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Abstract— In this paper, we propose a distributed stochastic
first-order method for saddle point problems over strongly
connected graphs. Existing methods generally suffer from a
steady-state error that arises due to the heterogeneous nature
of data distribution (captured by the local versus global
cost gaps) and the variance of the stochastic gradients. We
propose GT-SGDA, a distributed stochastic gradient descent
ascent method that uses network-level gradient tracking to
eliminate the steady-state error component due to the local
versus global cost gap. We show that GT-SGDA converges
linearly to an error ball around the unique saddle point for
sufficiently small constant step-sizes when the global cost is
strongly concave-convex (a necessary condition for the existence
of a unique saddle point). Moreover, we show that the size
of this error ball depends on the variance of the stochastic
gradients. We provide numerical experiments to illustrate the
convergence properties of GT-SGDA for different applications
and highlight the significance of gradient tracking. We also show
the performance of GT-SGDA for training modern applications
like distributed generative adversarial networks (GANs).

Index Terms— Stochastic min-max optimization, first-order
methods, saddle point problems, distributed algorithms

I. INTRODUCTION AND RELATED WORK

Saddle point problems arise in many applications of
control systems, signal processing, machine learning, and
statistics [1]–[6]. Such problems (also known as min-max)
are significant in the literature on optimization theory when
the problem of interest lies in finding the point of inflection
for a cost function F . Assuming that F : Rpx×py → R is
convex in x ∈ Rpx and concave in y ∈ Rpy , the saddle
point (x∗,y∗) ∈ Rpx×py can be mathematically described as
the point such that ∀(x,y) ∈ Rpx×py ,

F (x∗,y) ≤ F (x∗,y∗) ≤ F (x,y∗).

Fig. 1. Surface plot of two dimensional saddle point problem for
F (x,y) = x2 − y2 with saddle point (0, 0) highlighted in red.

Figure 1 shows the surface plot of a two-dimensional
saddle point problem where F (x,y) = x2 − y2. The unique
saddle point (x∗,y∗) = (0, 0) is highlighted in red. To reach
the saddle point, we minimize F with respect to x and
maximize F with respect to y, mathematically written as:

min
x∈Rpx

max
y∈Rpy

F (x,y).

A well-known technique to solve such problems using
gradient-based approaches is the gradient descent ascent
method [4]–[8]. Several variants of gradient descent ascent
algorithms are studied extensively due to their applications
in robust regression, image reconstruction, and generative
adversarial networks (GANs) [2], [3], [9], [10].

Centralized methods, although effective, are not practically
feasible in many large-scale applications when the data
is divided among a network of geographically distributed
nodes. In such distributed data scenarios, existing work has
mainly focused on minimization methods [11]–[18]. Early
work includes [11], [13], which requires the knowledge of a
first-order oracle but the performance is compromised due
to the inability to handle the dissimilarity between local
and global cost functions. This gap leads to a steady-state
error with constant step-size or sub-linear convergence rate to
reach the optimal solution with decaying step-size. Gradient-
tracking was proposed in [16], [19] to eliminate this error and
establish linear convergence; see [18] for a detailed overview.

Towards distributed gradient descent ascent methods, of
significance are [20], [21], which solve the saddle point
problems in a deterministic fashion. These methods require
every node to use all local data at each iteration to compute
full-batch partial gradients for the x and y updates. Addition-
ally, [20] assumes similarity conditions to tackle local versus
global cost dissimilarity while [21] uses gradient tracking to
address this gap. Several stochastic methods have also been
proposed [22]–[25] but they use strong assumptions, i.e., [22]
and [24] assume that the local costs are quadratic. More-
over, [25] assumes a federated setup and an upper bound to
quantify the dissimilarity of local and global cost functions.
Some related work can also be found in [26], [27] which
solves for distributed constrained optimization problem by
converting it to a distributed saddle point problem using
Lagrangian multipliers.

In this paper, we propose GT-SGDA, a distributed op-
timization method to solve saddle point problems using a
stochastic first-order oracle and gradient tracking. Unlike
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existing methods, GT-SGDA is stochastic and is applicable
to a wider class of problems under milder conditions. The
main contributions are: (i) GT-SGDA addresses the data het-
erogeneity with the help of gradient tracking for both descent
and ascent updates; (ii) For constant step-sizes, we show
linear convergence of GT-SGDA to an error ball around the
unique saddle point when the functions are strongly concave-
convex; (iii) We show that the error ball is proportional to
the variance of noisy partial gradients.

We now describe the rest of the paper. Section II discusses
the problem formulation and Section III provides some
useful applications to motivate distributed saddle point op-
timization. Section IV provides the algorithm development,
while Section V provides the main results and the detailed
convergence analysis. Section VI shows some numerical
experiments to illustrate the performance of GT-SGDA with
the help of distributed regression problems and distributed
GANs. Finally, Section VII concludes the paper.
Basic notation: We use uppercase letters to denote matrices
and lowercase bold letters to denote vectors. We define In
as the n× n identity matrix and 0n as a column vector
of n zeros. For a matrix W ∈ Rn×n, we denote ρ(W ) as
its spectral radius. We define ∥ · ∥ as the vector two-norm
and ||| · ||| as the matrix norm induced by this vector norm. For
a function F (x,y), we denote ∇xF as the partial derivative
of F with respect to x and ∇yF as the partial derivative
of F with respect to y. We also define E [F (x,y)|x,y] as
the expected value of F (x,y) given the values of x and y.

II. PROBLEM FORMULATION

In this paper, we would like to solve a distributed min-
max problem and find the unique saddle point when the
strongly concave-convex local cost functions fi’s are geo-
graphically distributed over a network of n nodes. Each node
communicates over a strongly connected network. The global
cost function F (x,y) is the average of local cost functions
fi(x,y) where (x,y) ∈ Rpx×py . Mathematically, we have
the following problem:

P : min
x∈Rpx

max
y∈Rpy

F (x,y) = min
x∈Rpx

max
y∈Rpy

1

n

n∑
i=1

fi(x,y),

where the local cost functions, at each node i, are
defined as: fi(x,y) := gi(x) + ⟨y, Pix⟩ − hi(y). Conse-
quently, the global F (x,y) := G(x) + ⟨y, Px⟩ −H(y)
such that G(x) := 1

n

∑n
i=1 gi(x), H(y) := 1

n

∑n
i=1 hi(y),

and P = 1
n

∑n
i=1 Pi ∈ Rpy×px . The convergence analysis of

GT-SGDA will be derived in Section V under the following
assumptions.

Assumption 1. The nodes communicate over a weight-
balanced, strongly connected graph.

Assumption 2. The coupling matrices Pi,∀i are full column
rank, global G is convex, and global H is µ-strongly convex.
Moreover, ∀i, gi is L1-smooth and hi is L2-smooth.

Assumption 3. Each node i has access to the stochastic first-
order oracle that returns ∇xf̂i(x

k
i ,y

k
i ) and ∇yf̂i(x

k
i ,y

k
i ),

when queried by (xi
k,y

i
k), such that

E
[
∇xf̂i(x

k
i ,y

k
i )|xk

i ,y
k
i

]
= ∇xfi(x

k
i ,y

k
i ),

E
[
∇yf̂i(x

k
i ,y

k
i )|xk

i ,y
k
i

]
= ∇yfi(x

k
i ,y

k
i ),

E
[
∥∇xf̂i(x

k
i ,y

k
i )−∇xfi(x

k
i ,y

k
i )∥2|xk

i ,y
k
i

]
≤ σ2

x,

E
[
∥∇yf̂i(x

k
i ,y

k
i )−∇yfi(x

k
i ,y

k
i )∥2|xk

i ,y
k
i

]
≤ σ2

y.

Assumption 1 is commonly used in the literature on dis-
tributed optimization and guarantees that the corresponding
weight matrix W := {wi,r} is primitive and doubly stochas-
tic. For such a W , we have that λ := ρ(W −W∞) < 1 from
Perron Frobenius theorem [28], where W∞ := limk→∞ W k.
Assumption 2 ensures that the global cost F is strongly
concave in y and convex in x. We note that this is the
minimum requirement to ensure that F has a unique saddle
point (x∗,y∗) [8]. Assumption 3 is typical in the litera-
ture on stochastic methods and requires that the sampled
gradients have finite second moments. Here, we define
σ2 := max{σ2

x, σ
2
y} and L := max{L1, L2} for the simplic-

ity of analysis.

III. MOTIVATION

In order to motivate GT-SGDA, we now discuss some use-
ful applications that take the form of saddle point problems.

A. Constrained optimization

Most optimization problems require the minimization of a
cost function given some realistic constraints. For example,
in noise cancellation systems, we would like to find feedback
filter coefficients that are stable. To ensure this, we can
constrain the eigenvalues of the resulting closed-loop system.
More generally, for equality constraints, we can formulate the
problem as:

min
x

g(x), such that Px = b;

where g : Rpx → R is the cost function to be mini-
mized and Px = b are the constraints when P ∈ Rpy×px

and b ∈ Rpy . The saddle point equivalent form can be
written using Lagrangian multipliers y ∈ Rpy :

min
x

min
y
{L(x,y) := g(x) + ⟨y, Px⟩ − ⟨y,b⟩} .

For very large-scale problems, the data is often geograph-
ically distributed and cannot be accessed at any single node.
Hence, for a network of n nodes communicating over a
strongly connected graph, we would like to solve for

min
x

min
y

1

n

n∑
i=1

{Li(x,y) := gi(x) + ⟨y, Pix⟩ − ⟨y,bi⟩} ,

where each node i has Li(x,y) as the local cost function,
provided that ∀i, gi : Rpx → R, Pi ∈ Rpy×px , bi ∈ Rpy , and
the global cost is the average of the local cost functions.

B. Supervised learning

The methods used for supervised learning aim to train
a predictor (using some data P ) that minimizes the loss
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function h(Px). To avoid overfitting, a regularizer term is
often added g(x). Thus, mathematically we can formulate
the problem as: minx {h(Px) + g(x)} . The saddle point
equivalent form can be written as:

min
x

max
y
{f(x,y) := g(x) + ⟨y, Px⟩ − h(y)} .

A large amount of data is usually required to train the models
for best performance, which might not be possible due to
computation, communication, or privacy constraints. Thus,
the distributed implementation is useful, i.e., solving for

min
x

min
y

1

n

n∑
i=1

{fi(x,y) := gi(x) + ⟨y, Pix⟩ − hi(y)} .

C. Game theory

The essence of the game theory lies in understanding the
interaction between different groups. These groups conflict
with each other until they reach an equilibrium point. The
intuitive formulation for such problems is min-max opti-
mization minx maxy F (x,y) and the point of equilibrium
is essentially the saddle point (x∗,y∗) of the problem,

min
x

max
y

F (x,y) = F (x∗,y∗).

Game theory traditionally has applications in economics and
statistics but recently it has gained a lot of interest due to
its applications in training generative adversarial networks
(GANs). A GAN is composed of a generator G(x) and
a discriminator D(y) where the generator tries to gener-
ate high-quality data samples and the discriminator tries
to discriminate between actual and fake (generated) data.
Mathematically, we can write:

min
G

max
D
{F (G,D) := log(D(x)) + log(1−D(G(y)))} .

We often compute the above problem in a stochastic manner
such that x is sampled from the actual data given a proba-
bility pdata(x) and y is sampled from a random probability
distribution prand(y). The generator then generates fake
data G(y). The goal is to learn a mapping from the random
probability distribution to the data distribution G(·) such that
the generator produces good (fake) data samples that are hard
to distinguish from the real data by the discriminator. The
generators and discriminators are often selected to be large
neural networks. Although they are non-convex and non-
concave, we show the performance of GT-SGDA for training
distributed GANs in Section VI.

IV. ALGORITHM DEVELOPMENT

We first recap a well studied distributed method (DGD [11])
to find the unique minimizer x∗ ∈ Rpx of a smooth and
strongly convex global cost G :=

∑n
i=1 gi(x). For a positive

step-size α, DGD, at each node i computes

xk+1
i =

n∑
r=1

wi,r(x
k
r − α∇gkr ), k ≥ 0,

where xk
i is node i’s estimate of x∗. We note that each xk

i

converges to a sub-optimal solution because ∇gi ̸= ∇G. The

corresponding steady-state error can be eliminated with the
help of gradient tracking by replacing ∇gki with qk

i such that

qk+1
i :=

n∑
r=1

wir(q
k
r +∇gk+1

r −∇gkr ).

It can be shown that qk
i → ∇G [16]. The gradient descent

ascent version of [16] was recently proposed in [21], which
uses gradient tracking. However, [21] works in a deter-
ministic fashion. To eliminate this limitation, we propose
a stochastic method when each node can only access the
stochastic first-order oracle (see Assumption 3).

Algorithm 1 GT-SGDA at each node i

Require: x0
i ∈ Rpx ,y0

i ∈ Rpy , P 0
i = Pi, {wir}nr=1, α > 0,

β > 0,q0
i = ∇xfi(x

0
i ,y

0
i ), r

0
i = ∇yfi(x

0
i ,y

0
i )

1: for k = 0, 1, 2, . . . , do,

2: P k+1
i ←

∑n
r=1 wirP

k
r

3: xk+1
i ←

∑n
r=1 wir(x

k
r − α · qk

r )

4: qk+1
i ←

∑n
r=1 wir(q

k
r +∇xf̂

k+1
r −∇xf̂

k
r )

5: yk+1
i ←

∑n
r=1 wir(y

k
r + β · rkr )

6: rk+1
i ←

∑n
r=1 wir(r

k
r +∇y f̂

k+1
r −∇y f̂

k
r )

7: end for

GT-SGDA is formally described in Algorithm 1. We note
that we would like to find the saddle point of F (x,y). The
algorithm can be described in three main steps: (i) estimation
of the global matrix P ; (ii) stochastic gradient descent
for xk

i updates and the corresponding gradient tracking qk
i ;

(iii) stochastic gradient ascent for yk
i updates and the cor-

responding gradient tracking rki . At each node i, GT-SGDA
randomly chooses the initial state vectors and some positive
step-sizes α and β. At each iteration k, every node updates
its local P k

i to estimate the global P k
i → P . We note

that qk
i and rki are the partial gradient tracking terms such

that qk
i → 1

n

∑
i∇xf̂i and rki → 1

n

∑
i∇y f̂i. Moreover, the

state variables xk
i and yk

i are evaluated by taking the steps
in negative and positive directions of the partial gradient
tracking terms qk

i and rki , respectively. Next, we provide
the main theorem describing the convergence properties
of GT-SGDA.

V. MAIN RESULTS AND CONVERGENCE ANALYSIS

In this section, we discuss the main results and conver-
gence properties of GT-SGDA.

Theorem 1. Consider Problem P under Assumptions 1, 2,
and 3. GT-SGDA converges linearly to an error ball around
the unique saddle point (x∗,y∗) of F , the size of which
depends on the variance of the stochastic partial gradients.

To aid the convergence analysis, we first define four global
state vectors xk,qk ∈ Rnpx , yk, rk ∈ Rnpy that concate-
nate the local state vectors xk

i ,q
k
i ,y

k
i , and rki for all i

at each iteration k. We next describe some useful error
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terms that govern the dynamics of GT-SGDA: (i) Network
agreement errors E∥xk −W∞

1 xk∥2 and E∥yk −W∞
2 yk∥2,

where W∞
1 := W∞ ⊗ Ipx and W∞

2 := W∞ ⊗ Ipy . These
quantify how far the network is from the agreement; (ii) Opti-
mality gaps E∥xk − x∗∥2 and E∥yk −∇H∗(Pxk)∥2, where
xk := 1

n

∑n
i=1 x

k
i , yk := 1

n

∑n
i=1 y

k
i , and H∗ is the conju-

gate function of H . These evaluate how far the agreement
is from the optimal solution; (iii) Gradient tracking errors
E∥qk −W∞

1 qk∥2 and E∥rk −W∞
2 rk∥2. These measure the

difference between global and local partial gradients. To
establish the convergence results, we next provide a useful
lemma that characterizes the time evolution of GT-SGDA in
terms of the above-mentioned error terms.

Lemma 1. Consider GT-SGDA described in Algorithm 1
under Assumptions 1, 2 and 3. We define uk, sk, c ∈ R6 as

uk :=


E∥xk −W∞

1 xk∥2
nE∥xk − x∗∥2

L−2E∥qk −W∞
1 qk∥2

E∥yk −W∞
2 yk∥2

nE∥yk −∇H∗(Pxk)∥2
L−2E∥rk −W∞

2 rk∥2

 , sk :=


E∥xk∥2
E∥yk∥2

0
0
0
0

 ,

c :=



0
2α L2

σ2
m

16L−2

1−λ2

[
n+ 6(α2L2

1 + β2σ2
M )

]
0

3β
µ +

9α2σ2
M

βµ3

16L−2

1−λ2

[
n+ 6(L2

2β
2 + σ2

Mα2)
]


;

and let Nα,β ∈ R6×6 be such that it has α 8L2

σ2
m
τ and β 6

µτ

at the (2, 2) and (5, 1) locations, respectively, and zeros
everywhere else. We define σm ≤ |||Pi ||| ≤ σM ,∀i, for some
positive σm, σM , and τ := 1

n

∑n
i=1

∣∣∣∣∣∣Pi − P
∣∣∣∣∣∣2. Then, for

all k ≥ 0, α, β > 0, α ≤ βµ2

6Γσ2
M

, and Γ > 2, we have

uk+1 ≤ (M0 + βM)uk +Nα,βs
kλ2k + cσ2. (1)

The matrix M0 ∈ R6×6 takes the form:

M0 :=



1+λ2

2 0 0 0 0 0
0 1 0 0 0 0

× 0 1+λ2

2 × 0 0

0 0 0 1+λ2

2 0 0
0 0 0 0 1 0

× 0 0 × 0 1+λ2

2


;

where ‘×’ are the “don’t care” terms (which are not neces-
sary for further analysis) and M ∈ R6×6 takes the form:

M :=



0 0 × 0 0 0

× − σ2
m

L2γ
0 0 4µ2L2

3Γσ2
m

0

× × × × × ×
0 0 0 0 0 ×
×

(
µL2

1

2σ2
MΓ2 +

σ2
M

µΓ2

)
0 × −

(
µ− µ

Γ

)
0

× × × × × ×


;

where γ is a positive constant such that 0 < β/γ ≤ α.

In order to prove Theorem 1, we use Lemma 1 and the
following result on matrix perturbation.

Lemma 2. [29] Let an n×n matrix Mβ of the form
M0 + βM depends smoothly on a real parameter β ≥ 0.
Assume M0 has l < n equal eigenvalues, λ1 = · · · = λl,
associated with right and left eigenvectors b1, · · · ,bl

and a1, · · · ,al such that a1
...
al

 [
b1 · · · bl

]
= Il.

Let λi(β) denote the eigenvalues of Mβ , as a function of β,
corresponding to λi, i ∈ {1, . . . , l}, and M = dMβ/dβ|β=0.
Then, dλi/dβ|β=0 is the i-th eigenvalue of the following l × l
matrix,

S :=

 a⊤1 Mb1 · · · a⊤1 Mbl

...
. . .

...
a⊤l Mb1 · · · a⊤l Mbl

 .

Proof of Theorem 1: Equation (1) in Lemma 1 describes
the LTI system that governs the error dynamics of GT-SGDA.
To ensure linear convergence rate, we show that uk linearly
decays to a ball around 06 which is controlled by the
variance σ2. To this aim, we note that the second term
in (1) decays exponentially, i.e., Nα,βs

kλ2k → 06. Next, we
show that the spectral radius of Mβ := M0 + βM is less
than 1, for small enough step-size β, where ρ(M0) = 1
and is governed by the two semi-simple eigenvalues of M0.
We use matrix perturbation analysis [29] of semi-simple
eigenvalues to show that for a small increase in β > 0, we
have that ρ(M0 + βM) < 1.

With the help of Lemma 2, we show the perturbation effect
on the semi-simple eigenvalues of Mβ with a change in β.
Denote v⊤

1 = [0 1 0 0 0 0] and v⊤
2 = [0 0 0 0 1 0], it can

be verified that the right and left eigenvectors, corresponding
to the two semi-simple eigenvalues of M0, are the columns
of V ⊤ := [v1 v2] and the rows of V , respectively. Using
Lemma 2, we know that only four elements of M are
significant to steer the semi-simple eigenvalues. Due to
space limitation, we only state these four elements in a
matrix S := VMV ⊤ defined below:

S =

 − σ2
m

L2γ
4µ2L2

3Γσ2
m

µ
2σ2

MΓ2

(
L2
1 +

2σ4
M

µ2

)
−µ

(
1− 1

Γ

)
 .

The two semi-simple eigenvalues decrease as β increases
(and move inside the unit circle) if S is negative definite [21].
To show this, we note that the trace of S and thus the sum
of eigenvalues is negative since all constants in S are non-
negative, implying that at least one eigenvalue is negative.
To ensure that S is negative definite, it is sufficient to show
that the determinant (product of eigenvalues) is positive. For
a 2×2 matrix, this product is positive when both eigenvalues
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have the same sign, i.e., negative in our case. We thus get

σ2
m

L2γ
· µ

(
1− 1

Γ

)
− 4µ2L2

3Γσ2
m
· µ

2σ2
MΓ2

(
L2
1 +

2σ4
M

µ2

)
> 0,

⇐= Γ2 >
2µ2L2

2γ

3σ4
mσ2

M

(
L2
1 +

2σ4
M

µ2

)
.

We note that Γ appears in the bound on α (see Lemma 1)
and γ is a positive constant such that 0 < β/γ ≤ α. Hence,
any Γ > 2 that satisfies the above bound can be chosen to
make the two eigenvalues negative. Therefore, the asymptotic
response lim supk→∞ uk depends on the last term of (1) and
thus the size of the error ball depends on σ2.

VI. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to
demonstrate the convergence results of GT-SGDA and
compare its performance with related methods (D-GDA,
GT-GDA, and D-SGDA) for different problems. We consider
two types of networks based on connectivity (see Figure 2),
i.e., (i) directed exponential graph of n = 16 nodes, repre-
senting a highly structured learning environment applicable
to data centers; (ii) undirected geometric graph of n = 200
nodes depicting large-scale ad hoc wireless training setups.

Fig. 2. (left) Directed exponential graph with n = 16 nodes and (right)
undirected geometric graph with n = 200 nodes.

Regression problems: We first consider a distributed lin-
ear regression problem. In many cases, such problems are
computationally expensive so we describe the saddle point
equivalent form, i.e., for each node i,

fi(x,y) := ⟨y,bi⟩ −
1

2
∥y∥2 − ⟨y, Pix⟩+ λRRi(x).

We note that every node has its private Pi ∈ Rpy×px

matrix, a bi ∈ Rpy vector, and a regularizer term
Ri(x) : Rpx → R. Globally, we would like to evaluate
minx maxy

1
n

∑n
i=1 fi(x,y).

We consider two types of regularizers:
1) strongly convex regularizer Ri(x) = ∥x∥2; and
2) smooth approximation of convex regularizer

Ri(x) =
1
ti

∑px

j=1 log(1 + etixj )(1 + e−tixj ). We note
that for large ti, Ri(x) ≈ ∥x∥1.

We evaluate the performance of GT-SGDA and compare it
with related methods, i.e., D-SGDA,GT-GDA, and D-GDA,
in terms of optimality gap, i.e., ∥xk − x∗∥2 + ∥yk − y∗∥2,
with respect to the number of epochs.

Figure 3 shows the performance comparison of GT-SGDA
with strongly-convex regularizer Ri(x) = ∥x∥2. When the
data is distributed over a directed exponential graph with
n = 16 nodes, Figure 3 (left) shows linear convergence of

Fig. 3. Performance comparison of GT-SGDA with related methods trained
over a network of n = 32 nodes (left) and n = 200 nodes (right) with
strongly convex regularizer.

GT-SGDA to an error ball around the unique saddle point.
We note that its deterministic counterpart GT-GDA converges
to the exact solution (x∗,y∗) but at a much slower speed.
The figure also shows that D-SGDA and D-GDA converge to
an inexact solution because they do not use gradient tracking.
Similar performance can be seen in Figure 3 (right) where
the data is distributed over an undirected geometric graph of
n = 200 nodes. We note that due to the worse connectivity of
the graph, all methods require more epochs for convergence.

Next, we observe the performance of above-mentioned
methods when the problem is strongly concave-convex,
i.e., Ri(x) =

1
ti

∑px

j=1 log(1 + etixj )(1 + e−tixj ). Figure 3
shows the results when data is distributed over a directed
exponential graph of n = 16 nodes (Figure 3, left) and undi-
rected geometric graphs of n = 200 nodes (Figure 3, right).
For both setups, GT-SGDA linearly converges to an error ball
around the unique saddle point (x∗,y∗), which is smaller
than that of D-SGDA. We note that the stochastic methods are
significantly faster than their deterministic counterparts. The
slight fluctuations observed in the optimality gap of D-SGDA
and GT-SGDA are due to the variance of stochastic gradients.

Fig. 4. Performance comparison GT-SGDA with related methods trained
over a network of n = 32 nodes (left) and n = 200 nodes (right) with
convex regularizer.

Distributed GANs: We next consider a directed exponen-
tial network of four nodes. Each node possesses a three
layered fully connected neural network as the generator
{2×16×32×2} and a four-layered fully connected neural
network as the discriminator {2×256×128×64×1}. Every
layer is linear, followed by a ReLU activation function (ex-
cept the output layer of discriminator that uses the sigmoid
function). The generator estimates the probability distribution
of the real samples and the discriminator estimates if the
given data is sampled from the real data or is generated by the
generator. They compete with each other to solve this min-
max problem. Our target is to generate a cycle of sine wave
when we provide samples from a random distribution and
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‘snap-shots’ of real data (sine wave) at each node as shown
in Figure 5 (top left). We train three different configurations.
The basic training setup allows each node to use its private
data and train the local GAN. For distributed training, each
node shares its local model parameters with its neighbors
while performing the back-propagation step. For D-SGDA,
only weights are shared whereas for GT-SGDA, the gradients
are also shared with the neighbors. Individually, no node
can predict the shape of data distribution due to hetero-
geneity; independent (local) training results are shown in
Figure 5 (top left). The distributed variant D-SGDA (which
does not use gradient tracking) gives an approximation of the
sine wave but Figure 5 (bottom) clearly shows that GT-SGDA
outperforms other methods using gradient tracking.

Fig. 5. Performance comparison of GT-SGDA with related methods while
training distributed GANs.

VII. CONCLUSION

We propose a distributed stochastic first-order method that
uses gradient tracking to solve saddle point problems over
strongly connected networks. We show the linear conver-
gence of GT-SGDA to an error ball around the unique saddle
point when the global cost is strongly concave-convex. We
also provide numerical experiments to illustrate the perfor-
mance of GT-SGDA with related methods for distributed
regression problems and show that the proposed method can
also be used for training distributed GANs.
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