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Abstract— We study a multi-objective model on the allocation
of reusable resources under model uncertainty. Heterogeneous
customers arrive sequentially according to a latent stochastic
process, request for certain amounts of resources, and occupy
them for random durations of time. The decision maker’s
goal is to simultaneously maximize multiple types of rewards
generated by the customers, while satisfying the resource
capacity constraints in each time step. We develop models and
algorithms for deciding on the allocation actions. We show that
when the usage duration is relatively small compared with the
length of the planning horizon, our policy achieves 1 − O(ϵ)
fraction of the optimal expected rewards, where ϵ decays to
zero at a near optimal rate as the resource capacities grow.

I. INTRODUCTION

In the online optimization framework, information is re-
vealed sequentially in time. The decisions are made without
knowledge of the future information, but they can depend on
past observations. In this work, we study online optimiza-
tion algorithms in reusable resource allocation applications,
where a resource unit is returned to the system after a period
of usage duration, and can be further assigned to another cus-
tomer. The decision-maker (DM) assigns limited inventories
of reusable resources to sequentially arriving customers. In
each time step, the DM’s decision leads to a set of allocation
outcomes, consisting of the amounts of rewards earned, the
amounts of resources consumed and the usage durations of
the assigned resources. Our model captures a diversity of
real-life applications include hotel booking, rental of cars and
fashion items and cloud computing services. Our problem
instance incorporates the following features:

1) Multiple objectives. The DM’s goal is to maximize
multiple types of rewards.

2) Customer heterogeneity. The customers are associated
with different customer types.

3) Online setting. In each time step, the arriving cus-
tomer’s type is drawn independently and identically
from an unknown probability distribution.

4) Reusability. Each type of resource is endowed with a
stochastic usage duration, whose probability distribu-
tion is known to the DM. However, the DM does not
know the the realized usage duration of an allocation
before the resource is returned.

Features 1-3 are shared by both non-reusable and reusable
resource allocation problems, while feature 4 is a distinct
feature of reusable resource allocation problems. Without
considering feature 4, our problem reduces to the non-
reusable setting as in [1]. On feature 3, we remark that in
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many applications, given a customer type, its mean allocation
outcome is accessible by machine learning (ML) approaches
in a data-efficient manner ([2], [3], [4]). In many existing
resource allocation research ([21], [5], [6], [7], [8]), the mean
allocation outcomes are assumed to be prior-knowledge ac-
quired through ML models. However, in applications where
customer types are represented as high-dimensional feature
vectors, the number of types can be exponential in the dimen-
sion of the feature vectors or even unbounded. Such a curse
of dimensionality hinders the estimation on the proportion
of each customer type. Therefore, we treat the probability
distribution of each customer type as the unknown object. We
further remark on feature 4 that our usage duration is defined
in the same manner as [6] and [9], which are recent works on
offline reusable resource allocation problems. We highlight
that the probability distribution of each usage duration can be
arbitrarily defined, which means our result does not depend
on specific structures of certain usage distributions, such as
the exponential distribution.

Traditional resource allocation problems [10], [11] con-
cern the allocation of non-reusable resources. Online al-
gorithms for allocating non-reusable resources have been
extensively studied in [12], [13], [14], [1], [15], [16], [17].
These algorithms involve adaptive weighing processes that
balance the trade-off between the rewards earned and the
resources consumed. Most of their analysis largely depend
on the monotonically-decreasing inventories. However, in
our reusable model, the effect of an allocation may be
different for each future time step, contingent on whether the
allocated resources are returned, causing fluctuating resource
consumption amount across consecutive time steps.

To our knowledge, this is the first paper to address reusable
resource allocation problems in an online stochastic set-
ting and demonstrate a near-optimal performance guarantee.
Some studies focus on assortment planning problems in
adversarial settings ([20], [18], [19]), and achieve non-trivial
competitive ratios. Offline pricing and assortment planning
problems have been studied in [6], [9], [20], where near-
optimality is achieved in the form of approximation ratios
under full model certainty. The main contribution of our
paper can be summarized as follows.

• Model generality. We propose a general reusable re-
source allocation model which allows for various de-
cision settings (such as admission control, matching,
pricing and assortment planning), multiple objectives
(such as revenue, market share and service level), and
large numbers of customer types or allocation types (the
algorithm’s performance is independent of these sizes).

• Near-optimal algorithm performance. We develop an
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adaptive weighing algorithm that trades-off among not
only the resources occupied and the rewards earned,
but also the usage durations. In the regime where each
usage duration is short compared with the length of
the planning horizon, our algorithm achieves matching
near-optimal performance as the online non-reusable
resource setting ([1]), as well as the the state-of-art
offline reusable setting ([20]).

The remainder of paper is organized as follows. In Section II,
we present our model and highlight some of its applications.
An online algorithm and the corresponding performance
analysis are proposed in Section III. In Section IV, numerical
experiments are provided.

II. MODEL

Notation. The reward types and the resource types are
respectively indexed by two finite sets Ir and Ic. A generic
reward type or resource type is denoted as i. For each i ∈ Ic,
the DM has ci ∈ R>0 units of resource i for allocation. Each
customer is associated with a customer type j ∈ J , which
reflects the customer’s features. We denote the set of possible
allocation actions as K, and each element k ∈ K as an action.
The action set can model a broad range of decisions, which
is elaborate in the end of Section II.

The DM allocates the resources in T discrete time steps.
In time step t ∈ {1, . . . , T}, at most one customer arrives.
We denote the customer type of the arrival at time t as j(t).
In particular, we designate the type jnull ∈ J to represent the
case of no arrival. We assume that j(1), . . . , j(T ) are inde-
pendently and identically distributed (i.i.d.) random variables
over J . We denote pj = Pr(j(1) = j), and p = {pj}j∈J .

When a customer (denote his type as j) arrives, the DM
chooses an action k ∈ K. The choice leads to an array of
stochastic outcomes, consisting of the amount of rewards
earned Wjk = (Wijk)i∈Ir , the amount of resources occupied
Ajk = (Aijk)i∈Ic

, and the usage durations {Di}i∈Ic
.

For the no arrival customer type jnull, we stipulate that
Pr(Wi′,jnull,k = Ai,jnull,k = 0) = 1 for all i′ ∈ Ir, i ∈ Ic, k ∈
K, since there should be no reward earned and no resource
occupied in the case of no arrival. To ensure feasibility in
our resource constrained model, we assume that there exists a
null action knull ∈ K that satisfies Pr(Wi′,j,knull = Ai,j,knull =
0) = 1 for all i′ ∈ Ir, i ∈ Ic, j ∈ J . Selecting the null
action is equivalent to rejecting a customer.

For each j, k, the stochastic outcomes follow the joint
distribution Ojk, namely (Wjk, Ajk) ∼ Ojk. We allow
Wjk, Ajk to be arbitrarily correlated. For each i ∈ Ic, the
random usage duration Di is independent of Wjk, Ajk. This
assumption is also made in related works on offline reusable
resource allocation, such as [6] and [9], since the usage
duration reflects more of a customer’s intrinsic needs on
each resource. We assume that Wijk ∈ [0, wmax] for each
i ∈ Ir, j ∈ J , k ∈ K, Aijk ∈ [0, amax] almost surely for
each i ∈ Ic, j ∈ J , k ∈ K, and Di ∈ {0, 1, . . . , dmax}
almost surely for each i ∈ Ic. Additionally, we denote
wijk = E[Wijk], aijk = E[Aijk], and di = E[Di].

Model uncertainty and dynamics. We assume that the
DM knows the horizon length T , the values of wmax, amax,
dmax, as well as Pr(Di ≥ t) for every i ∈ Ic, t ∈
{1, . . . , T}. However, the DM does not know the probability
distribution p over customer types. At each time step t ∈
{1, . . . , T}, the DM observes the type j(t) ∼ p of the arriv-
ing customer, and the mean outcomes {(wj(t),k, aj(t),k)}k∈K
specific to the type j(t). Then, the DM chooses an action
k(t) ∈ K, and observes the stochastic outcomes of rewards
{Wi,j(t),k(t)(t)}i∈Ir

and resources {Ai,j(t),k(t)(t)}i∈Ic
at

time t. Our model uncertainty scenario included the case
when the DM knows the mean outcomes aijk, wijk in
advance. For example, the DM could have estimates on
aijk, wijk,Pr(Di ≥ t) by constructing supervised learning
models [2], [3], [4] on a pool of customer demand data.

An integer programming formulation. We let binary
decision variables Xπ

k (t) be the DM’s decision under a non-
anticipatory algorithm π, where Xπ

k (t) = 1 if action k is
taken at time t, and Xπ

k (t) = 0 otherwise. Under a non-
anticiaptory algorithm, {Xπ

k (t)}k∈K depends on historical
observations {j(s)}ts=1 ∪ {Wi,j(s),k(s)(s)}i∈Ir,1≤s≤t−1 ∪
{Ai,j(s),k(s)(s)}i∈Ic,1≤s≤t−1. The DM aims to maximize
E[mini∈Ir

∑T
t=1

∑
k∈KWi,j(t),k(t)X

π
k (t)], which achieves

the simultaneous maximization of all the reward types by
ensuring max-min fairness. Here we maximize the rewards
to keep in line with the resource allocation literature instead
of minimize the regret as in the classical online convex op-
timization literature, but we remark that they are essentially
eqivalent. For each i ∈ Ic and t ∈ {1, . . . , T}, we require
that the resource constraint

t∑
τ=1

∑
k∈K

1(Di(τ) ≥ t− τ + 1)Ai,j(τ),k(τ)X
π
k (τ) ≤ ci (1)

holds with certainty. The left hand side in (1) represents the
amount of type i resources occupied at time step t. Our goal
can be formulated as the following binary integer program

(IP-C) max
non-anticipatory π

E[λ̂]

s.t.
T∑

t=1

∑
k∈K

Wi,j(t),k(t)X
π
k (t) ≥ T λ̂ ∀i ∈ Ir

t∑
τ=1

∑
k∈K

1(Di(τ) ≥ t− τ + 1)Ai,j(τ),k(τ)X
π
k (τ) ≤ ci

∀i ∈ Ic, t ∈ {1, . . . T}∑
k∈K

Xπ
k (t) = 1 ∀ t ∈ [T ]

Xπ
k (t) ∈ {0, 1} ∀k ∈ K, t ∈ [T ].

We remark that the term 1(Di(τ) ≥ t − τ + 1) in-
duces non-stationarity in resource consumption, since even
when a DM selects the same action k at τ1 < τ2, their
amounts of resource consumption 1(Di(τ1) ≥ t − τ1 +
1)Ai,j(τ1),k(τ1),1(Di(τ2) ≥ t−τ2+1)Ai,j(τ2),k(τ2) at time
t are differently distributed. Existing works on non-reusable
resources crucially hinges on model stationarity, which does
not hold true in our setting.

4621



A tractable benchmark. The goal of constructing a
non-anticipatory algorithm that achieves the optimal value
of (IP-C) is analytically intractable due to the curse of
dimensionality. The intractability motivates us to consider
an alternative linear program (LP), dubbed (LP-E), where
the realization of the customer arrivals, their usage duration
and outcomes exactly follow the expectation:

(LP-E) max λ

s.t.
T∑

t=1

∑
j∈J

∑
k∈K

pjwijkyjk(t) ≥ Tλ ∀i ∈ Ir

t∑
τ=1

∑
j∈J

∑
k∈K

pj Pr(Di ≥ t− τ + 1)aijkyjk(τ) ≤ ci

∀i ∈ Ic, t ∈ {1, . . . T}∑
k∈K

yjk(t) ≤ 1 ∀j ∈ J , t ∈ {1, . . . , T}

yjk(t) ≥ 0 ∀j ∈ J , k ∈ K, t ∈ [T ].

Define the optimal objective value of (LP-E) to be λ∗, and let
the optimal objective of (IP-C) be λ̂∗. The following lemma
shows that λ∗ is a tractable upper bound for the expected
reward of any online algorithms.

Lemma 1. λ∗ ≥ E[λ̂∗].

For the algorithm design, we further introduce a “steady
state” benchmark, assuming the decision variables are invari-
ant across time:

(LP-SS): max
xjk

λ̃

s.t.
∑
j∈J

∑
k∈K

pjwijkxjk ≥ λ̃ ∀i ∈ Ir∑
j∈J

∑
k∈K

pjaijkdixjk ≤ ci ∀i ∈ Ic∑
k∈K

xjk ≤ 1 ∀j ∈ J

xjk ≥ 0 ∀j ∈ J , k ∈ K.

We denote an optimal solution of (LP-SS) as x∗jk, and the
optimal value of (LP-SS) as λ̃∗. We further define

γ = min

{
min
i∈Ic

{
ci
amax

}
,
T λ̃∗

wmax

}
.

Assumption 1. There exists δ ∈ (0, 1) and d̄(δ) ≤ T such
that

∑∞
t=d̄(δ)+1 Pr(Di ≥ t) ≤ δ, ∀i, j, k.

This assumption indicates that our algorithm does not
apply to large Di, say for non-reusable resources where
Di = T with certainty. In the next lemma, we show that
λ̃∗ is close to λ∗.

Lemma 2.
(
1− δ

γ

) (
Tλ∗ − d̄(δ)wmax

)
≤ T λ̃∗ ≤ Tλ∗.

We remark that under a wide range of usage durations, we
can use (LP-SS) as a benchmark to gauge the performance of
our algorithm. For instance, for light tailed Di (for example,

there exists u > 0 such that limt→∞ Pr(Di ≥ t)tu = 0), we
can take δ = ϵ/T , d̄(δ) = dmax log(dmaxT/ϵ). If Di has
bounded support, i.e. Di ∈ [0, dUB] almost surely, we can
take δ = 0 and let d̄(δ) = dUB.

Applications. Before proceeding to our algorithm de-
velopment, we highlight the generality of our model by
discussing some of its applications, where the reward type
set Ir, the customer type set J and the action set K can be
chosen to model a variety of decisions.

• Admission control. In this setting, the DM is to either
admit or reject each arriving customer [21]. Real life
examples include patient inflow control in an emer-
gency department or an ICU. The admission control
setting can be modeled by letting action set K =
{accept, reject}. The reward of a resource is fixed at
ri for i ∈ Ic. Upon taking an action k for a type j
customer, an array of stochastic demands {Aijk}i∈Ic

is generated. Our model captures different reward set-
tings. We list some of the examples: for simultaneously
maximizing the revenue/social welfare for each type
of resource, define Ir = Ic and Wijk = riAijk.
For maximizing the total revenue/social welfare of all
resources, let Ir = {1} be a singleton, and define
W1jk =

∑
i∈Ic

riAijk. For maximizing the service
level of each resource, we define Ir = Ic and Wijk =
Aijk. We remark that multiple kinds of rewards can be
modeled simultaneously.

• Assortment Planning. In assortment planning prob-
lems, one unit of resource i is associated with a fixed
price ri. The DM influences the customers’ demands
through offering different assortments of resources.
Real life assortment planning examples with reusable
resources include renting of fashion items and vehicles.
Contingent upon the arrival of a customer, say of type j,
the DM decides the assortment k ∈ K to display, where
K is a collection of subsets of Ic ([9], [22]). Let qijk
denote the probability for customer type j to choose
product i in assortment k. In the revenue management
literature, the probability qijk is modeled by a random
utility choice model. The assortment planning problem
(simultaneously maximizing revenue of each resource)
can be incorporated in our model by setting Ir = Ic,
setting Aijk to be the Bernoulli random variable with
mean qijk, and setting Wijk = riAijk.

III. ONLINE ALGORITHM AND PERFORMANCE ANALYSIS

Main results. In this section, we propose a multi-stage
adaptive weighing algorithm (dubbed Algorithm A as in
“Adaptive”, and displayed in Algorithm 1). We first provide
our main results. We assume there exists ϵ satisfying γ =
Ω(log(|I|T/ϵ)/ϵ2), where I = Ic ∪ Ir. Let

Wi(t) =
∑
k∈K

Wi,j(t),k(t)X
A
k (t)

denote the type i ∈ Ir reward achieved by Algorithm A, our
main result is shown in the following theorem.
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Theorem 1. Let ϵ > 0 be an arbitrary constant satisfying
γ = Ω(log(|I|T/ϵ)/ϵ2). Without knowing p,

T∑
t=1

Wi(t) ≥
(
1− δ

γ

)
Tλ∗(1−O(ϵ))− d̄(δ)Õ(ϵ)

for every i ∈ Ir with probability at least 1− ϵ(1 + ϵ)δ .

We remark that if Di has bounded support, i.e. Di ∈
[0, dUB] almost surely for all i ∈ Ic, then the above reward
can be simplified as

∑T
t=1Wi(t) ≥ Tλ∗(1−O(ϵ))−dUBÕ(ϵ)

for every i ∈ Ir with probability at least 1 − ϵ. In the case
when δ ≤ log(|I|T )/ϵ and d̄(δ) = o(T ), our algorithm
achieves a reward at least Tλ∗(1−O(ϵ)). This result nearly
matches the [1] in studying an online non-reusable resource
allocation problem, as well as [20] in the state-of-art work
on the offline assortment planning with reusable resources.

The assumption γ = Ω(log(|I|T/ϵ)/ϵ2) means that the
amount of resource ci for each i is sufficiently large, and
the planning horizon T is sufficiently long. Crucially, the
performance guarantee in Theorem 1 does not deteriorate
even when |J | or |K| grows. Consequently, our Algorithm
A is applicable to complex scenarios when |J | > T .

High-level description and comparison against [1]. Our
Algorithm A extends [1]’s idea of adaptive weighing from
the non-reusable setting to the reusable setting. [1] proposes a
multi-stage adaptive weighing algorithm to trade-off between
the rewards and the resources. For each reward and resource
constraint of a fluid LP (corresponding to our (LP-E)), a
penalty weight is defined. The weight on each constraint
progressively gets larger as the reward generated or the
resource consumed gets closer to their total capacity (the
capacity of each reward is approximated). [1] does not apply
to the reusable setting, as their penalty weights and algorithm
design depend on the monotonic-decreasing resources.

Somewhat surprisingly, we can still utilize their adaptive
weighing idea. we approximate (LP-E) with a knapsack-
constrained (LP-SS), and define penalty weights that incor-
porates the usage duration as well as the resource consump-
tion. In a series of Lemmas that eventually leads to Theorem
1, we show that our algorithm effectively capitalizes the
reusability of the resources to maximize the total rewards.
We overcome the technical difficulty in non-monotonic and
time-correlated resource levels, by achieving near-optimal
performance. Nevertheless, we remark that the closeness of
(LP-E) and (LP-SS) builds upon Assumption 1, and hence
our algorithm is not applicable to the non-reusable setting.

A multistage online algorithm. In Algorithm 1, we divide
the time horizon into l stages {−1, 0, 1, . . . , l − 1} where
l satisfies ϵ2l = 1 for some ϵ ∈ [d̄(δ)/T, 1/2]. Stage −1
consists of t(−1) = ϵT time periods. This stage is solely for
exploration on the latent {pj}j∈J , and the first ϵT customers
are served with random actions. Stage r ∈ {0, . . . , l − 1}
consists of t(r) = ϵT2r time periods. The assumption ϵ ∈
[d̄(δ)/T, 1/2] ensures that l ≥ 1 (there is at least 1 stage) and
ϵT ≥ d̄(δ) (each stage consists of at least d̄(δ) time periods).
We denote j(r)(s) as the type of the customer who arrives

at the s-th time step in stage r (where s ∈ {1, . . . , t(r)}),
meaning that j(r)(s) = j(t(r) + s).

In each stage r ≥ 0, Algorithm A consists of two steps.
In Step 1, we estimate the optimum of (LP-SS). In Step 2,
we define “penalty weights” on constraints of (LP-SS), and
choose the action that balances between each constraint.

Step 1: Estimate the value of λ̃∗ (Line 3 of Algorithm 1).
We first derive µ(r)∗, which is the optimal objective value
of the linear program (LP-RSS)(r) :

max
x
(r)
jk

µ(r)

s.t.
∑
j∈J

∑
k∈K

p̂
(r)
j wijkx

(r)
jk ≥ µr ∀i ∈ Ir∑

j∈J

∑
k∈K

p̂
(r)
j aijkdix

(r)
jk ≤ ci ∀i ∈ Ic∑

k∈K

x
(r)
jk ≤ 1 ∀j ∈ J

x
(r)
jk ≥ 0 ∀j ∈ J , k ∈ K,

where p̂(r)j = 1
t(r−1)

∑t(r−1)

t=1 1(j(r−1)(t) = j), denoting the
empirical customer distribution based on customer arrivals in
stage r− 1. (LP-RSS)(r) is a sample average approximation
(SAA) of (LP-SS). It is worth mentioning that both (LP-
SS) and (LP-RSS)(r) are highly tractable, even in assortment
planning application when |K| is exponential in |Ic| ([23]).
In addition, the knapsack-type constraints in (LP-RSS)(r)

allows us to apply the adaptive weighing in Step 2 in a
similar manner to the non-reusable setting. Given that µ(r)∗

is easily obtained in Step 1, we define λ(r) in the following
lemma, and show it is a progressively more accurate estimate
of λ̃∗ as r grows.

Lemma 3. Define ϵ
(r)
x =

√
4T log

2|I|
η

t(r)γ
for r ∈

{−1, 0, 1, . . . , l − 1}. For any η ∈ (0, 1), with probability
at least 1− 2η,

λ̃∗(1− 3ϵ(r−1)
x ) ≤ λ(r) ≤ λ̃∗

where λ(r) = µ(r)∗

1+ϵ
(r−1)
x

.

Step 2: Run an online algorithm given λ(r) (Line 4 - Line
10 of Algorithm 1). With slight abuse of notation, we write
Ai,j(t(r)+s),k(t

(r)+s) as A(r)

i,j(r)(s),k
(s), Wi,j(t(r)+s),k(t

(r)+

s) as W
(r)

i,j(r)(s),k
(s), and Di,j(t(r)+s),k(t

(r) + s) as

D
(r)
i (s). In addition, we denote X

(r)

j(t(r)+s),k
(t(r) + s)

as X
(r)

j(r)(s),k
(s). Define, at time t in stage r, Y (r)

iτt =∑
k∈K 1(D

(r)
i (τ) ≥ t − τ + 1)A

(r)

i,j(r)(τ),k
(τ)X

(r)

j(r)(τ),k
(τ)

and Z(r)
it =

∑
k∈KW

(r)

i,j(r)(t),k
(t)X

(r)

j(r)(t),k
(t) respectively as

resource i consumed by customer τ , and reward i earned.
At the s-th time step of stage r, after observing the

customer type j(r)(s) we take action k(r)(s) according to
Line 7. The parameter ϕ(r)i,s,t represents a “penalty weight”
for the resource constraint i ∈ Ic in (LP-SS). If the allocation
decisions during 1, . . . , s−1 in stage r leads to a high amount
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of resource i occupation at time t, the penalty ϕ
(r)
i,s,t would

also be high. Similarly, a lower amount of accrued reward
type i ∈ Ir during 1, . . . , s− 1 in stage r leads to a higher
value of the weight ψ(r)

i,s . Both weights quantify the DM’s
emphasis on resources and rewards.

Performance guarantee of Algorithm A. Our analysis
involves bounding the total probability of violating each
constraint in (LP-C) in all time steps. Each violation leads
to unserved customers and lost rewards. We show that under
Algorithm A, all constraints of (LP-C) are satisfied with high
probability. To understand the choice of k(r)(s+ 1) in Line
7 of Algorithm 1, we introduce an auxiliary offline static
algorithm (dubbed Algorithm S as in “Static”). Algorithm
S requires knowing x∗ = {x∗jk}jk, an optimal solution to
(LP-SS), and a tuning parameter ϵ ∈ (0, 1) for preserving ca-
pacities in anticipation of any constraint violation. At a time
t, if a customer of type j arrives, the DM selects action k ∈
K\knull with probability

x∗
jk

1+ϵ , and selects the null action knull

with probability ϵ
1+ϵ +

x∗
j,knull
1+ϵ . We denote XS

j(t(r)+s),k
(t(r)+

s) as X̃
(r)

j(r)(s),k
(s). Define Ỹ

(r)
iτt =

∑
k∈K 1(D

(r)
i (τ) ≥

t − τ + 1)A
(r)

i,j(r)(τ),k
(τ)X̃

(r)

j(r)(τ)k,r
(τ) and Z̃

(r)
it =∑

k∈KW
(r)

i,j(r)(t),k
(t)X̃

(r)

j(r)(t),k
(t) where Pr(X̃

(r)

j(r)(τ),k
(τ) =

1) =
x∗
jk

1+ϵ for each τ in stage r. A performance guarantee of
Algorithm S is provided in the following lemma.

Lemma 4. Let η = ϵ/(5l), Algorithm S achieves a total
reward of at least

l−1∑
r=0

t(r)∑
t=1

∑
k∈K

W
(r)

i,j(r)(t),k
(t)X̃

(r)

j(r)(t),k
(t)

≥T λ̃∗(1−O(ϵ))− d̄(δ)wmaxO

(
ϵ+ log

1

ϵ

)
for every i ∈ Ir with probability at least 1− ϵ(1 + ϵ)δ .

For analysis sake, we consider a hybrid Algorithm
AsSt(r)−s in each stage r. For Algorithm AsSt(r)−s, the
DM makes allocation decisions based on Algorithm A in
time step {1, . . . , s}, and based on Algorithm S in time step
{s+1, . . . , t(r)}. We show that As+1St(r)−s−1 outperforms
AsSt(r)−s, which inductively leads to the conclusion that the
performance of the online adaptive Algorithm A is no worse
than the offline static Algorithm S (see Lemma 4). This
induction technique is introduced in [1] on the non-reusable
setting. We need more refined techniques to disentangle the
time-correlation between the resources constraints at each
time step, and finally prove the following lemma.

Lemma 5. Algorithm A achieves a total reward of at least

l−1∑
r=0

t(r)∑
t=1

∑
k∈K

Wij(t)k,r(t)X̃
(r)
j(t)k,r(t)

≥T λ̃∗(1−O(ϵ))− d̄(δ)wmaxO

(
ϵ+ log

1

ϵ

)
for every i ∈ Ir with probability at least 1− ϵ(1 + ϵ)δ .

Algorithm 1 Online Algorithm A

Input: the number of time periods T , the capacities for each
resource ci, the values of γ and ϵ ∈ [di/T, 1/2].
Output: actions to take k(r)(t), for r = 0, . . . , l − 1, t =
1, . . . , t(r).

1: Set l = log (1/ϵ). Initialize t(−1) = ϵT .
2: for r = 0, . . . , l − 1 do
3: Compute λ(r) by solving (LP-RSS)(r).
4: Set

ϵ(r−1)
x =

√
4T log 2|I|

η

t(r−1)γ
, ϵ(r)z =

√
2wmax(1 + ϵ) log 2|I|l

η

t(r)λ(r)
.

5: Set

ϕ
(r)
i,1,t =


ϵγ

ci(1+ϵ)γ−δ , t = 1
ϵγ

ci(1+ϵ)γ−δ

∏t
τ=2

(
1 + ϵγ Pr(Di≥t−τ+1)

di(1+ϵ)

)
,

t = 2, . . . , t(r)

for each i ∈ Ic, and

ψ
(r)
i,1 =−

ϵ
(r)
z

∏t(r)

τ=2

(
1− ϵ

(r)
z

λ(r)

wmax(1+ϵ)

)
wmax

(
1− ϵ

(r)
z

) (1−ϵ
(r)
z )t(r)λ(r)

wmax

.

for each i ∈ Ir.
6: for s = 1, . . . , t(r) do
7: Observe customer type j(r)(s), take action:

k(r)(s) ∈ argmin
k∈K

t(r)∑
t=s

∑
i∈Ic

ai,j(r)(s),k Pr (Di ≥ t− s+ 1)ϕ
(r)
i,s,t

+
∑
i∈Ir

wi,j(r)(s),kψ
(r)
i,s

}
.

8: Set Y (r)
ist = ai,j(r)(s),k(r)(s) Pr (Di ≥ t− s+ 1)

for each i ∈ Is and t ∈ {s, . . . , t(r)}, and Z
(r)
is =

wi,j(r)(s),k(r)(s) for each i ∈ Ir.
9: Set for each i ∈ Ic

ϕ
(r)
i,s+1,t =

ϕ
(r)
i,s,t(1 + ϵ)

γ
ci

Y
(r)
ist(

1 + ϵγ Pr(Di≥t−s)
di(1+ϵ)

) , t = s+ 1, . . . , t(r),

and for each i ∈ Ir,

ψ
(r)
i,s+1 =

ψ
(r)
i,s

(
1− ϵ

(r)
z

) 1
wmax

Z
(r)
is(

1− ϵ
(r)
z

λ(r)

wmax(1+ϵ)

) .

10: end for
11: end for
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Putting Lemmas 2 and 5 together, we have Theorem 1.
The proofs and some supplement experiments can be found
at https://arxiv.org/abs/2308.00281.

IV. NUMERICAL EXPERIMENTS

We consider an assortment planning problem. One unit
of resource i is associated with a fixed price ri. Contingent
upon the arrival of a customer, say of type j, the DM decides
the assortment k ∈ K to display, where K is a collection of
subsets of Ic. Let qijk denote the probability for customer
type j to choose product i in assortment k. Therefore, the as-
sortment planning problem (simultaneously maximizing the
revenue of each resource) can be incorporated in our model
by setting Ir = Ic, setting Aijk to be the Bernoulli random
variable with mean qijk, and setting Wijk = riAijk. In our
test, the probability qijk is modeled by the multinomial logit
(MNL) choice model. Each resource i ∈ Ic is associated with
a feature vector f i ∈ Rm, and each customer type j ∈ J
is associated with a set of feature vectors {bij}i∈Ic

, where
bij ∈ Rm for each i ∈ Ic. The feature vector f i could

involve the fixed price ri, and qijk =
exp(b⊤

ijf i)

1+
∑

ℓ∈k exp(b⊤
ℓjfℓ)

if i ∈ k, and qijk = 0 if i ̸∈ k. In complement, the
probability of no purchase is 1

1+
∑

ℓ∈k exp(b⊤
ℓjfℓ)

. Notice that
the size of the action set K scales exponentially with the
number of products. Nevertheless, for the MNL models,
k(r)(t) can be computed efficiently by solving a simple LP
whose computational time is polynomial in |Ic| [24].

We consider a synthetic data-set with 14 types of resources
indexed by Ic = {1, 2, . . . , 14}, and 1000 types of customers
indexed by J = {1, 2, . . . , 1000}. We allow offering any as-
sortment of fewer than 5 products, and hence the assortment
set is of size

∑5
i=1 C

14
i = 3472. We let p follow a discrete

distribution with a support of |J |. For any n ≥ 1, we set
T = 1000n, ci = 20n and Di follow a randomly generated
probability distribution with a bounded support of [1, 200n].
Theoretically, the regret of both Algorithms A and S should
grow sublinearly against the scale n, roughly at the rate of
Õ(

√
n). For each T value, we run 10 simulations using a

column generation approach and take the average as well as
the standard deviation.

T ϵ UB
Total Revenue % Gap from UB

Algo S Algo A Algo S Algo AMean Std Mean Std
1000 0.3 644.90 507.06 42.1689 331.03 2.531798 21.37% 48.67%
2000 0.22 1289.80 1097.47 50.88593 887.28 7.681146 14.91% 31.21%
3000 0.185 1934.70 1702.97 75.61902 1419.54 8.537564 11.98% 26.63%
4000 0.162 2579.60 2327.51 86.79659 1966.83 6.663332 9.77% 23.75%
5000 0.148 3224.50 2936.00 98.77243 2522.00 10.44462 8.95% 21.79%
6000 0.136 3869.40 3557.05 74.11313 3086.28 20.91315 8.07% 20.24%
7000 0.127 4514.30 4200.24 67.91298 3647.95 9.508417 6.96% 19.19%
8000 0.12 5159.20 4804.85 68.66264 4217.17 14.06983 6.87% 18.26%

TABLE I
RESULTS WITH 14 RESOURCE TYPES AND 1000 CUSTOMER TYPES.

In Table I, the third column of upper bounds are the
optimal values of (LP-SS). The offline Algorithm S performs
better than the online Algorithm A. Algorithm A achieves
rewards within 1− 2ϵ fraction of the upper bounds.
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