynamic systems. Since the
proof of stability for ES is developed in [10], this technique
has been extensively researched theoretically [4], [5], [14],
[18] and applied in various practical settings [6], [12], [21].
The fundamental principle of ES is to introduce a small
perturbation to the system through an excitation signal,
observe the system’s response, estimate the gradient by de-
modulating the output, and adjust the system’s inputs towards
the vicinity of the optima. However, due to the persistent
excitation involved in the process, unbiased convergence to
the extremum cannot be guaranteed and instead, steady-state
oscillations around the extremum are observed.

In addressing the steady-state oscillation problem in clas-
sical ES, a scheme with a decaying perturbation amplitude
is introduced in [19]. By choosing a sufficiently large initial
value of the amplitude, convergence to an arbitrarily small
neighborhood of the global extremum is guaranteed in the
presence of local extrema. This is followed by [20], which
claims exponential convergence to the extremum without
steady-state oscillations by updating the amplitude based on
the system output. However, this claim is later proven to be
incorrect in [2], which shows that under certain conditions,
the system converges to a point on a manifold, which is
not necessarily extremum. Subsequently, a non-smooth ES
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design is presented in [13], which reduces perturbation as the
system settles toward the extremum. Another non-smooth ES
is introduced in [17] with exponential convergence exactly
to the extremum. In [8], a formula for the design of input
functions is provided, unifying and generalizing previous
results [13], [17]. The asymptotic and exponential conver-
gence to the extremum is guaranteed under some restrictive
assumptions on the cost function. This result is later extended
to dynamic systems in [7]. However, all results in [7], [8],
[13], [17] are based on the assumption that the optimum point
is unknown, but the value of the cost function at the optimum
is known. This restrictive assumption is removed in [3] and
[11], which achieve asymptotic convergence to a neighbor-
hood of the extremum with vanishing oscillation by updating
the amplitude based on the gradient estimate. An asymptotic
convergence directly to optimum is achieved in [1] and [16]
without requiring the knowledge of the extremum. However,
none of the aforementioned papers, which are either based
on classical averaging or Lie brackets, achieve exponential
convergence directly to unknown extremum. Our aim is to
achieve this for the framework of classical averaging-based
ES. We call this approach exponential ES.

In this paper, we present an exponential ES with van-
ishing oscillation and unbiased convergence. The concept
of exponential ES relies on an exponential decay function
that reduces the effect of the perturbation signal and the use
of its multiplicative inverse, which grows exponentially, to
maximize the effect of the demodulation signal multiplied
by the high-pass filtered output. The use of exponentially
growing gain is mainly inspired by [15], which introduces an
adaptive control that employs an unbounded gain to achieve
exponential stabilization of unknown nonlinear systems in
the absence of persistent excitation. Similar to the concept
presented in [15], the convergence of our filtered output
occurs at a faster rate than the divergence of the inverse
function and the convergence of the perturbation, keeping
the controller bounded. Although the same exponential decay
perturbation is used, the amplitude of the demodulation
signal is kept constant in [19]. For the stability analysis, we
transform the system using the exponentially growing func-
tion and then apply classical averaging and singular pertur-
bation methods to show the local stability of the transformed
system, which in turn implies the local exponential stability
of the original system as well as exponential convergence of
the output to the extremum with proper choice of gains.

II. EXPONENTIAL ES FOR STATIC MAPS

We consider the following optimization problem
max
θ∈Rn

h(θ), (1)
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Fig. 1: Exponential ES scheme with unbiased convergence. The
design uses an exponential decay function α to gradually reduce the
effect of the perturbation signal S(t) and its multiplicative inverse
1
α

to gradually increase the effect of the demodulation signal M(t).

where θ ∈ Rn is the input, h ∈ Rn → R is an unknown
smooth function. We make the following assumption regard-
ing the unknown static map h(·):

Assumption 1: The function h is C4, and there exists θ∗ ∈
Rn such that

∂

∂θ
h(θ∗) = 0,

∂2

∂θ2
h(θ∗) = H < 0, H = HT . (2)

Assumption 1 guarantees the existence of a maximum of
the function h(θ) at θ = θ∗. It is important to note that
Assumption 1 also requires that the function h(θ) be C4 to
enable the application of the averaging theorem in [9], as
will be discussed in the stability analysis. We measure the
unknown function h(θ) in real time as follows

y(t) = h(θ(t)), t ∈ [t0,∞), (3)
in which y ∈ R is the output. Our aim is to design an ES
algorithm using output feedback y(t) in order to achieve
exponential convergence of θ to θ∗ while simultaneously
maximizing the steady state value of y, without requiring
prior knowledge of either θ∗ or the function h(·). Our expo-
nential ES design for static maps is schematically illustrated
in Fig. 1, where K is an n×n positive diagonal matrix, the
filter coefficients ωh and ωl are positive real numbers, the
perturbation and demodulation signals are defined as

S(t) =
[
a1 sin(ω1t) · · · an sin(ωnt)

]T
, (4)

M(t) =
[

2
a1

sin(ω1t) · · · 2
an

sin(ωnt)
]T

, (5)
respectively and the exponential decay function α is gov-
erned by

α̇(t) =− λα(t), α(t0) = α0. (6)

The parameters α0, λ are positive real numbers, the am-
plitudes ai are real numbers, ωi/ωj are rational and the
frequencies are chosen such that ωi ̸= ωj and ωi +ωj ̸= ωk

for distinct i, j and k. We select the probing frequencies
ωi’s as ωi = ωω′

i, i ∈ {1, 2, . . . , n}, where ω is a positive
constant and and ω′

i is a rational number. In addition, the
parameters should satisfy the following conditions:

λ <
ωl

2
,
ωh

2
, (7)

K > (ωl − λ)
λ

ωl

(
1

−H

)
> 0. (8)

Note that if K > λ
−2H , stability is achieved for all admissible

λ (not exceeding ωl/2). The algorithm can be used without
the low-pass filter, in which case these conditions become,
taking the limit ωl → ∞, λ < ωh

2 ,K > λ
−H > 0. The

interpretation of the conditions is that perturbation amplitude
α and the demodulation amplitude 1/α can decay and grow,
respectively, but not too fast, while the estimate θ̂ needs to
be updated fast enough, for the given rate of decay/growth
of the amplitudes. In other words, learning needs to outpace
the waning of the perturbation. We summarize closed-loop
system depicted in Fig. 1 as follows

d

dt


θ̃

Ĝ
η̃
α

 =


KĜ

−ωlĜ+ ωl(y − h(θ∗)− η̃) 1
αM(t)

−ωhη̃ + ωh(y − h(θ∗))
−λα

 , (9)

in view of the transformations

θ̃ = θ̂ − θ∗, η̃ = η − h(θ∗), (10)

where η is governed by

η̇ = −ωhη + ωhy. (11)

Theorem 1: Consider the feedback system (9) with the
parameters that satisfy (7), (8) under Assumption 1. There
exists ω̄ and for any ω > ω̄ there exists a neighborhood of the
point (θ̂, Ĝ, η, α) = (θ∗, 0, h(θ∗), 0) such that any solution
of the system (9) from the neighborhood exponentially
converges to that point. Furthermore, y(t) exponentially
converges to h(θ∗).

Proof: Step 1: State transformation. Consider the
following transformations

θ̃f =
1

α
θ̃, Ĝf =

1

α
Ĝ, η̃f =

1

α2
η̃, (12)

which transform (9) to the following system
d

dt

[
θ̃f Ĝf η̃f α

]T

=


λθ̃f +KĜf

(λ− ωl)Ĝf + ωl

[
ν(θ̃fα+ S(t)α)− η̃fα

2
]

M(t)
α2

(2λ− ωh)η̃f + ωhν(θ̃fα+ S(t)α) 1
α2

−λα

 ,

(13)

where ν(z) = h(θ∗ + z) − h(θ∗) with z = θ̃fα + S(t)α in
view of θ = θ̂+S(t)α and (10). By Assumption 1, we get

ν(0) = 0,
∂

∂z
ν(0) = 0,

∂2

∂z2
ν(0) = H < 0. (14)

Step 2: Verification of the feasibility of (13) for aver-
aging. We rewrite the system (13) in the time scale τ = ωt
as follows
d

dτ

[
θ̃f Ĝf η̃f α

]

=
1

ω


λθ̃f +KĜf

(λ− ωl)Ĝf + ωl

[
ν(θ̃fα+ S̄(τ)α)− η̃fα

2
]

M̄(τ)
α2

(2λ− ωh)η̃f + ωhν(θ̃fα+ S̄(τ)α) 1
α2

−λα

 ,

(15)
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where S̄(τ) = S(τ/ω), M̄(τ) = M(τ/ω). Let us write the
system (15) in compact form as

dζf
dτ

= (1/ω)F(τ, ζf ), (16)

where ζf =
[
θ̃f Ĝf η̃f α

]T
. For the application of the

averaging theorem in [9], we need to show that F(τ, ζf )
and its partial derivatives with respect to ζf up to the second
order on compact sets of ζf for all τ ≥ ωt0 are continuous
and bounded. The proof is trivial for F(τ, ζf ) excluding the
term ν(αθ̃f + αS̄(τ)) 1

α2 . To complete the proof, we utilize
Taylor’s theorem to write

ν(z) =

n∑
i=1

n∑
j=1

zizj

∫ 1

0

(1− s)
∂2ν

∂zi∂zj
(sz)ds (17)

in view of (14). By substituting z = θ̃fα+ S̄(τ)α into (17)
and multiplying both sides by 1

α2 , we obtain

1

α2
ν(θ̃fα+ S̄(τ)α) =

n∑
i=1

n∑
j=1

(θ̃fi + ai sin(ω
′
iτ))(θ̃fj + aj

× sin(ω′
jτ))

∫ 1

0

(1− s)
∂2ν

∂zi∂zj

(
sθ̃fα+ sS̄(τ)α

)
ds,

(18)

where θ̃fi is the ith element of θ̃f . Next, we apply the mean
value theorem to obtain

1

α2
ν(θ̃fα+ S̄(τ)α) =

1

2

n∑
i=1

n∑
j=1

(θ̃fi + ai sin(ω
′
iτ))(θ̃fj

+ aj sin(ω
′
jτ))

∂2ν

∂zi∂zj

(
sθ̃fα+ sS̄(τ)α

)
(19)

for some s ∈ [0, 1]. By Assumption 1, (19) is continuous and
bounded on compact sets of θ̃f and α. Considering the C4

property of ν and using the mean value theorem, we prove
the continuity and boundedness of the partial derivatives of
(18) with respect to θ̃f and α up to the second order on
compact sets of θ̃f and α. Therefore, F(τ, ζf ) satisfies the
continuity and boundedness assumptions of the averaging
theorem in [9].

Step 3: Averaging operation. Let us define the common
period of the probing frequencies as follows

Π = 2π × LCM {1/ωi} , i ∈ {1, 2 . . . , n}, (20)
where LCM stands for the least common multiple. The
average of the system (15) over the period Π is given by
d

dτ

[
θ̃af Ĝa

f η̃a
f αa

]T
=

1

ω


λθ̃af +KĜa

f

(λ− ωl)Ĝ
a
f

(2λ− ωh)η̃
a
f

−λαa

+
1

ω


0

ωl
1
Π

∫ Π

0
ν(θ̃afα

a + S̄(σ)αa) M̄(σ)

(αa)2
dσ

ωh
1
Π

∫ Π

0
ν(θ̃afα

a + S̄(σ)αa) 1
(αa)2

dσ

0

 .

(21)
It follows from (21) that the average equilibrium denoted

as
[
θ̃a,ef Ĝa,e

f η̃a,ef αa,e
]T

satisfies that λθ̃a,ef = −
KĜa,e

f , αa,e = 0 and

(ωl − λ)Ĝa,e
f

= lim
αa,e→0

[
ωl

Π

∫ Π

0

ν(θ̃a,ef αa,e + S̄(σ)αa,e)
M̄(σ)

(αa,e)2
dσ

]
,

(ωh − 2λ)η̃a,ef

= lim
αa,e→0

[
ωh

Π

∫ Π

0

ν(θ̃a,ef αa,e + S̄(σ)αa,e)
1

(αa,e)2
dσ

]
.

By performing a Taylor series approximation of ν in view
of (14) as follows

ν(z) =
1

2

n∑
i=1

n∑
j=1

∂2ν

∂zi∂zj
(0)zizj

+
1

3!

n∑
i=1

n∑
j=1

n∑
k=1

∂3ν

∂zi∂zj∂zk
(0)zizjzk +O(|z|4)

with z = θ̃a,ef αa,e + S̄(σ)αa,e, we compute

lim
αa,e→0

[
1

Π

∫ Π

0

ν(θ̃a,ef αa,e + S̄(σ)αa,e)
M̄(σ)

(αa,e)2
dσ

]
= lim

αa,e→0

[
1

Π

∫ Π

0

1

2

n∑
i=1

n∑
j=1

∂2ν

∂zi∂zj
(0)(θ̃a,efi

+ ai sin(ω
′
iσ))

× (θ̃a,efj
+ aj sin(ω

′
jσ))(α

a,e)2
M̄(σ)

(αa,e)2
dσ +

(αa,e)3

(αa,e)2
O(|a|2)

]
,

= Hθ̃a,ef , (22)

and

lim
αa,e→0

[
1

Π

∫ Π

0

ν(θ̃a,ef αa,e + S̄(σ)αa,e)
1

(αa,e)2
dσ

]

=
1

2

n∑
i=1

n∑
j=1

Hi,j θ̃
a,e
fi

θ̃a,efj
+

1

4

n∑
i=1

Hi,ia
2
i , (23)

by L’Hospital’s rule, where Hi,j =
∂2ν

∂zi∂zj
(0) and θ̃a,efi

is the
ith element of θ̃a,ef . Then, we obtain the equilibrium of the
average system (21) as[

θ̃a,ef Ĝa,e
f η̃a,ef αa,e

]T
=

[
01×n 01×n

ωh

4(ωh−2λ)

∑n
i=1 Hi,ia

2
i 0

]T
, (24)

provided that ωl ̸= λ, ωh ̸= 2λ and K ̸= λ(λ−ωl)ω
−1
l H−1.

Step 4: Stability analysis. The Jacobian of the average
system (21) at the equilibrium (24) is given by

J
a
f =

1

ω


λIn×n K 0n×1 0n×1

ωlH (λ − ωl)In×n 0n×1
ωl
Π

∫ Π
0

∂

(
νM̄

(αa)2

)
∂αa dσ

01×n 01×n (2λ − ωh)
ωh
Π

∫ Π
0

∂

(
ν

(αa)2

)
∂αa dσ

01×n 01×n 0 −λ

 .

Note that Ja
f is block-upper-triangular and Hurwitz provided

that (7) and (8) are satisfied. This proves the local exponential
stability of the average system (21). Then, based on the
averaging theorem [9], we show that there exists ω̄ and for
any ω > ω̄, the system (15) has a unique exponentially stable
periodic solution (θ̃Πf (τ), Ĝ

Π
f (τ), η̃

Π
f (τ), α

Π(τ)) of period Π
and this solution satisfies∣∣∣∣[θ̃Πf (τ), ĜΠ

f (τ), η̃Πf (τ)− ωh
4(ωh−2λ)

∑n
i=1 Hi,ia

2
i , αΠ(τ)

]T ∣∣∣∣
≤ O (1/ω) . (25)

In other words, all solutions (θ̃f (τ), Ĝf (τ), η̃f (τ), α(τ))
exponentially converge to an O

(
1/ω + |a|2

)
-neighborhood
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of the origin.
Step 5: Convergence to extremum. Considering the

results in Step 4 and recalling from (12) and Fig. 1 that

θ(t) = α(t)θ̃f (t) + θ∗ + α(t)S(t), (26)

we conclude the exponential convergence of θ(t) to θ∗. This
implies the convergence of the output y(t) to h(θ∗) and
completes the proof of Theorem 1.

III. EXPONENTIAL ES FOR DYNAMIC SYSTEMS

In this section, we extend our results in Section II to
dynamic systems. For this, we consider a general multi-input
single-output nonlinear model

ẋ = f(x, u), (27)
y = h(x), (28)

where x ∈ Rm is the state, u ∈ Rn is the input, y ∈ R is
the output and the unknown functions f : Rm × Rn → Rm

and h : Rm → R are smooth. Suppose there is a smooth
control law u = ϕ(x, θ) parametrized by a vector parameter
θ ∈ Rn. The closed-loop system

ẋ = f(x, ϕ(x, θ)) (29)
then has equilibria parameterized by θ. We make the follow-
ing assumptions about the closed-loop system:

Assumption 2: There exists a smooth function l : Rn →
Rm such that f(x, ϕ(x, θ)) = 0 if and only if x = l(θ).

Assumption 3: For each θ ∈ Rn, the equilibrium x = l(θ)
of (29) is locally exponentially stable uniformly in θ.

Assumption 4: The function h ◦ l is C4, and there exists
θ∗ ∈ Rn such that

∂

∂θ
(h ◦ l)(θ∗) = 0,

∂2

∂θ2
(h ◦ l)(θ∗) = H < 0, H = HT .

We aim to design a controller u to drive the output y
directly to its optimum h ◦ l(θ∗) exponentially without any
steady-state oscillation and without the need for knowledge
of θ∗, h, or l. The perturbation and demodulation signals
are defined by (4) and (5), respectively, and α is governed
by (6). The probing frequencies ωi’s, the filter coefficients
ωh and ωl, gain K and parameter λ are selected as ωi =
ωω′

i = O(ω), i ∈ {1, 2, . . . , n}, ωh = ωωH = ωδω′
H =

O(ωδ), ωl = ωωL = ωδω′
L = O(ωδ),K = ωK ′ =

ωδK ′′ = O(ωδ), λ = ωλ′ = ωδλ′′ = O(ωδ), where ω
and δ are small positive constants, ω′

i is a rational number,
ω′
H , ω′

L and λ′′ are O(1) positive constants, K ′′ is a n× n
diagonal matrix with O(1) positive elements. In addition,
the parameters should satisfy (7) and (8). We summarize the
closed-loop system as follows

d

dt


x

θ̃

Ĝ
η̃
α

 =


f(x, ϕ(x, θ∗ + θ̃ + S(t)α))

KĜ

−ωlĜ+ ωl(y − h ◦ l(θ∗)− η̃)M(t)
α

−ωhη̃ + ωh(y − h ◦ l(θ∗))
−λα

 . (30)

Theorem 2: Consider the feedback system (30) with the
parameters that satisfy (7), (8) under Assumptions 2–4. There
exists ω̄ > 0 and for any ω ∈ (0, ω̄) there exists δ̄ > 0 such
that for the given ω and δ ∈ (0, δ̄) there exists a neighbor-
hood of the point (x, θ̂, Ĝ, η) = (l(θ∗), θ∗, 0, h ◦ l(θ∗)) such

that any solution of systems (30) from the neighborhood
exponentially converges to that point. Furthermore, y(t)
exponentially converges to h ◦ l(θ∗).

Proof: Step 1: Time-scale separation. We rewrite the
system (30) in the time scale τ = ωt as

ω
dx
dτ

= f(x, ϕ(x, θ∗ + θ̃ + S̄(τ)α)), (31)

d

dτ


θ̃

Ĝ
η̃
α

 = δ


K ′′Ĝ

−ω′
LĜ+ ω′

L(y − h ◦ l(θ∗)− η̃) 1
αM̄(τ)

−ω′
H η̃ + ω′

H(y − h ◦ l(θ∗))
−λ′′α

 ,

(32)
where S̄(τ) = S(τ/ω), M̄(τ) = M(τ/ω).

Step 2: State transformation. Consider the following
transformations

θ̃f =
1

α
θ̃, Ĝf =

1

α
Ĝ, η̃f =

1

α2
η̃, (33)

which transform (31), (32) to the following system

ω
dx
dτ

= f(x, ϕ(x, θ∗ + θ̃fα+ S̄(τ)α)), (34)

dζf
dτ

= δE(τ, x, ζf ), (35)

where ζf =
[
θ̃f Ĝf η̃f α

]T
and

E(τ, x, ζf ) =


λ′′θ̃f +K′′Ĝf

(λ′′ − ω′
L)Ĝf + ω′

L(y − h ◦ l(θ∗)− η̃fα
2) M̄(τ)

α2

(2λ′′ − ω′
H)η̃f + ω′

H(y − h ◦ l(θ∗)) 1
α2

−λ′′α

 .

Step 3: Averaging analysis for reduced system. We first
freeze x in (34) at its equilibrium value x = L(τ, ζf ) =
l(θ∗ + θ̃fα+ S̄(τ)α), substitute it into (35) and then get the
reduced system

dζf,r
dτ

= δE(τ, L(τ, ζf,r), ζf,r), (36)

where ζf,r =
[
θ̃f,r Ĝf,r η̃f,r α

]T
,

E(τ, L(τ, ζf,r), ζf,r)

=


λ′′θ̃f,r +K′′Ĝf,r

(λ′′ − ω′
L)Ĝf,r + ω′

L(ν(θ̃f,rα+ S̄(τ)α)− η̃f,rα
2) M̄(τ)

α2

(2λ′′ − ω′
H)η̃f,r + ω′

Hν(θ̃f,rα+ S̄(τ)α) 1
α2

−λ′′α


and ν(z) = h ◦ l(z + θ∗) − h ◦ l(θ∗) with z = θ̃f,rα +
S̄(τ)α. From Assumption 4, we get ν(0) = 0, ∂

∂z ν(0) =

0, ∂2

∂z2 ν(0) = H < 0. Note that the reduced system
(36) has the same structure as (15) except the different
constant parameters. Therefore, we can perform averaging
analysis and stability analysis in Step 3 and 4 of the proof of
Theorem 1, respectively, for the reduced system (36). Then,
we conclude that there exists δ such that for all δ ∈ (0, δ̄),
the system (36) has a unique exponentially stable periodic
solution ζΠf,r(τ) =

[
θ̃Πf,r(τ), Ĝ

Π
f,r(τ), η̃

Π
f,r(τ), α

Π(τ)
]T

such
that

dζΠf,r(τ)

dτ
= δE(τ, L(τ, ζΠf,r(τ)), ζ

Π
f,r(τ)). (37)
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Step 4: Singular perturbation analysis. To convert the
system (34) and (35) into the standard singular perturbation
form, we shift the states ζf and x using the transformations
ζ̃f = ζf − ζΠf,r(τ) and x̃ = x− L(τ, ζf ) such that

dζ̃f
dτ

= δẼ(τ, x̃, ζ̃f ), (38)

ω
dx̃

dτ
= F̃ (τ, x̃, ζ̃f ), (39)

where Ẽ(τ, x̃, ζ̃f ) = E
(
τ, x̃ + L(τ, ζ̃f + ζΠf,r(τ)), ζ̃f +

ζΠf,r(τ)
)
− E

(
τ, L(τ, ζΠf,r(τ)), ζ

Π
f,r(τ)

)
, and F̃ (τ, x̃, ζ̃f ) =

f
(
x̃ + L(τ, ζ̃f + ζΠf,r(τ)), ϕ

(
x̃ + L(τ, ζ̃f + ζΠf,r(τ)), θ

∗ +

ζ̃f1α + ζΠf1,r(τ)α + S̄(τ)α
))

,with ζ̃f1 = θ̃f − θ̃Πf,r(τ) and

ζΠf1,r(τ) = θ̃Πf,r(τ). Note that x̃ = 0 is the quasi-steady state.
By substituting the quasi-steady state into (38), we obtain
the following reduced model

dζ̃f,r
dτ

= δẼ(τ, 0, ζ̃f,r), (40)

which has an equilibrium at the origin ζ̃f,r = 0. We prove in
Step 3 that this equilibrium is exponentially stable. The next
step in the singular perturbation analysis is to examine the
boundary layer model in the time scale t = τ/ω as follows

dxb

dt
= F̃ (τ, xb, ζ̃f ) = f(xb + l(θ), ϕ(xb + l(θ), θ)). (41)

Recalling f(l(θ), ϕ(l(θ), θ)) ≡ 0 from Assumption 2, we
deduce that xb ≡ 0 is an equilibrium of (41). According
to Assumption 3, this equilibrium is locally exponentially
stable uniformly in θ. By combining exponential stability
of the reduced model (40) with the exponential stability of
the boundary layer model (41), and noting that Ẽ(τ, 0, 0) =
0, F̃ (τ, 0, 0) = 0, we conclude from Theorem 11.4 of [9] that
ζ̃f → 0 and x̃ → 0, i.e., ζf → ζΠf,r and x → l(θ) = L(τ, ζf )
exponentially as τ → ∞.

Step 5: Convergence to extremum. Note that θ̃f (τ) →
θ̃Πf (τ) and α → 0 exponentially. It follows then that θ(τ) =
θ∗+ θ̃f (τ)α+ S̄(τ)α → θ∗ exponentially and l(θ) = l(θ∗+
θ̃fα + S̄(τ)α) → l(θ∗) exponentially. Consequently, y =
h(x) exponentially converges to h ◦ l(θ∗).

IV. SOURCE SEEKING BY A 2D POINT MASS

In this section, we investigate the problem of source
localization using an autonomous vehicle modeled as a point
mass in a two-dimensional plane

ẋ1 = vx1
, ẋ2 = vx2

, (42)
in which the vehicle’s position is represented by the vector
[x1, x2]

T and its velocity is controlled by inputs vx1
and

vx2 . The objective of this problem is to guide the vehicle
towards the static source of a scalar signal in an environment
where the vehicle’s position data is not available. The only
information provided to the vehicle at its current location is
the strength of the signal, which is assumed to decrease as
the distance from the source increases. Our specific goal is
to detect the source while continuously measuring the source
signal, ultimately bringing the vehicle to a complete stop at

h(·) y

αωo cos(ωot)
kx1
α sin(ωot)αλ sin(ωot)

αωo sin(ωot)
kx2
α cos(ωot)αλ cos(ωot)

s
s+ωh

1
s

1
s

x2

x1

vx2

vx1

y − η

Vehicle Dynamics

Fig. 2: The developed ES scheme for velocity-actuated point mass.

the exact location of the source. We give a block diagram
in Fig. 2, in which we apply our exponential ES design. For
simplicity, but without loss of generality, we assume that the
nonlinear map is quadratic with diagonal Hessian matrix

h(x1, x2) = h∗ − qx1(x1 − x∗
1)

2 − qx2(x2 − x∗
2)

2, (43)

where (x∗
1, x

∗
2) is the unknown maximizer, h∗ = h(x∗

1, x
∗
2)

is the unknown maximum, and qx1
, qx2

are some unknown
positive constants. Before presenting our results, let us first
introduce the new coordinates

x̃1 = x1 − x∗
1 − α sin(ωot), (44)

x̃2 = x2 − x∗
2 + α cos(ωot), (45)

η̃ = η − h(x∗
1, x

∗
2), (46)

where the signal η is defined in (11). Then, we summarize
the system in Fig. 2 as follows

d

dt


x̃1

x̃2

η̃
α

 =


+kx1

sin(ωot)(y − h∗ − η̃)(1/α)
−kx2 cos(ωot)(y − h∗ − η̃)(1/α)

−ωhη̃ + ωh(y − h∗)
−λα

 (47)

with the parameters chosen as

ωh > 2λ, kxi
> λ/qxi

, i = 1, 2. (48)

An extension of the exponential ES result in Theorem 1 to
the system (47) can be easily done. For convenience, we give
the exponential ES result for this source seeking problem
below without a proof.

Theorem 3: Consider the feedback system (47) with the
parameters that satisfy (48) and with the nonlinear map
of the form (43). There exists ω̄o and for any ωo > ω̄o,
there exists a neighborhood of the point (x1, x2, η, α) =
(x∗

1, x
∗
2, h

∗, 0) such that any solution of system (47) from the
neighborhood exponentially converges to that point. Hence,
y(t) exponentially converges to h(x∗

1, x
∗
2). Furthermore, the

velocity inputs remain bounded for all t ≥ t0.

V. APPLICATION TO SOURCE SEEKING PROBLEM

We consider the application of the developed ES technique
to the problem of source seeking by a velocity-actuated
point mass as outlined in Section IV. In order to make a
comparison, we utilize the following ES controllers to control
the velocity of the vehicle depicted in Fig. 2:

6747



-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3: Static source seeking by an autonomous vehicle. The nomi-
nal ES with low amplitude α0 approaches the source more closely
but requires high initial velocity, leading to initial deviation from
the source. The exponential ES, with its exponentially decaying
amplitude, avoids this issue.
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Fig. 4: The evolution of the vehicle velocity vx1 over t ∈ [0, 150]
in seconds with the first and last 6 seconds zoomed in. The velocity
input of nominal ES with low amplitude α0 exhibits rapid growth
due to the high demodulation amplitude and oscillate around zero,
whereas the velocity of our design does not exhibit this behavior
and slows down as the vehicle approaches the source.

• Nominal ES with α(t) ≡ α0, (i.e., λ = 0) for all
t ≥ 0. This design boils down to [21], in which the
vehicle asymptotically converges to a neighborhood of
the source and shows steady-state oscillations around it.

• Exponential ES with α-function dynamics (6). This
design is a modified version of Fig. 1.

The real-time measurement is defined as y(t) =
h(x1(t), x2(t)), where the function h(·) is described in
(43) with parameters (x∗

1, x
∗
2) = (−1,−1), h∗ = 1, qx1

=
1, qx2

= 0.5. The parameters used in Fig. 2 are selected
as ωh = 1, kx1

= kx2
= 0.1, λ = 0.045 and ωo = 5.

We present the comparison between the nominal ES and
exponential ES in Fig. 3 and Fig. 4. In Fig. 3, the expo-
nential ES exhibits exponential convergence to the source

at (−1,−1) with circular trajectories and exponentially de-
caying amplitude. On the other hand, the nominal ES with
constant amplitude asymptotically converges to the vicinity
of the source and shows steady-state oscillation around it.
The nominal design with α0 = 0.06 converges closer to the
source than the one with α0 = 0.3. However, it initially
moves away from the source due to its high initial velocity.
As illustrated in Fig. 4, the velocity of the vehicle on x-axis
grows rapidly from 0.3 to −13.1 when using the nominal ES
with α0 = 0.06. Low initial velocity and perfect convergence
are achieved through our design.
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