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Abstract— We study coordination in Markov games with
asymmetric information. We consider a model where the
state consists of different components, each representing the
private type of each player. Players’ actions depend on their
private types and the public observation of past actions. The
state components evolve as independent Markov processes
conditioned on actions. We propose a solution concept called
perfect correlated equilibrium (PCE), realized by a correlation
device that observes only the public information of past actions.
At time t, the device generates a prescription profile from a
commonly known joint distribution, and sends each player a
prescription privately before they act. Players are expected to
take actions according to the prescriptions at equilibrium by
evaluating the suggested prescription at the private types. We
introduce “structured” PCE (sPCE), in which the correlation
device generates prescriptions based on the common action
history through a common belief on the state. We motivate
sPCE by showing that any payoff profile induced by a general
device can be induced by a structured one. We show that
when the correlation device is using structured strategies,
players’ rationality constraints can be characterized through
appropriate Markov decision processes (MDPs). Based on this
characterization, we develop a backward dynamic approach,
with which one can verify if a structured device is feasible,
or even design a structured PCE in a backward recursive
manner. Finally, we consider a specific example demonstrating
how coordination can improve social welfare.

I. INTRODUCTION

Coordination in multi-agent systems with asymmetric in-
formation has been extensively studied in the literature on
decentralized stochastic control [1]–[3] in the context of
dynamic teams. However, when it comes to a system with
strategic agents (as in a game setting), owing to the hetero-
geneous objectives and partial information, the classical ap-
proaches from non-strategic stochastic control cannot apply.
Recent works [4], [5] studied variations of perfect Bayesian
equilibrium (PBE) under the non-cooperative framework.
Since PBE does not coordinate agents’ actions, it can lead
to a set of unfavorable equilibria resulting in lower social
welfare than that of the team problem, and in some cases,
even the non-existence of equilibrium [6]. An effective way
to mitigate the loss of social welfare caused by strategic
behaviour is introduction of some form of coordination.

Correlated equilibrium introduced in [7] is an appropriate
solution concept to incorporate the coordination aspect in
game settings. A correlated equilibrium is realized by a cor-
relation device, which coordinates players by sending private
but correlated signals (generated by a commonly known joint
distribution) to players. The seminal work of [7] focuses on
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static games with complete information, and the idea is nat-
urally extended to cases with asymmetric information in [8],
[9], in which agents do not share a common observation
and need to form a belief on unobservable parts in order to
predict what others will do. Another line of works apply
correlated equilibria to dynamic decision processes [10],
especially to Markov games [11]. Some works combine
dynamic aspects with information asymmetry. For example,
[12], [13] look into correlated equilibrium in Markov games
with asymmetric observations on states or actions, while
they do not consider agents’ rationality on information sets
off the equilibrium paths (known as subgame perfection).
Works such as [14], [15] investigate a general extensive form
correlated equilibrium, but these general devices can suffer
from a complexity that increases exponentially with the time
horizon.

Despite a variety of forms of correlated equilibrium from
previous works, we point out an inherent restriction on the
communication ability of correlation devices in the case of
Markov games with asymmetric information. Due to privacy
concerns, agents in such an environment may not be willing
to reveal their private types to the coordinator. To mitigate the
privacy issue, in this paper, correlation devices are required to
realize the coordination without utilizing private information.
Essentially the correlation devices have to instruct users how
to form an action based on their private information, instead
of instructing them directly what action to take.

We study coordination in Markov games with indepen-
dent asymmetric information. In our Markov game model,
the state at each time consists of components that evolve
independently conditioned on actions taken by all players.
Each player privately observes one component of the state
as her private type, and chooses an action based on private
observations as well as the previous actions that are publicly
observable. Instantaneous rewards of players are determined
by the current state and actions. The main contributions of
this paper are summarized as follows:

• We propose a new framework of coordination for
Markov games with asymmetric information, in which
the correlation device does not have access to agents’
private types. Instead, it generates “prescriptions” from
a commonly known joint distribution, and sends each
player a prescription privately that instructs the agent
what action to take given her private type. Under this
framework, we develop a concept that we call perfect
correlated equilibrium (PCE) that possesses the sub-
game perfection property.

• We introduce a “structured” PCE (sPCE) using a struc-
tured device that relies on common history through
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a common belief on the current state. To motivate
the structured device and equilibrium, we show that
structured devices can achieve all the payoff profiles
achieved by general devices, and the use of structured
devices simplifies players’ rationality constraints.

• We develop a backward dynamic programming ap-
proach for sPCE. By this approach, one may verify if a
structured device induces an sPCE in a systematic and
tractable manner, or even design an sPCE.

The remainder of the paper is organized as follows. Sec-
tion II introduces the Markov game model with coordination.
We propose PCE as a solution concept for coordination in
Section III. Section IV motivates and investigates sPCE, as
a subset of PCE, and then develops a backward recursive
characterization for sPCE. To further illustrate the idea of
sPCE, we study a concrete example in Section V. We
conclude this paper in Section VI.

We use upper case letters to denote random variables, use
the corresponding lower case letters to denote their realiza-
tions, and its calligraphy font as the set of possible realiza-
tions, except for T (time horizon) and N (number of play-
ers)s, Q as probability kernels, G,P as the sets for variables
γ,π. In notation xit, the superscript indicates it is a variable
for player i; the subscript indicates the variable is realized at
time t. Define shorthands x1:t = (x1, . . . , xt), x = x1:N =
(x1, . . . , xN ), and x−i = (x1, . . . , xi−1, xi+1, . . . , xN ). Q(·)
and Q(·|·) represent pre-specified probability kernels; Pβ

µ

and Eβ
µ represent probability and expectation under a given

strategy profile β and belief system µ (to be defined later).
We use the shorthand Pβ

µ(x|y) := Pβ
µ(X = x|Y = y) when

there is no ambiguity. The superscript β and subscript µ
can be dropped if the quantity does not depend on them.
∆(X ) := {p ∈ [0, 1]X |

∑
x∈X px = 1}. For functions with

the form f : Y 7→ ∆(X ), use f [y] to denote f(·|y). 1a(x) is
an indicator function, which returns 1 if x = a, and returns
0 otherwise.

II. MODEL

We consider a Markov game with N strategic players in
N = {1, . . . , N} and a finite time horizon T . At each time t,
the system state is xt = x1:Nt , where xit ∈ X i is private
information of player i. Player i at time t chooses an action
ait ∈ Ai. It is assumed that both X i and Ai are finite sets for
all i. State components are independent conditioned on a1:N1:t

and their statistics are determined by the probability kernel

Q(xt+1|xt,at) =

N∏
i=1

Qi(xit+1|xit,at), t ≥ 1, (1)

Q(x1) =

N∏
i=1

Qi(xi1). (2)

Player i’s instantaneous reward at time t is rit(xt,at). A
strategic player i would choose an appropriate strategy to
maximize the expected value of the total reward from t = 1
to T .

A coordinator is a third-party that participates in the
Markov game by committing to a correlation device. The

correlation device influences players’ behavior by sending
them suggestions in the form of prescriptions γit ∈ Gi:

γit : X i 7→ Ai. (3)

A prescription γit is a suggestion for what player i should do
given each possible observation xit. At each time t, before
players take action at, the correlation device first broadcasts
the past prescription profile γt−1, and then generates a
new prescription profile γt based on common observations.
Subsequently it sends the new prescription γit to each player i
privately. Therefore, at time t, the common observation hCt ∈
HC

t between all players and the coordinator is

hCt := (a1:t−1,γ1:t−1), (4)

and the private observation hP,i ∈ HP,i for player i is

hP,i
t := (xi1:t, γ

i
t). (5)

Denote the coordinator strategy as ϕC = ϕC1:T , where

ϕCt : HC
t 7→ ∆(G), (6)

which is common knowledge among all players due to
the coordinator’s commitment. Notice that ϕCt ’s input is a
common observation, and its output is a distribution over
prescription profiles γt = γ1:Nt , instead of a product of dis-
tributions on single prescription γit . The fact that prescription
suggestions γ1t , . . . , γ

N
t are generated in dependent way is

the means by which coordination among agents is achieved.
In this work, the coordinator’s goal is to design a cor-

relation device ϕC , such that a rational player will always
follow the prescription provided by ϕC , i.e., each player i at
time t will prefer to play ait = γit(x

i
t) over any other action

a
′i
t = git(x

i
1:t,a1:t−1,γ1:t−1) (this behaviour is known as

known as obedience).
Before wrapping up this section, we bring up two remarks

regarding the coordinator. First, we restrict attention to deter-
ministic prescriptions, as opposed to the more general case
of randomized prescriptions γit : X i 7→ ∆(Ai) used in [5]
for perfect Bayesian equilibria. Though this simplification
restricts the candidate set of prescriptions to a tractable finite
space, in later sections we will find that the set of reachable
beliefs is also restricted to be finite, which leaves less
freedom for the correlation device designer. We emphasize
however that the results in this paper can be easily extended
to the case with randomized prescriptions (which may come
from a subset of all possible randomized prescriptions),
with minor modifications in the derivations. Second, we
emphasize that the proposed coordinator in this paper is not
a centralized controller. The most essential difference that
distinguishes a coordinator from a centralized controller is
that the coordinator has no access to the complete informa-
tion from agents. Hence, it is challenging for a coordinator
to persuade strategic agents with private information.

III. PERFECT CORRELATED EQUILIBRIA

Now that we have introduced the model of a Markov
game with asymmetric information and a coordinator, we
propose a solution concept that predicts the outcome of
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the coordination, namely PCE. Essentially, to define such
a solution concept, one needs to specify the details of the
players’ rationality, including how they form beliefs toward
unknown variables, and what decision making problems
they are actually facing. The PCE is then defined by the
constraints implied by players’ rationality.

A. Consistent Belief System

We investigate how the players form their beliefs toward
unobservable payoff-relevant random variables, given a fixed
correlation device ϕC . At time t, the instantaneous reward
or future reward of player i depends on the unobserved x−i.
To compute this quantity, player i needs to form a belief
on x−i

t . For this purpose, we introduce a belief system µ
which takes the observation (hCt , h

P,i
t ) of user i at time t,

and produces a distribution on X−i, i.e., the private belief
of user i at time t has the form

µ(·|hCt , h
P,i
t ) ∈ ∆(X−i), ∀t. (7)

For reasons that will become clear in the following, it is also
helpful to track public beliefs

µ(·|hCt ) ∈ ∆(X ), ∀t. (8)

For a given correlation device ϕC , a belief system µ is
consistent if µ(·|h) = PϕC

(·|h) for any history h with
PϕC

(h) > 0. For h with PϕC

(h) = 0, µ(·|h) should
be formed in a reasonable way and follow Bayes’ rule if
applicable. For the rest of this subsection, we will explain
in details how a consistent belief system µ is formed in a
recursive manner, for h with PϕC

(h) > 0 or PϕC

(h) = 0.
Prior to presenting the update rule for consistent beliefs,

we present a useful property.
Lemma 1: At any time t, state components xi1:t (i =

1, . . . , N ) are mutually independent conditioned on comm-
mon observations hCt , i.e.,

PϕC

(x1:t|a1:t−1,γ1:t−1) =

N∏
i=1

PϕC

(xi1:t|a1:t−1,γ1:t−1).

(9)
Proof: See Appendix A.

Lemma 1 plays an important role in belief formation. It
indicates that all private beliefs can be formed through the
public belief. By the mutual independence of xi’s condi-
tioned on public observations, player i’s private observation
of xi1:t plays no role in her belief formation toward x−i

t ,
which implies that the private belief on x−i

t should be iden-
tical to the common belief formed by public observations.
Moreover, the actual prescription adopted by player i does
not influence the belief on x−i

t , no matter if she deviates or
not. This means that even if player i is aware that the public
belief is not completely correct owing to her own deviation,
she can still utilize it to form private beliefs.

For a consistent belief system µ, based on Lemma 1,
player i’s private belief µ(·|hCt , h

P,i
t ) for any information set

hit = (hCt , h
P,i
t ) can be formed using only the public belief

µ(·|hCt ) as

µt(x
−i
t |hCt , h

P,i
t ) =

∏
j ̸=i

µj
t (x

j
t |hCt ). (10)

Lemma 2 derives a recursive formula for a consistent
public belief system µ.

Lemma 2: Given the correlation device ϕC , if
PϕC

(hCt+1) > 0, a consistent belief system µ satisfies
the following recursive equation

µ1(x1) =

N∏
i=1

µi
1(x

i
1) =

N∏
i=1

Qi(xi1), (11)

µt+1(xt+1|hCt+1) =

N∏
i=1

µi
t+1(x

i
t+1|hCt+1), (12)

with

µi
t+1(x

i
t+1|hCt+1)

=

∑
xi
t
Qi(xit+1|xit,at)1γi

t(x
i
t)
(ait)µ

i
t(x

i
t|hCt )∑

xi
t
1γi

t(x
i
t)
(ait)µ

i
t(x

i
t|hCt )

=: T̂
(
µi
t(·|hCt ), γit ,at

)
(xit+1), (13)

which does not depend on ϕC .
Proof: See Appendix B.

What if PϕC

(hCt+1) = 0? If a common observation
set hCt+1 has zero measure under PϕC

, it means at least one
player i chose an aiτ that was not consistent with her received
prescription γiτ . In this case, every player knows player i
deviated, but no one–other than player i–knows what was
the exact adopted prescription. In this case, we can only
make a reasonable speculation. In this work, we use the
following (speculation): if player i has an obvious deviation
(i.e., ait ̸= γit(x

i
t) for any xit with nonzero measure under the

given belief), player i switched to the “constant” prescription
γ̃it(x

i
t) ≡ ait. As a result, if ait is an obvious deviation, µi

t+1

is updated through

µi
t+1(x

i
t+1|hCt+1) =

∑
xi
t

Qi(xit+1|xit,at)µ
i
t(x

i
t|hCt ), (14)

which is consistent with (13) for constant prescriptions.
For the remaining part of the paper, we use the belief

system µ defined by (13), (14) and denote by PϕC

the
probability measure under the device ϕC and the belief
system µ, with subscript µ omitted. Furthermore, in order to
simplify the presentation, we define πt as πi

t(·) = µi
t(·|hCt ),

so that the conditioning on the public information is implied.
The update of πt follows the way described in Lemma 2
and (14) for µt.

B. Players’ Rationality and Equilibrium Concept

Player i, at each time t chooses an action ait based on her
observation hit. We use strategy sequence gi1:T to describe
player i’s behavior, where git : Hi

t 7→ ∆(Ai), so Ai
t ∼

git(·|hit). Specifically, an obedient strategy gi,∗ is defined as
gi,∗t (·|hit) = 1γi

t(x
i
t)
(·).
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We define the reward-to-go function for player i as

WϕC ,i
t (hit; g

i
t:T ) =WϕC ,i

t (a1:t−1,γ1:t−1, x
i
1:t, γ

i
t ; g

i
t:T )

= EϕC ,gi
t:T

[
T∑

τ=t

riτ (Xτ ,Aτ )|hit

]
, (15)

based on which we define the perfect correlated equilibrium.
Definition 1: A correlation device ϕC is said to be a PCE

if for every player i, any observation hit with γit such that
ϕ̂Ct (γ

i
t |hCt ) > 0, and any gi:

WϕC ,i
t (hit; g

i,∗
t:T ) ≥W

ϕC ,i
t (hit; g

i
t:T ). (16)

IV. STRUCTURED EQUILIBRIA

In practice, to verify or design a PCE ϕC through Defi-
nition 1, one will need to evaluate the conditional expecta-
tions (15) at each time t, for each player i, with all possible
private histories hit and actions ait. As the dimension of
hit increases with time t, complexity of the forms of both
constraints as well as the device ϕCt grows. This motivates
our investigation on PCE with a special structure. In this
section, we propose the concept of structured correlation
device. A structured correlation device ϕ̂C has the form

ϕ̂Ct : ∆(X ) 7→ ∆(G). (17)

A PCE with structured correlation device is called a struc-
tured PCE (sPCE).
A. Motivation for Structured Devices

Structured devices simplify the design of correlation de-
vice by summarizing common histories hCt with public be-
liefs πt. This simplification may raise the following concerns:
(i) does this reduction influence the achievable outcomes?
and (ii) given this reduction, is it sufficient for rational
players to check structured deviated strategies?

Theorem 1 shows that all the expected payoff profile
induced by general devices can be achieved by structured
ones.

Theorem 1 (Expected Payoff Preservation): For any cor-
relation device ϕC , one can find a structured device ϕ̂C ,
such that for all players i = 1, . . . , N , the expected payoffs
remain the same, i.e., ∀i, t

EϕC [
rit(Xt,At)

]
= Eϕ̂C [

rit(Xt,At)
]
. (18)

Proof: See Appendix C.
The above theorem provides sufficient motivation to focus

on structured devices. Next, we explore the structure of
players’ rationality given a structured correlation device.

Theorem 2: When a structured device ϕ̂C is used, a ratio-
nal player i is faced with a Markov decision process (MDP)
with state (πt, x

i
t, γ

i
t), action ait, and instantaneous reward

Eϕ̂C ,gi [
rit(Xt,At)|hit, ait

]
= E

[
rit(Xt,At)|πt, xit, ψt, γ

i
t , a

i
t

]
=: r̄it(πt, x

i
t, γ

i
t , a

i
t;ψt), (19)

where we define ψt as the prescription profile distribution
given by ϕ̂Ct under πt, i.e., ψt := ϕ̂Ct [πt].

Proof: See Appendix D.

Theorem 2 provides an important motivation for focus-
ing on structured devices. Although rational players may
consider arbitrary unilateral deviated strategies that depend
on the complete observation hit = (hCt , h

i,P
t ), this theorem

indicates that it is sufficient for them to only check deviations
that depend on hCt through πt. This gives further justification
to the choice of “structured” devices in (17).

From known results on MDPs [16, Chap. 6], due to
Theorem 2, it is sufficient for player i to check deviations
that are Markov deterministic strategies ĝi, i.e., strategies
that generate ait as ait = ĝit(πt, x

i
t, γ

i
t). Therefore, with a

structured correlation device, players don’t have to track the
complete hit but only πt, xit, γ

i
t for the purpose of verifying

players’ rationality.

B. Backward Recursive Characterization for sPCE

Inspired by Theorem 2, in this subsection we describe a
backward recursive characterization for sPCE.

Theorem 3 (Backward Recursive Characterization): A
structured device ϕ̂C is an sPCE if and only if it passes the
verification steps described as follows:

1) For all i, set V̄ i
T+1(πT+1, x

i
T+1) ≡ 0.

2) Start from t = T , for all i,
a) Verify the inequalities for all πt, ψt = ϕ̂Ct [πt],

for all γit with ψt(γ
i
t) > 0, and all xit, a

i
t,

r̄it(πt, x
i
t, γ

i
t , γ

i
t(x

i
t);ψt)

+ E[V̄ i
t+1(Πt+1, X

i
t+1)|πt, xit, γit , γit(xit), ψt]

≥ r̄it(πt, xit, γit , ait;ψt)

+ E[V̄ i
t+1(Πt+1, X

i
t+1)|πt, xit, γit , ait, ψt].

(20)

ϕ̂C does not pass the verification test if one of
the inequalities does not hold.

b) For all πt, ψt = ϕ̂Ct [πt], for all γit with ψt(γ
i
t) >

0, and all xit, update the quantities

V̄ i
t (πt, x

i
t) = E[r̄it(Πt, X

i
t ,Γ

i
t,Γ

i
t(X

i
t); Ψt)

+ V̄ i
t+1(Πt+1, X

i
t+1)|πt, xit, ψt]. (21)

c) The verification completes if t = 1. Otherwise,
set t← t− 1 and go back to (a).

Proof: See Appendix E.
The verification steps in Theorem 3 have a much smaller
computational complexity compared to the brute force
method suggested in (16). Assuming identical agents, for a
single time step t, the number of constraints in Theorem 3 is
N |Pt||Gi||X i||Ai|, while the number of constraints in (16)
is N |Hi

t|(#git:T ), where |Hi
t| = |Hc

t ||X i|t|Gi| is larger than
|Pt||X i||Gi|, and (#git:T ) is the number of possible current
and future deviation strategies of user i and grows double
exponentially with t.

Indeed, Theorem 3 offers more than a systematic approach
to check if a structured device ϕ̂C is a PCE. Notice that up
to the verification of time step t, only ϕ̂Ct:T are involved, and
once V̄ i

t is formed, ϕ̂Ct is no longer needed in computation.
Based on these observations, one may also construct an
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sPCE following the steps described in Theorem 3, with some
necessary modifications. Specifically, in step 2a, we construct
a ϕ̂Ct using the following greedy selection: for each πt, find a
ψt, such that (20) holds, and set ϕ̂Ct [πt] = ψt. Although this
greedy approach does not guarantee a nonempty candidate
set for ψt in each time step t and belief πt, if one successfully
constructs ϕ̂C1:T by this approach, Theorem 3 guarantees that
the result ϕ̂C is an sPCE.

C. The Connection between sPCE and sPBE

The structured perfect Bayesian equilibrium (sPBE) intro-
duced in [5] is a solution concept defined also on Markov
games with asymmetric information, with a similar form
as the sPCE discussed here. Without coordination from a
third party, at each time t each player i determines her
own (randomized) prescription γit : X i 7→ ∆(Ai) with
γit = θit(πi) through the equilibrium strategy θit, where πt
is a belief vector whose i-th component πi

t is a belief on xit
conditioned on public observation a1:t−1 and the common
knowledge γ1:t−1 in equilibrium with γiτ = θiτ (πτ ). Due to
the similar structures of sPCE and sPBE, the outcome of a
subset of sPCE can be realized by sPBE.

Lemma 3: An sPCE ϕ̂C is realizable by an sPBE if and
only if ϕ̂Ct [πt] assigns probability 1 to a single prescription
profile γt for all t and πt (i.e., ϕ̂C is deterministic). Here
the realizability means (i) the same public information hCt =
(a1:t−1,γ1:t−1) leads to the same belief πt; (ii) the same
belief πt induces the same distribution on γt.

Proof: See Appendix F.
One may doubt the necessity of the deterministic cor-

relation device for realizability by sPBE, since in static
games, a correlated equilibrium can be realized by a Nash
equilibrium as long as the distribution on strategy profiles
shows mutual independence among strategies of different
players. However, mutual independence is not sufficient for
an sPCE to be realized by sPBE. This insufficiency is caused
by the different information structure under our coordination
settings. The broadcast of γt−1 at time t provides extra
information for state inference, which is absent in the sPBE
setting. As a result, even if one uses some “sPBE” with
randomized prescriptions to simulate an identical distribution
of actions as that of an sPCE with mutual independence, due
to the lack of the communication channel for γ, this “sPBE”
is not able to induce a belief on the state as informative as
that induced by the sPCE in general.

V. A CONCRETE EXAMPLE: PUBLIC INVESTMENT GAME

In this section, we demonstrate how the backward dynamic
approach described in Theorem 3 is used in the design of
sPCE through an example with a public investment game,
which was also used in [5].

The public investment problem that we consider in this
paper is a two-stage dynamic game with two players. The
task of the two players is to decide whether to invest at each
stage. In the beginning of the game, each player i privately
knows her cost type xi ∈ {L,H} for the investment (with the
meaning Low and High cost, L < 1 < H), where the type

X = (X1, X2) is considered to be drawn from a commonly
known distribution Qi(Xi = H) = q, i = 1, 2. At each
stage t, each player i decides if she invests the public good
(ait = 1, with a cost xi) or not (ait = 0, with no cost). If
any one of them invests at stage t, both players receive 1
unit of benefit. If no one invests, both players earn nothing.
This setting captures the effect of “free riding”. The social
welfare can improve if only one player invests at each stage
(preferably the one with the lowest cost, if one exists). Thus,
coordination between players is very desirable. The players’
instantaneous rewards can be expressed as

rit(x,at) = 11(a
i
t) · (1− xi) + 10(a

i
t) · 11(a−i

t ). (22)

We use πt = (π1
t , π

2
t ) to denote the public belief on x at

stage t, where πi
t is the probability of Xi = H given the

public observation up to time t. Therefore, the initial public
belief is π1 = (q, q). We want to design an sPCE, which
specifies probability distributions over the prescription profile
γt = (γ1t , γ

2
t ) ∈ G1 × G2 at time t given πt, where

γit ∈ Gi = {γ00, γ01, γ10, γ11}, (23)

and γmn with m,n ∈ {0, 1} means “play m if xi = L, and
play n if xi = H”. Since G and Ai are finite set, πi

1 = q,
the set P2 of all possible πi

2 is also finite because πi
2 =

T̂ (πi
1, γ

i
1, a

i
1). We have P1 = {q}, P2 = {0, q, 1}, and πt ∈

(Pt)
2. Intuitively, if one plays γ01 or γ10 she perfectly reveals

her true type, while playing γ00 or γ11 does not change the
public belief about her true type.

To find an sPCE, we utilize the backward dynamic ap-
proach described in Theorem 3. We set V i

3 ≡ 0. At each
stage t, if V i

t+1’s are given, for each πt ∈ (Pt)
2, the design

of ϕ̂Ct [πt] is essentially finding a point ψt that satisfies linear
constraints (20). For certain πt’s, there can be infinitely many
ψt’s satisfying the constraints, so here we select the expected
social welfare to go (i.e., the sum of players’ reward from
time t to T ) conditioned on the public observation up to
time t as the objective function to maximize, so that we can
use linear programming to find a solution (also as a greedy
approach to maximize the expected social welfare). Once
ϕ̂Ct [πt] is found, we follow (21) to evaluate V i

t , and pass it
to the design task at stage (t−1). We implement the approach
described above numerically, with L = 0.2, H = 1.2, for q
ranging from 0.01 to 0.99 with step 0.01. We also solve the
corresponding team problem, where agents are non-strategic
and act as a team trying to maximize the social welfare,
using the common information approach described in [17].

Figure 1 shows a plot of the result. The sPCE are found
at q values from 0.01 to 0.20, and from 0.34 to 0.99. For
the remaining values of q ∈ [0.21, 0.33] our greedy algorithm
did not find any sPCE. The expected social welfare provided
by sPCE is close to the optimal welfare in the team problem
for small q (from 0.01 to 0.20), but the gap between these
two becomes large when q is large. This is not surprising,
because in the team problem, even if two players are both of
H type, choosing exactly one of them to invest is a profitable
move for the society, but this violates players’ rationality
in the game problem. Thus, a larger q leads to a smaller
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Fig. 1. The expected social welfare versus q values. Note that all the
solutions marked as sPBE are also sPCE. The blank space between q = 0.21
to q = 0.33 indicates no solution is found by our experiment algorithm,
but this does not necessarily imply sPCE does not exist.

probability of investment in the game, resulting in smaller
social welfare.

To get a sense of what an sPCE looks like, we list the
details of the correlation device for q = 0.2 in Table I.
For each π2 at stage 2, the prescription profiles proposed
by the correlation device are indeed pure Nash equilibria
of the stage game. At stage 1, the correlation device will
always tell player 2 to invest if x2 = L, and not to invest if
x2 = H . For player 1, with probability 5/6 she will be told
the same suggestion as player 2, but with probability 1/6
she will be told not to invest in any case. As an example,
let’s justify the rationality of player 1 with type L and
suggested prescription γ10. Since both players’ prescriptions
are γ10 in this case, by the belief update rule, the action
ai1 will act as an announcement of player i’s type. Suppose
player 1 follows the suggestion to invest at stage 1, she earns
instantaneous reward 0.8 no matter what player 2 does. Then,
with probability 0.2 the next π2 = (0, 0), in which case
player 1 can fully rely on player 2’s investment and earn
1 for sure; or with probability 0.8 the next π2 = (0, 1),
in which she knows player 2 won’t invest and thus she
invests to obtain 0.8. The expected reward turns out to be
0.8+0.8×1+0.2×0.8 = 1.76. However, if player 1 chooses
to disguise herself as a type H by playing a11 = 0, then with
probability 0.2, player 2 is of type H so that π2 = (1, 1), in
which case player 1 earns nothing; or with probability 0.8,
player 2 is of type L, so that π2 = (1, 0), and player 1 earns
1 in the second stage. The total expectation of reward for
this deviation is 0.8× 1 = 0.8, so player 1 won’t deviate.

VI. CONCLUSION

We studied coordination in Markov games with asymmet-
ric information through a new solution concept, namely PCE.
Motivated by the sufficiency of structured devices in terms
of payoff profiles, together with the MDP characterization of
players’ rationality, we proposed a sPCE, and developed a
backward dynamic approach that works for both verification
and design of sPCE. Through a numerical experiment, we
demonstrated how the backward dynamic approach works.

TABLE I
AN SPCE DEVICE ϕ̂C FOR q = 0.2.

(V i
t (πt, ·) = (V i

t (πt, L), V i
t (πt, H)))

t (π1
t , π

2
t )

ϕ̂C
t (·|πt) V 1

t (πt, ·) V 2
t (πt, ·)γ00, γ10 γ10, γ00 γ10, γ10

1 (0.2, 0.2) 1/6 0 5/6 (1.76, 1.6) (1.6, 1.47)

2

(0, 0) 1 0 0 (1, 1) (0.8, 0)
(0, 0.2) 0 1 0 (0.8, 0) (1, 1)
(0, 1) 0 1 0 (0.8, 0) (1, 1)
(0.2, 0) 1 0 0 (1, 1) (0.8, 0)
(0.2, 0.2) 0 0 1 (0.8, 0.8) (0.8, 0.8)
(0.2, 1) 0 0 1 (0.8, 0) (0.8, 0.8)
(1, 0) 1 0 0 (1, 1) (0.8, 0)
(1, 0.2) 1 0 0 (0.8, 0.8) (0.8, 0)
(1, 1) 0 0 1 (0.8, 0) (0.8, 0)

As a future research direction, the idea of PCE in this
paper may be extended to more general decentralized MDP
scenarios (MDP with infinite time horizon, xit not directly
observable by i, etc.) with strategic agents, as a new option
for coordination. It is also worth noting that the algorithm
used in the numerical experiment is heuristic and does
not guarantee a solution, so it is possible to develop a
more effective algorithm based on our backward dynamic
approach. Possible techniques such as constrained MDP [18]
and online optimization with hard constraints [19] can be
used to develop learning algorithms for sPCE, or sPCE with
some ϵ-relaxation in rationality constraints. Potential future
directions can also involve the structural results of sPCE in
mean-field games, and combining the coordinator idea with
mechanism design.

APPENDIX

A. Proof of Lemma 1
Proof: Consider the joint distribution of x1:t, a1:t−1

and γ1:t−1,
PϕC

(x1:t,a1:t−1,γ1:t−1)

=

N∏
i=1

Qi(xi1)

t−1∏
τ=1

1γi
τ (x

i
τ )
(aiτ )

· ϕCτ (γτ |a1:τ−1,γ1:τ−1)Q
i(xiτ+1|xiτ , aτ ). (24)

Therefore,
PϕC

(x1:t|a1:t−1,γ1:t−1)

=
PϕC

(x1:t,a1:t−1,γ1:t−1)∑
x̄1:t

PϕC (x̄1:t,a1:t−1,γ1:t−1)
=
NUM

DEN
, (25)

where
NUM =

N∏
i=1

Qi(xi1)

t−1∏
τ=1

1γi
τ (x

i
τ )
(aiτ )Q

i(xiτ+1|xiτ ,aτ ),

and DEN is nothing but substituting x in NUM with x̄
and then do the summation over x̄1:t. Note that the ϕCτ -
terms disappear because both NUM and DEN have them,
so they are cancelled out. Then, one may move the product
over player indices to the front of the fraction, as

PϕC

(x1:t|a1:t−1,γ1:t−1)

=

N∏
i=1

Qi(xi1)
∏t−1

τ=1 1γi
τ (x

i
τ )
(aiτ )Q

i(xiτ+1|xiτ ,aτ )∑
x̄1:t

Qi(x̄i1)
∏t−1

τ=1 1γi
τ (x̄

i
τ )
(aiτ )Q

i(x̄iτ+1|x̄iτ ,aτ )

=

N∏
i=1

PϕC

(xi1:t|a1:t−1,γ1:t−1). (26)
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B. Proof of Lemma 2

Proof: The equation for µ1(x1) is straightforward.
Suppose the recursive equation is true up to time t. For
time t+ 1, if PϕC

(hCt+1) > 0,

µt+1(xt+1|hCt+1) = PϕC

(xt+1|γ1:t,a1:t)

=

∑
xt

PϕC

(xt+1,xt,at,γt|γ1:t−1,a1:t−1)∑
xt

PϕC (xt,at,γt|γ1:t−1,a1:t−1)
. (27)

PϕC

(xt+1,xt,at,γt|γ1:t−1,a1:t−1)

=

N∏
i=1

Qi(xit+1|xit,at)1γi
t
(ait)

· ϕCt (γt|γ1:t−1,a1:t−1)µt(xt|hCt ). (28)

Substituting this it back to (27), and recalling that µt(xt|hCt )
can be written as the product of µi

t(x
i
t|hCy ) by induction

assumption we have

µt+1(xt+1|hCt+1)

=

∑
xt

∏N
i=1Q

i(xit+1|xit,at)1γi
t(x

i
t)
(ait)µ

i
t(x

i
t|hCt )∑

xt

∏N
i=1 1γi

t(x
i
t)
(ait)µ

i
t(x

i
t|hCt )

=

N∏
i=1

∑
xi
t
Qi(xit+1|xit,at)1γi

t(x
i
t)
(ait)µ

i
t(x

i
t|hCt )∑

xi
t
1γi

t(x
i
t)
(ait)µ

i
t(x

i
t|hCt )

=:

N∏
i=1

µi
t+1(x

i
t+1|hCt+1), (29)

where for the first equality, ϕCt -terms are cancelled.
C. Proof of Theorem 1

Proof: We prove it through the following lemma.
Lemma 4: Given general device ϕC , one can find a struc-

tured device ϕ̂C , such that for all t,

Pϕ̂C

(πt, γt, πt+1) = PϕC

(πt, γt, πt+1). (30)
We prove Theorem 1 using Lemma 4. For any device ϕC ,

PϕC

(xt,at|πt,γt) = πt(xt)

N∏
i=1

1γi
t(x

i
t)
(ait), (31)

which does not depend on ϕC . Accordingly,

r̃it(πt,γt) := EϕC

[rit(Xt,At)|πt,γt] (32)

does not depend on ϕC . By law of iterated expectation,

EϕC [
rit(Xt,At)

]
= EϕC [

r̃it(Πt,Γt)
]
.

From Lemma 4, we can construct a ϕ̂C , such that the joint
distribution on (Πt,Γt) are the same for every t, which
implies the same expected total rewards under ϕC and ϕ̂C

for every player i, because each expectation term on the right
hand side of (33) depends only on the joint distribution.

Proof of Lemma 4. The proof is done by forward induction.
For general device ϕC , at time t, the joint distribution on
(πt,γt, πt+1) depends on ϕC through ϕC1:t because these

variables are functions of hCt . For t = 1, we simply choose
ϕ̂C1 = ϕC1 , and (30) holds. For time t, suppose

Pϕ̂C
1:t−1(πt−1, γt−1, πt) = PϕC

1:t−1(πt−1, γt−1, πt). (33)

Construct ϕ̂Ct such that

ϕ̂Ct (γt|πt) = PϕC

(γt|πt) =
PϕC

(πt,γt)

PϕC
1:t−1(πt)

=

∑
hC
t :πt

PϕC
1:t−1(hCt )ϕ

C
t (γt|hCt )

PϕC
1:t−1(πt)

, (34)

where hCt : πt means the set of hCt that induces πt. Thus,

Pϕ̂C

(πt,γt, πt+1)

=
∑
xt,at

Pϕ̂C

(πt)πt(xt)ϕ̂
C
t (γt|πt)

·
N∏
i=1

1γi
t(x

i
t)
(ait)1T̂ (πt,γt,at)

(πt+1)

=
∑
xt,at

Pϕ̂C

(πt)πt(xt)PϕC

(γt|πt)

·
N∏
i=1

1γi
t(x

i
t)
(ait)1T̂ (πt,γt,at)

(πt+1) = PϕC

(πt,γt, πt+1).

(35)

By induction, Lemma 4 holds.

D. Proof of Theorem 2

Proof: State transition. This part shows πt, xit, γ
i
t are

sufficient statistics of hit with respect to πt+1, x
i
t+1, γ

i
t+1, and

the belief formation does not depend on gi. Suppose player i
uses strategy gi such that at each time t it generates ait based
on hit,

Pϕ̂C ,gi

(πt+1, x
i
t+1, γ

i
t+1|hit, ait)

=
∑

x−i
t ,a−i

t

πt(x
−i
t )

∑
γ−i
t

ϕ̂Ct (γ
−i
t |πt, γit)

∏
j ̸=i

1γj
t (x

j
t)
(ajt )

· 1T̂ (πt,γt,at)
(πt+1)Q

i(xit+1|xit,at)ϕ̂
C
t+1(γ

i
t |πt+1)

= Pϕ̂C

(πt+1, x
i
t+1, γ

i
t+1|πt, xit, γit , ait), (36)

where πt can be obtained from hCt (which is a part of hit)
according to the update rule T̂ .

Instantaneous reward. The expectation depends on the
following probability

Pϕ̂C ,gi

(x̃t, ãt|hit, ait)

= 1xi
t
(x̃it)πt(x̃

−i
t )

∑
γ−i
t

ψt(γ
−i
t |γit)

∏
j ̸=i

1γj
t (x

j
t)
(ãjt ) · 1ai

t
(ãit)

= P(x̃t, ãt|πt, xit, γit , ait, ψt), (37)

which implies that Eϕ̂C ,gi

[rit(Xt,At)|hit, ψ1:t, a
i
t] only de-

pends on state (πt, x
i
t, γ

i
t), action ait, and ψt = ϕ̂C [πt].

Therefore, r̄it(πt, x
i
t, γ

i
t , a

i
t;ψt) is a valid instantaneous re-

ward for MDP given ψt is determined by ϕ̂C , πt.
Therefore, given ϕ̂C , player i is faced with an MDP.
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E. Proof of Theorem 3

Proof: According to Definition 1 and Theorem 2, ϕ̂C

is an sPCE if and only if the obedient strategy gi,∗ is the
optimal strategy for each player’s MDP problem. Note that
gi,∗ is a Markov deterministic strategy for player i’s MDP,
given ϕ̂C , the value function satisfies the Bellman equations:

V i
T+1(πT+1, x

i
T+1, γ

i
T+1;ψt) ≡ 0, (38a)

J i
t (πt, x

i
t, γ

i
t , a

i
t;ψt) := r̄it(πt, x

i
t, γ

i
t , a

i
t;ψt)

+ Eϕ̂C

[V i
t+1(Πt+1, X

i
t+1,Γ

i
t+1; Ψt+1)|πt, xit, γit , ait, ψt],

(38b)

V i
t (πt, x

i
t, γ

i
t ;ψt) := J i

t (πt, x
i
t, γ

i
t , γ

i
t(x

i
t);ψt), (38c)

where the ψt is determined by ϕ̂Ct [πt] uniquely, but we put it
here to emphasize that the dependency on ϕ̂Ct is only through
ψt = ϕ̂Ct [πt]. The rationality of the players are equivalent to
the optimality of gi,∗ for players’ MDP, which can be written
as: ∀t, πt, ψt = ϕ̂Ct [πt], if ψt(γ

i
t) > 0, then for all ait,

V i
t (πt, x

i
t, γ

i
t ;ψt) ≥ J i

t (πt, x
i
t, γ

i
t , a

i
t;ψt). (39)

For the details of Bellman equation and the optimality
condition, see [16, Chap. 6, Thm. 2.15].

The Bellman equations (38) and the optimality condi-
tion (39) provide sufficient and necessary conditions of sPCE
for a structured device ϕ̂C . Nevertheless, the above is not a
complete time decomposition, since, in order to evaluate the
expectation in (38b), we need to know ϕ̂Ct+1. To resolve this
issue, instead of tracking V , we define the following object:

V̄ i
t (πt, x

i
t) := Eϕ̂C

[V i
t (Πt, X

i
t ,Γ

i
t; Ψt)|πt, xit], (40)

with which, by law of iterated expectation, in (38b), we have

Eϕ̂C

[V i
t+1(Πt+1, X

i
t+1,Γ

i
t+1; Ψt+1)|πt, xit, γit , ait, ψt]

= Eϕ̂C
[Eϕ̂C

[V i
t+1(Πt+1, X

i
t+1,Γ

i
t+1; Ψt+1)|Πt+1, X

i
t+1]

|πt, xit, γit , ait, ψt]

= E[V̄ i
t+1(Πt+1, X

i
t+1)|πt, xit, γit , ait, ψt], (41)

where the dependency on ϕ̂C is dropped because

Pϕ̂C

(πt+1, x
i
t+1|πt, xit, γit , ait, ψt)

=
∑

γ−i
t ,x−i

t ,a−i
t

ψt(γ
−i
t |γit)1γ−i

t (x−i
t )(a

−i
t )

· 1T̂ (πt,γt,at)
(πt+1)Q

i(xit+1|xit,at), (42)

which does not depend on ϕ̂C . Substituting (41) back
to (38b) and expanding (39), one obtains (20). The update
equation (21) can be derived by substituting (38b) in (40),
utilizing law of iterated expectation as (41), introducing
ψt = ϕ̂Ct [πt] explicitly to the condition, and dropping ϕ̂C

from the superscript due to a reason similar to (42).

F. Proof of Lemma 3

Proof: Due to the limited space, we provide a proof
sketch. For an sPCE with a deterministic device ϕ̂C , one
may construct θt[πt] := γt for ϕ̂Ct [πt] = 1γt

(·), and
verify that (θ, µ) is an sPBE, where µ is the belief system

of the given sPCE. It should be straightforward to check
the identical belief system and conditional distributions on
prescription profiles under this construction. Since any sPBE
offers deterministic prescription profiles given a fixed πt,
there is no way for an sPBE to recover the conditional
distribution on prescription profiles induced by an sPCE with
randomness in ϕ̂C .
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