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Abstract— We study a sequential game model on how groups
form in time. In particular, agents make asynchronous decisions
on a time of arrival; those choosing the same arrival time
are considered to travel together, or belong to the same flock.
While flocking reduces travel costs, arriving earlier allows one
to obtain a higher reward. Our model is primarily motivated
by commonly observed flocking behavior among migratory
birds, but it can also be applied to other areas of competition
and cooperation, e.g., in the case of rideshare to a common
destination with a limited supply of goods. Given the model’s
sequential nature, the solution concept we study is the subgame
perfect equilibrium (SPE). We present in detail the nature of
the SPE in a 2-agent and 3-agent game, respectively, and its
properties in the more general n-agent game. Of particular
interest are observations on when and what types of groups
emerge in an SPE.

I. INTRODUCTION

Individuals form groups for a variety of purposes, such as
to benefit from resource pooling, energy efficiency, foraging
efficiency, safety, etc., [1], [2]; this is frequently observed
in humans and in the broader animal world. At the same
time, individuals also compete with each other for limited
resources, like access to territories and opportunities. This
contention is clearly seen in the example of migratory birds.
On the one hand, flocking can provide protection, reduce
individual predation risk [3]–[5], and increase navigation
accuracy by pooling information [6]; some birds such as
Canada geese and white pelicans form V-shaped flocks
during migration to increase energy efficiency during flight
[7], [8]. On the other hand, migratory birds often compete
with each other for territories upon arrival at a breeding
ground to increase their reproductive success [9]–[12].

How stable groups form among (strategic) agents has
been studied in many fields, including economics, computer
networks, social science, political science, and biology; see
e.g., [13]–[16]. A variety of models have been developed
to study the process of group formation, including coalition
formation games [9], [17]–[21], clustering [22], [23], and
agent-based modeling [24], [25]. In the context of game
theory, these problems are most typically studied as strategic,
one-shot games, including all those cited above.

By contrast, in this paper we examine a sequential game
model to study how groups form in time. In particular,
agents make decisions on a time of arrival and they do
so asynchronously; those choosing the same arrival time
are considered to travel together, or belong to the same
flock (we will use the terms group and flock interchangeably
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throughout the paper). An agent’s utility depends not only
on others in the same group but also those outside its
group, capturing the trade-off between the benefit of flocking
or cooperation (e.g., savings in travel cost, like reduced
predation risk in birds) and the benefit of an early arrival
due to competition (for territory, seating, etc.).

Given the sequential nature, the solution concept we study
is the subgame perfect equilibrium (SPE). After presenting
the game model in Section II, we discuss in detail the
nature of the SPE in a 2-agent (Section III) and 3-agent
(Section IV) game, respectively, and discuss how they extend
to the more general, n-agent scenario. Of particular interest
are observations on when and what types of groups emerge
in an SPE (e.g., multiple smaller groups vs. a single, grand
flock), shedding light on the interplay between competition
and cooperation in rational decision making. Section V then
compares the sequential game model with a one-shot coun-
terpart and examines the effect of the ordering of decision
making in the sequential game.

Our primary motivation comes from commonly observed
flocking behavior in migratory birds, and for this reason our
model is closely related to that studied by Kokko in [26], with
the main difference that the model in [26] only considers
competition while our model also takes into consideration
the benefit of cooperation (flocking), as we detail in the next
section. However, our model can also be applied to other
areas of competition and cooperation, e.g., in the case of
rideshare, where individuals can choose to share a ride to
lower travel costs but compete upon arriving at the same
destination for better seating at a concert or in a restaurant,
or for a limited number of sale items in a store, etc.

II. A FLOCK FORMATION GAME (FFG)

Consider n ě 2 agents who must travel to a destination in
order to reach and compete for n territories. They may form
groups to reduce travel costs (e.g., lower predation risk and
increased foraging efficiency in the case of migratory birds,
and increased energy efficiency and/or reduced monetary cost
in the case of rideshare), but they are also interested in
arriving early to obtain territories with better quality (e.g.,
in terms of food abundance/quality, suitability for nesting,
and protection from predators). For the remainder of the
paper, agents choosing to arrive at the same time will be
considered to travel together in a flock, though this is clearly
a simplification.

Let N “ t1, 2, ..., nu denote the set of agents. Each
agent is endowed with a positive strength value βi ą 0, i P
N , which represents the natural quality of the agent (e.g.,
surviving skills, foraging ability, flight experience, etc.). It
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is assumed that no two agents have identical strength, and
they are indexed in descending order of their strength, β1 ą
β2 ą ¨ ¨ ¨ ą βn. Similarly, each territory is associated with
a positive quality Ek ą 0, k P N ; they are also indexed in
descending order, E1 ą E2 ą ¨ ¨ ¨ ą En. An agent’s decision
is its time of arrival at the destination, denoted by ti, with a
joint action profile t “ pt1, t2, . . . , tnq. As is the convention,
the action profile of all but the i-th agents is written as t´i.
Accordingly, we will also often write t “ pti, t´iq.

A. Assumptions

We shall adopt the following assumptions.
(1) If a territory is already occupied by an agent, it cannot
be taken away by another who arrived later (though this can
happen in nature, usually involving extra cost such as a fight).
This can also be understood as a first-come first-serve rule.
(2) Agents arriving at the same time get territories in
accordance with their strengths: the strongest of the group
gets the best of the remaining territories, and so on.
(3) Agents make decisions in sequence of increasing order of
their indices. This means that the strongest agent decides on
time t1, which is announced, followed by agent 2 deciding
on t2, and so on. It is assumed that all agents then take
actions in accordance with these decisions, i.e., agent i will
indeed arrive at the decided and announced time ti. We do
not assume that ti ď tj , j ą i; that is, a later decision maker
can decide on an earlier time after observing the choices
made by earlier decision makers1. This is thus very different
from assuming that an agent i simply takes the action at ti,
having observed all earlier actions tj ă ti,@j P N .

While the first two assumptions are rather natural, the
last one deserves further elaboration. In migratory birds,
stronger and more dominant individuals are often observed to
leave their winter grounds earlier and arrive at their breeding
ground earlier than weaker individuals. A real-world example
is given in Figure 1, which depicts the arrival time of
three species of bush-robins, each subdivided into adult and
subadult (first-year) male [27]. This subdivision is one way to
provide a (binary) proxy for the strength measure, as adult
males are typically larger, stronger, and more experienced
than subadult males. In each case, the mean arrival time
of the adults is earlier than that of the subadults; similar
observations have been made in other studies, see e.g., [27]
(Fig 5 therein). One can also use the tarsus bone length as a
proxy for strength and obtain similar observations [28], [29]
– larger and stronger birds of the same species tend to have
longer tarsi.

These data, however, at best show that, provided the
proxies used are sound, stronger agents tend to arrive earlier,
but these data say nothing about the ordering of decision
making, which is crucial in a sequential model. For this
reason, we will discuss in Section V what happens if this
is modeled as a one-shot game or if we employ a different
ordering of decision making.

1It turns out, as we will show shortly, that in an SPE an earlier decision
maker will always preempt this possibility and choose a time that a later
decision maker finds unprofitable to get ahead of.

Fig. 1: Arrival times (Julian date) of adult and subadult
males of three bush-robin species (genus Tarsiger) in three
consecutive years. Mean arrival time and standard error bars
are plotted.

B. The utility function

The utility of agent i is formulated as follows:

uiptq “ eptq ´ ciptiq ´ piptq , (1)

where eptq is the benefit conferred by the territory that agent
i occupies, ciptiq the (travel) cost solely dependent on the
agent’s chosen time, and piptq a second cost that depends on
all agents’ chosen times. This last term will also be referred
to as the (predation) risk term. We detail each term below.

a) Benefit: eptq “ Ek, where k is the position of ti in
the re-shuffled vector t where its elements are ordered from
the smallest to the largest: agent i gets the best of what
remains available by its time of arrival.

b) Travel cost: ciptiq “ 1
βi
pti ´ toq

2 ` cio, where to is
an optimal arrival time w.r.t. this cost alone. At this optimal
time, an agent’s travel cost reduces to a fixed cio; deviation
in either direction will increase the travel cost, and weaker
agents (smaller β) are more sensitive to the sub-optimality of
this deviation. This model captures the cost of travel purely
due to external factors (such as climate in the case of spring
migration, where traveling during colder or warmer weather
can be detrimental; or in the case of concert going, where
arriving too early incurs excess waiting, while arriving late
causes one to miss the beginning.). The fixed cost cio is
agent-dependent, and generally lower for a stronger agent.
However, the presence of this fixed cost does not impact
our subsequent analysis since the agent’s decision making is
entirely relative to the optimal to. For this reason and without
loss of generality, we will set cio “ 0 for the rest of the paper.

c) Predation risk: piptq “ r
|tj:tj“tiu|

, where |tj : tj “
tiu| is the total number of agents arriving at ti including agent
i itself, and r the (nominal) risk for a single individual. Thus,
the larger the flock, the less risk each member of the flock
will experience during the trip.

If we ignore the last risk term, then the individual utility
function in (1) reduces to:

uiptq “ eptq ´ ciptiq, (2)

which is the one used in Kokko [26] with a specific travel
cost function. Thus the original model in [26] is only focused
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on the competition among agents for territories, while the
present model captures both competition and the benefit of
cooperation through flocking. As we shall see, this modeling
difference results in different equilibrium properties.

For brevity, only proof sketches are provided; complete
proofs can be found in an extended arXiv version.

III. THE 2-AGENT (STACKELBERG) GAME

We will start with the simplest case of n “ 2, i.e., a
Stackelberg game. The SPE is relatively easy to obtain in
this case using standard backward induction; the solution
sheds significant light on the more general case.

Here we have a leader, the stronger agent 1, and a follower,
the weaker agent 2: β1 ą β2, competing for two territories
E1 ą E2. Our main result is that there are only two types
of pure strategy SPEs depending on the quality differential
between the two territories: if they are sufficiently similar
in quality, then the benefit of cooperation outweighs that of
competition and the two agents will flock at the optimal time;
if they are sufficiently far apart, then competition takes over
and the stronger agent will advance its arrival time to secure
the better territory. This is given in Theorem 1 below.

Theorem 1. There exist two and only two types of pure
strategy SPEs for the 2-agent FFG:
(1) If E1 ´ E2 ď

1
2r, then t˚ “ pto, toq is the unique SPE;

this will also be referred to as the cooperation SPE.
(2) If E1 ´ E2 ą

1
2r, then t˚ “ pto ´

a

β2pE1 ´ E2q, toq
is the unique SPE; this will also be referred to as the
competition SPE.

Proof. Assuming Agent 1’s decision is t1, Agent 2 then best
responds to t1 with t2; this response depends on the different
regions t1 falls into. Given the best response in each case,
which Agent 1 fully anticipates, Agent 1 then selects the t˚1
that yields the highest reward for itself; together with the
corresponding best response t˚2 , rt˚1 , t

˚
2 s constitutes a pure

strategy SPE for this game2. Utilities below are written as
uipt1, t2q, i “ 1, 2.

Case 1: E1 ´ E2 ď
1
2r

1) If t1 “ to, Agent 2’s best response is t2 “ to, giving

u1pto, toq “ E1 ´
r

2
; (3)

u2pto, toq “ E2 ´
r

2
. (4)

This is because (a) if Agent 2 arrives earlier than to
to get the higher quality E1, then it has a lower utility
as the increase in predation risk by not flocking with
Agent 1 is higher than the territory difference; (b) if
Agent 2 arrives later than to, its utility is even lower
with the worse territory E2 and a higher travel cost.

2) If t1 “ to ` δ for some δ ą 0, and δ ď
a

β2pr{2´ pE1 ´ E2qq, then Agent 2’s best response

2Typically, if there are multiple choices of t˚
1 a tie-breaking rule may be

introduced; this is not needed in this game.

is to flock with Agent 1, resulting in

u1pt1, t2 “ t1q “ E1 ´
r

2
´
δ2

β1
; (5)

u2pt1, t2 “ t1q “ E2 ´
r

2
´
δ2

β2
. (6)

If δ ą
a

β2pr{2´ pE1 ´ E2qq, then Agent 2 will
arrive at to to get ahead:

u1pt1, t2 “ toq “ E2 ´ r ´
δ2

β1
; (7)

u2pt1, t2 “ toq “ E1 ´ r . (8)

3) If t1 “ to ´ δ for some δ ą 0, and δ ď
a

β2r{2, then
Agent 2’s best response is to flock:

u1pt1, t2 “ t1q “ E1 ´
r

2
´
δ2

β1
; (9)

u2pt1, t2 “ t1q “ E2 ´
r

2
´
δ2

β2
. (10)

If δ ą
a

β2r{2, then Agent 2 will advance:

u1pt1, t2 “ toq “ E1 ´ r ´
δ2

β1
; (11)

u2pt1, t2 “ toq “ E2 ´ r . (12)

Agent 1’s choice now lies in comparing the utilities in all
these cases, i.e., (3), (9), (11), (5), and (7), with (3) yielding
the highest utility. Therefore Agent 1’s best choice is to, and
the unique pure strategy SPE in Case 1 is t˚1 “ t˚2 “ to.

Case 2: E1 ´ E2 ą
1
2r

1) If t1 ą to, Agent 2’s best response is t2 “ to, as
higher E1 is now worth the risk of traveling alone at
the optimal time.

2) If t1 “ to, Agent 2’s can always advance its arrival
by some small ε to get the higher quality E1, which
more than offsets the increase in predation risk by not
flocking with Agent 1. The smaller the ε the higher its
utility, so in this case there doesn’t exist a pure strategy
best response.

3) If t1 “ to ´ δ for some δ ą 0, and if δ ě
a

β2pE1 ´ E2q, then Agent 2’s best response is to,

u1pt1, t2 “ toq “ E1 ´ r ´
δ2

β1
; (13)

u2pt1, t2 “ toq “ E2 ´ r . (14)

If δ ă
a

β2pE1 ´ E2q, then Agent 2’s best response is
to arrive just before t1, t1´ ε for some small ε, which
does not yield a pure strategy best response.

In comparing all these cases, the best option for Agent 1
is given by (13), which is further maximized when δ is at
a minimum, meaning the unique pure strategy SPE in this
case is t˚1 “ to ´

a

β2pE1 ´ E2q, t
˚
2 “ to.

We have the following interpretations on the SPEs. (1)
Cooperation is only sustained when the gain from the com-
petition is mild (the quality differential between the two
territories is small). Further, under such cooperation, both
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agents get to arrive at the optimal time. This results in the co-
operation SPE. (2) When the better territory can yield a much
higher reward, the stronger agent will preempt the weaker
agent by advancing its arrival to secure the better territory;
the advance has to be sufficient to discourage the weaker
agent from attempting to get ahead. Once discouraged, the
weaker agent arrives at the optimal time. This results in the
competition SPE.

It is worth noting that the second, competition SPE is the
same as the one derived under the original model with utility
function (2) by Kokko [26], which is also the only SPE under
(2). This is not surprising as (2) does not provide any benefit
for cooperation. To shed further light on the competition SPE
in terms of how much Agent 1 needs to advance its arrival,
we note that

a

β2pE1 ´ E2q is a tipping point:
‚ If Agent 1 advances less than this amount (δ ă

a

β2pE1 ´ E2q, then Agent 2 can always move up its
arrival by an infinitesimal amount ε to get a higher
utility: this is better than flocking with Agent 1 (u2pto´
δ, to´δ´εq ą u2pto´δ, to´δq); this is also better than
arriving alone at to (u2pto´δ, to´δ´εq ą u2pto´δ, toq).
Thus Agent 1 would not be able to secure E1.

‚ Once Agent 1’s advance hits δ “
a

β2pE1 ´ E2q,
Agent 2’s best option becomes to, i.e., u2pto´ δ, toq ą
u2pto ´ δ, to ´ δq ą u2pto ´ δ, to ´ δ ´ εq. Agent 1
secures E1 in this case.

The tipping point δ “
a

β2pE1 ´ E2q is essentially where
Agent 2 becomes ambivalent between arriving alone at to´δ
and taking E1 (which can only happen if Agent 1 advances
ă δ) and arriving alone at to and taking E2.

IV. THREE OR MORE AGENTS

Deriving the precise SPEs for cases with ą 2 agents is
considerably more complicated. Below we present the result
in a 3-agent game and a number of interesting properties
in the more general, n-agent case, which help us construct
algorithms to find the SPE.

A. The 3-agent game

We summarize the eight types of pure strategy SPEs in a
3-agent game in Table I. These are obtained using a similar
backward induction approach, but whereas in Theorem 1 we
only need to consider the quality differential between E1

and E2, in the 3-agent case we have three pairwise quality
differentials. The main takeaways from the 3-agent game are
as follows.

1) Consistent with observations from the 2-agent game,
the territorial quality differentials completely deter-
mine what type of SPEs emerge in the 3-agent game:
groups form when the differences are small, allowing
the benefit of flocking to outweigh the territorial re-
ward. Whenever there is a substantial quality gap, there
is an incentive for a stronger agent to advance its arrival
in order to secure a better territory.

2) Interestingly, all but the last combination result in
flocking. In three extreme cases, agents form a grand

flock (Cases 1 and 2, cooperation among all agents) or
a cascade (Case 8, competition among all agents).

3) How much an agent advances its arrival is not arbitrary,
even though the action space is continuous. There is a
discrete set of acceptable time points, most of which
in the form of

b

ř

pi,j,iăjqPA βjpEi ´ Ejq, for some
combinatorial set A.

B. The n-agent game

Proposition 1. No agents will arrive later than to in an SPE.

Sketch: This can be shown by contradiction and considering
the last arrival time in the SPE, tl ą to. If there is only one
agent at tl and if it is the weakest, agent n, then clearly it
can move up its arrival time by an infinitesimal amount and
improve its utility (lower travel cost); thus this cannot be an
SPE. If the lone arrival at tl is agent l ă n, then moving up its
arrival by an infinitesimal amount either results in no change
in subsequent, weaker agents’ arrival times (earlier than to)
or it triggers some weaker agents to delay their arrival and
join agent l to form a group. Either way this improves agent
l’s utility, so tl cannot be l’s best response and again this
cannot be an SPE. When there are multiple arrivals at tl,
then considering the strongest of the group, agent l, a very
similar argument can be applied.

The next set of results shows that the nature of the SPE
is shaped by the competition and cooperation relationship
among agents induced by the relative quality of the territo-
ries. We say agent i` k competes with a stronger agent i if
Ei ´Ei`k ą

k
k`1r for some i, i` k ď n. For instance, two

neighboring agents i and i` 1 compete if Ei ´Ei`1 ą
1
2r,

a condition we have seen repeatedly in the 2-agent analysis.

Proposition 2. If E1 ´ Ei ď
i´1

npn´i`1qr, @i P t2, . . . , nu,
then the unique SPE is t˚ “ pto, to, . . . , toq. This is called
a grand flock.

Sketch: This can be shown by noting that Agent 1 achieves
maximum utility under t˚, among all possible sequences of
arrival times. Similarly, given Agent 1 has chosen to, Agent
2 achieves maximum utility under t˚ among all possible sub-
sequences of arrival times, and so on.

This is a case where no agent has an incentive to arrive
early in order to obtain a better territory because the territo-
rial gain is less than the gain from being part of the group.

Proposition 3. If every agent i competes with its neighboring
agent i´ 1: Ei´1´Ei ą

1
2r, then the unique SPE is tn˚ “

t0, tj
˚ “ t0´

b

řn´1
i“j βi`1pEi ´ Ei`1q, j “ 1, 2, ¨ ¨ ¨ , n´1.

This is called a cascade.

Sketch: This result can be established in two steps, with the
first showing that given sufficient separation among the Ei’s,
there will be no flocking anywhere. This is then followed by
a second step that consists of a relatively straightforward
backward induction calculation of all the arrival times.3

3Again, this SPE is the only SPE attainable in the pure-competition model
by Kokko (utility function (2)).
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TABLE I: SPEs in a 3-agent game; which type emerges depends on the pairwise relationship between territories.
T 1
1 “ t0 ´min p

a

β2pE1 ´ E2q,
a

β3pE2 ´ E3 ´
r
6 qq, T

2
1 “ t0 ´max p

a

β2pE1 ´ E2 ´
r
2 q,

a

β3pE2 ´ E3qq,
T 3
1 “ t0 ´

a

β3pE2 ´ E3q, T 1
2 “ t0 ´

a

β3pE1 ´ E3q, T 4
1 “ t0 ´

a

pβ2pE1 ´ E2q ` β3pE1 ´ E3qq .

Case

Conditions satisfied
SPE

E1 ´ E3 E1 ´ E2 E2 ´ E3

ď 2
3
r ą 2

3
r ď 1

6
r p 1

6
r, 1

2
rs ą 1

2
r ď 1

6
r p 1

6
r, 1

2
rs ą 1

2
r

1 X X X pto, to, toq

2 X X X pto, to, toq

3 X X X pT 1
1 , to, toq

4 X X X pT 2
1 , to, toq

5 X X X pT 1
2 , T

1
2 , toq

6 X X X pT 3
1 , to, toq

7 X X X pT 2
1 , to, toq

8 X X X pT 4
1 , T

1
2 , toq

TABLE II: Pure strategy NE and SPE of the 2-agent game under two utility functions. ε P r0,
a

β2r{2s.

Utility function uiptq “ eptiq ´ ciptiq ´ piptq uiptq “ eptiq ´ ciptiq

Game One-shot Sequential One-shot Sequential

Equilibrium
E1 ´ E2 P p0,

1
2
rs pt0 ´ ε, t0 ´ εq pt0, t0q

none pt0 ´
a

β2pE1 ´ E2q, t0q
E1 ´ E2 P p

1
2
r,`8q none pt0 ´

a

β2pE1 ´ E2q, t0q

C. An efficient algorithm

The complexity of directly applying backward induction
to find an SPE in our game increases exponentially. However,
by applying the properties shown above we can develop an
efficient algorithm, which starts from the grand flock with
all agents arriving at to and moves backwards. It first checks
to see if the weakest agent, n, has an incentive to move up
its arrival time in order to obtain E1 as opposed to En. This
is the case if E1 ´ En ą

n´1
n r (per Proposition 2), and

no otherwise. If this condition is verified, then we know the
grand flock cannot be an SPE, and it follows that some or
all of the first n ´ 1 agents will have an incentive to move
up their arrival time. The algorithm then checks another set
of conditions (that involve the comparison between pairs of
territories such as shown in Table I) to determine whether
agent n ´ 1 will flock with agent n, and so on. In such a
manner the algorithm progressively determines the groupings
as well as the times of arrival of each group in the SPE.

Proposition 4. A stronger agent arrives no later than a
weaker agent in an SPE, and the weakest agent always
arrives at the optimal time t0: t˚1 ď t˚2 ď ¨ ¨ ¨ ď t˚n “ t0.

Sketch: This is done by showing the algorithm outlined above
outputs the SPE and this property holds by construction.

Intuitively, the key observation here is that advancing
travel time, provided all travel times are no later than to,
is more costly for a weaker agent (j) than for a stronger
agent (i ă j). Therefore if it were beneficial for j to arrive
at tj ă ti, then the benefit to arrive at tj for i is only greater,

and therefore agent ti cannot be i’s best response. Indeed,
agent i will always preempt j, since i makes its decision
first, and prevent this from happening.

V. DISCUSSION

We first discuss what happens if the game is modeled as
a simultaneous move one. With all game parameters being
the same but letting all agents make simultaneous decisions
results in a one-shot game, whose solution concept is the
pure strategy Nash equilibrium (NE).

Proposition 5. In the simultaneous-move game, if E1´En ď
n´1
n r, then there exist infinitely many pure strategy NE: t˚ “

pto ´ ε, to ´ ε, . . . , to ´ εq where ε P r0,
b

n´1
n rβns.

Sketch: Since flocking is more beneficial due to the small
territorial quality difference, arriving as a group at any time
close enough to to will prevent unilateral deviation from an
individual agent.

Proposition 6. There does not exist any pure strategy NE in
the one-shot game with the utility function (2).

Sketch: Since there is no benefit in forming groups, for any
given set of arrival times, one can always find one of the
following types of agents with a profitable unilateral move:
(1) a lone arrival, who can improve its utility by delaying
its arrival by an infinitesimal amount to lower its travel cost
without losing its territory, or (2) a weaker agent in a group,
who can advance its arrival by an infinitesimal amount to
gain a better territory with negligible increase in travel cost.
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The comparison among these different games and solution
concepts is summarized in Table II for the 2-agent case.

We next examine the effect of the ordering of decision
making in the sequential game, which has been assumed to
be in decreasing order of the agents’ strengths. A natural
question arises as to what happens if this is not the case.
First, it’s worth noting that the decreasing order of strengths
appears (per Proposition 4) to match the decreasing order of
arrivals in an SPE; in other words, the sequencing in decision
making appears to match the sequencing in decisions made
or actions taken. This is also consistent with observations in
migratory birds as discussed earlier. This matching between
decision-making and decisions made does not easily emerge
under a different model.

Consider now the special, 2-agent game with a flipped
decision order: Agent 2 the leader and Agent 1 the follower.
The only SPE, in this case, is t˚ “ pt0, t0q, which can
be shown using backward induction similar to that used in
Theorem 1. It is also straightforward to interpret: when the
weaker agent chooses its action first, the stronger agent can
always get the better territory by choosing to arrive at the
same time, eliminating any benefit to the weaker agent by
advancing. Thus, the only pure SPE is that both agents arrive
at the same, optimal time. This result can be extended to the
n-agent game, with the opposite ordering of decision making,
whereby agent n decides first, followed by agent n´ 1, and
so on, with agent 1 last. The only pure strategy SPE, in this
case, is the grand flock of everyone arriving at the optimal
time to, with the same interpretation as given above. When
the ordering is arbitrary, the resulting SPE becomes harder to
characterize. Interestingly, under the pure-competition model
(utility function (2)), if the weaker agent is the leader, then
the only SPE of a 2-agent game is also t˚ “ pt0, t0q, which
is easily verified.

VI. CONCLUSION

We introduced a sequential game of how agents form
groups in time. Properties of the resulting SPE are analyzed
in the 2-agent and 3-agent cases, and characterized in the
more general, n-agent game. The result of the sequential
game is also contrasted with one obtained under a one-shot
game as well as under an alternative utility function when
group formation does not bring benefits.
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