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Abstract— Crucial phases in aerial transportation and de-
livery of suspended payloads are the clasping and unclasping
of the payload to the cable. During these phases, along with
the uncertainties in the quadrotor and in the environment, the
inevitable payload swings induced by the human interaction
or by other external interaction will create additional state-
dependent uncertainties; such uncertainties pose a significant
challenge in terms of control. If they continue unabated,
these uncertainties can cause safety hazard for the quadrotor,
the payload and, most importantly, for the human operating
the clasping/unclasping tasks. As the state-of-the-art adaptive
controllers cannot tackle such uncertainties or considers them
as bounded terms, this paper presents an adaptive anti-swing
controller where all uncertainties are taken in a state-dependent
form. This choice is made to better capture uncertain clasping
and unclasping operations of the suspended payload. The
closed-loop stability is studied analytically and the real-time
experiments confirm significant performance improvements for
the proposed scheme over the state of the art.

I. INTRODUCTION

Several civilian and military applications involving pay-
load delivery with aerial quadrotor or quadrotor-like vehicles
have been proposed and studied in recent years [1]–[3]. Of
the two most typical modes of aerial payload transportation,
cable-suspended (cf. [4]–[7]) and fixed gripper-based (cf.
[8]–[11]), the former is usually preferred owing to its flexibil-
ity to carry payloads with different sizes without compromis-
ing the agility of the quadrotor. Crucial operational phases
in the cable-suspended mode are the clasping and unclasping
of the payload, typically involving interaction with a human
operator itself (cf. Fig. 1). To ensure safe operations for
humans, it is imperative that the quadrotor has the ability to
stabilise itself against disturbances induced due to the swing
in the cable.

Unfortunately, it is well known in the literature that it
is a challenging problem to control such a system amid
uncertainties (parametric, external wind, rotor downwash
etc.), as the swing angles introduce additional unactuated
degrees-of-freedom to an inherently underactuated quadro-
tor system. Several literature simplifies such complexity
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Fig. 1: Illustration of human interaction during clasping/unclasping
operations in a quadrotor with cable-suspended payload.

by considering only one planar swing angle (cf. [12]–[15]
and references therein); however, in the case of payload
transportation, it is more realistic to consider both planar
swing angles, (cf. Fig. 2). Although, adaptive controllers
have been proposed considering two swing angles ([6], [16]–
[18]), it is worth noticing that these works cannot tackle
state-dependent unknown dynamics that are peculiar to the
quadrotor case. Examples of state-dependent uncertainties in-
clude: imprecise parametric knowledge of (low velocity) drag
forces, rotor downwash, coupling forces generated by the
payload swing (cf. Remark 2 later). Left unattended, these
unmodelled forces can create drift/ unwanted motion to the
quadrotor (cf. the experimental results in Sect. IV), leading
to potential hazards for the quadrotor, the payload and, most
importantly, the human operating the clasping/unclasping
tasks. Precise modelling of these forces is very difficult as
they are sometimes dominated by the shape and size of the
payload itself (e.g., rotor downwash [17], [18]).

It is evident from the above discussion that, for a safer
human-quadrotor interaction, a controller must be designed
to stabilize the payload swing angles in the presence of
unknown state-dependent uncertainties. The proposed work
solves this largely unsolved control in the existing literature.
The highlights of this work are:

• adaptive anti-swing control with estimation of unknown
state-dependent dynamics and external disturbances
without their a priori knowledge;

• closed-loop stability analysis via the Lyapunov ap-
proach;

• real-time experimental results in comparison to the
state-of-the-art, showing significantly improved system
stabilization against external disturbances induced by
the payload swing.

This work extends previous quadrotor research by some of
the authors, since [19], [20] did not consider explicitly any
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Fig. 2: Illustration of a quadrotor system with suspended payload.

TABLE I: Nomenclature

[XB Y B ZB ] Quadrotor body-fixed coordinate frame
[XW YW ZW ] Earth-fixed coordinate frame

[x y z] Quadrotor position in Earth-fixed coordinate frame
[ϕ θ ψ] Quadrotor roll, pitch and yaw angles
αx Payload projection angles in XWZW plane
αy Payload projection angle in YWZW plane

M,C ∈ R8×8 Mass and Coriolis matrices
G ∈ R8 Gravity vector
d ∈ R8 Unknown (state-dependent) dynamics vectors

τp, τq ∈ R3 Generalized control inputs

unactuated cable-suspended payload dynamics; although [21]
is applicable to underactuated dynamics, it models payload
dynamics as a simple mass change of the quadrotor ignor-
ing payload induced dynamic terms (e.g. rotor downwash).
Further, the present work avoids any acceleration feedback
which is required in [19], [21].

The rest of the paper is organised as follows: Sect. II
describes the system dynamics and the control problem; Sect.
III presents the proposed control scheme and its closed-loop
stability analysis; Sect. IV illustrates the comparative exper-
imental results while Sect. V presents concluding remarks.

The following notations are used in this paper: λmin(·)
and ||(·)|| denote minimum eigenvalue and 2-norm of (·),
respectively; In denotes identity matrix of dimension n ×
n; diag{·} denotes diagonal matrix with elements {·}; (·)d
denotes desired value of (·).

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

For the quadrotor system with suspended payload as in
Fig. 2, the associated symbols and system parameters are
defined in Table I. For system modelling, we take the
following standard assumption:

Assumption 1: ([16], [17], [22], [23])The cable connect-
ing the payload and the quadrotor is attached to the center
of mass of the quadrotor and it is massless, inelastic and
always taut.

Under the above assumption and employing the Euler-
Lagrangian formulation (cf. [24], [25]), the dynamic model
of the composite system can be obtained as

M(q)q̈ + C(q, q̇)q̇ +G(q) + d = [τTp τTq 0 0]T , (1a)

τp = RWB U, (1b)

where q(t) ≜
[
x(t), y(t), z(t), ϕ(t), θ(t), ψ(t), αx(t), αy(t)

]
;

τq(t) ≜ [u2(t), u3(t), u4(t)] is the control inputs for roll,
pitch and yaw of the quadrotor; τp = RWB U is the
generalized control input for quadrotor position in Earth-
fixed frame, such that U(t) ≜

[
0 0 u1(t)

]T
being

the force vector in body-fixed frame and RWB being the
Z − Y − X Euler angle rotation matrix describing the
rotation from the body-fixed coordinate frame to the
Earth-fixed frame [8]

RWB =

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sη sϕcθ cθcϕ

 , (2)

where c(·), s(·) are abbreviations for cos (·), sin (·) respec-
tively. The term d(q̇, t) represents combined effects of ex-
ternal disturbances (e.g., wind, gust) and unmodelled state-
dependent dynamics (e.g., low speed aerodynamic drag
forces, rotor downwash, ground reaction disturbance). Fol-
lowing the standard properties of Euler-Lagrange systems
(cf. [26, Ch. 6]) and of aerial vehicles (cf. [16], [17], [27,
Ch. 3]), we state the following standard system properties:
Property 1: ∃c̄, ḡ, d̄0, d̄1 ∈ R+ such that ||C(q, q̇)|| ≤ c̄||q̇||,
||G(q)|| ≤ ḡ and ||d(q̇, t)|| ≤ d̄0 + d̄1||q̇||.
Property 2: M(q) is symmetric and uniformly positive
definite. This implies that ∃µ1, µ2 ∈ R+ such that

0 < µ1In ≤M(q) ≤ µ2In. (3)

Consider the decomposition of M as M = M̂+∆M , where
M̂ and ∆M represent the nominal and perturbation terms of
the mass matrix, respectively. The amount of uncertainty in
the system is framed as an assumption below, which acts as
a control challenge:

Assumption 2 (Uncertainty): Only the knowledge of M̂
and an upper bound for ∆M is available, while the terms
C,G, d and their upper bounds c̄, ḡ, d̄0 and d̄1 are unknown.

Remark 1 (Importance of state-dependent uncertainty):
Property 1 highlights that the terms C and d create forces
which directly depends on velocity; furthermore, motion
in swing angles will excite motion in quadrotor via the
coupling terms in inertia matrix M (cf. the structure in [24],
[25]). Hence, uncertainty in these dynamic terms create state
(i.e., velocity, acceleration)-dependent uncertainty. Crucially,
it implies that these uncertainties, when unaddressed, will
create unwanted motion in the system (cf. the system
oscillations, drift etc. during the experiments later) leading
to potential hazard.

For controller design, as well as for convenience of
notation, let us rewrite system (1a) as

M(q)q̈ +N(q, q̇)q̇ + d =
[
τT 0 0

]T
(4)

where

q ≜ [qa, qu], qa = [x, y, z, ϕ, θ, ψ], qu = [αx, αy]

M ≜

[
Maa Mau

MT
au Muu

]
,
Maa ∈ R6×6,Mau ∈ R6×2

Muu ∈ R2×2 ,

N ≜ Cq̇ +G = [Na, Nu], Na ∈ R6, Nu ∈ R2,

d ≜ [da, du], da ∈ R6, du ∈ R2, τ ≜ [τp, τq].
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Using these decomposed representations of M,N and d, the
system dynamics (4) can further be represented as

q̈u = −M−1
uuM

T
auq̈a + hu, (5a)

q̈a =M−1
s τ + ha, (5b)

where hu ≜M−1
uu (Nu + du),

ha ≜M−1
s (Na + da −MauM

−1
uu (Nu + du)),

Ms ≜Maa −MauM
−1
uuM

T
au.

Control Objective: Under Assumptions 1-2 and Properties
1-2, to design an adaptive controller to maintain the quadro-
tor at a desired fixed location (xd, yd, zd), while stabilizing
the attitude and payload swing angles (i.e., ϕd = θd = ψd =
αdx = αdy = 0).

The following section solves this control problem along
with detailed analysis.

III. PROPOSED CONTROLLER DESIGN AND ANALYSIS

Let us define tracking error ea ≜ qa− qda and an auxiliary
error variable r as

r ≜ Υaėa + Γaea +Υuq̇u + Γuqu, (6)

where Υa,Γa ∈ R6×6 are positive definite and Υu,Γu ∈
R6×2 are full rank user-defined matrices, respectively.

Using (5a) and (5b), the time derivative of (6) yields

ṙ = Υaq̈a + Γaėa +Υuq̈u + Γuq̇u

= (Υa −ΥuM
−1
uuM

T
au)(M

−1
s τ + ha) + Υuhu

+ Γaėa + Γuq̇u

= bτ + φ+ Sr, (7)

where b ≜ (Υa −ΥuM
−1
uuM

T
au)M

−1
s

φ ≜ (Υa −ΥuM
−1
uuM

T
au)ha +Υuhu

Sr ≜ Γaėa + Γuq̇u.

The control law is designed as

τ = b̂−1(−Λr − Sr −∆τ), ∆τ = ρ
r

||r||
, (8)

where Λ ∈ R6×6 is user-defined positive definite matrix; ρ
is the adaptive gain for tackling uncertainties and will be
discussed later. Finally, b̂ is the nominal value of b which
satisfies the condition

||bb̂−1 − I6|| ≤ E < 1. (9)

Remark 2: The value of E can be calculated based on
M̂ and the upper bound of ∆M (cf. Assumption 2): such
condition is quite standard in robotics literature [26].
Substituting (8) into (7) yields

ṙ = −Λr −∆τ + σ − (bb̂−1 − I6)∆τ, (10)

where σ ≜ φ − (bb̂−1 − I6)(Λr + Sr). From Properties 1
and 2, one can verify

||N || ≤ ||C||||q̇||+ ||G|| ≤ c̄||q̇||2 + ḡ. (11)

Let us define ξ ≜ [eT ėT ]T = [eTa q
T
u ėTa q̇

T
u ]
T . Then, using

the fact ė = q̇ (as q̇d = 0), Property 1, and the inequalities
||Nu|| ≤ ||N ||, ||Na|| ≤ ||N ||, ||du|| ≤ ||d||, ||da|| ≤ ||d||,
||ea|| ≤ ||ξ||, ||qu|| ≤ ||ξ||, ||ėa|| ≤ ||ξ||, ||q̇u|| ≤ ||ξ|| in (5),
the following bound can be obtained:

||σ|| = ||φ− (bb̂−1 − I6)(Λr + Sr)||
≤ ||φ||+ E(||Λ||||r||+ ||Sr||),
≤ κ∗0 + κ∗1||ξ||+ κ∗2||ξ||2, (12)

with κ∗0 ≜aḡ + ||Υu||||M−1
uu ||(ḡ + d̄) + a1,

κ∗1 ≜E(||Γa||+ ||Γu||) + a2, κ
∗
2 ≜ ac̄+ ||Υu||||M−1

uu ||c̄,
a ≜||(Υa −ΥuM

−1
uuMau)||(||M−1

s + ||MauM
−1
uu ||),

a1 ≜||(Υa −ΥuM
−1
uuMau)||||M−1

s (1 + ||MauM
−1
uu ||)d̄,

a2 ≜E||Λ||(||Υa||+ ||Γa||+ ||Υu||+ ||Γu||)

where the scalars κ∗i ∈ R+, i = 0, 1, 2 are unknown as per
Assumption 2.

Using (5a)-(5b), the payload swing dynamics can be
represented as

q̈u = −M−1
uuM

T
auq̈a + hu

= −M−1
uuM

T
au(M

−1
s τ + ha) + hu. (13)

Substituting (8) into (13) yields

χ̇1 = χ2

χ̇2 = −ϖυ − φ1, (14)

where χ1 ≜ qu, χ2 ≜ q̇u, φ1 ≜ (M−1
uuM

T
auha + hu), υ ≜

(−Λr−Sr−∆τ), ϖ ≜ (M−1
uuM

T
auM

−1
s )b̂−1. One can design

a constant full-rank matrix H ∈ R2×6 such that

K1 ≜ HΛΓu, K2 ≜ HΛΥu (15)

are positive definite matrices. Adding and subtracting Hυ to
(14) yields

χ̇1 = χ2

χ̇2 = −K1χ1 −K2χ2 +ϖ∆τ + φ2, (16)

where φ2 ≜ gSr + (H +ϖ)Λr − φ1 −HΛ(Υaėa + Γaea)
acts as uncertainty in the payload swing dynamics. Taking

χ ≜ [χT1 χT2 ]
T , A ≜

[
0 I2

−K1 −K2

]
and B ≜

[
0 I2

]T
,

one has from (16)

χ̇ = Aχ+B(ϖ∆τ + φ2) (17)

where positive definiteness of K1,K2 guarantees that A is
Hurwitz. From Properties 1-2, the following holds

||φ2||||PB|| ≤
(
κ∗∗0 + κ∗∗1 ||ξ||+ κ∗∗2 ||ξ||2

)
, (18)

where κ∗∗i ∈ R+, i = 0, 1, 2 are unknown scalars whose
expressions follow from similar steps as (12); P > 0 is the
solution to the Lyapunov equation ATP + PA = −Q for
some positive definite matrix Q.

Observing the upper bounds structures of ||σ|| and ||φ2||
in (12) and (18) respectively, we design ρ in (8) as

ρ =
1

(1− E)
(κ̂0 + κ̂1||ξ||+ κ̂2||ξ||2 + γ), (19)

505



with adaptive laws (i = 0, 1, 2)

˙̂κi = (||r||+ ||χ||)||ξ||i − ζiκ̂iβ||χ||||ξ||i, (20a)

γ̇ = −γ
{
γ0 + γ1(||ξ||5 − ||ξ||4) + γ2(||χ||+ ||ξ||)

}
+ γ0(||r||+ ||χ||) + γ0ν, (20b)

initial conditions κ̂i(0) > 0, γ(0) > ν, (20c)
and ηi, ζi, β, γ0, γ1, γ2, ν ∈ R+, (20d)

satisfying the following inequalities

γ2 ≥ γ1, β > 1 + (E1/(1− E)), (20e)

with E1 being a constant satisfying ||PBg|| ≤ E1, and
derived from the known upper bound of ∆M in Assumption
2 In (20), κ̂i is the estimate of κ̄∗i ≜ max{κ∗i , κ∗∗i }, i =
0, 1, 2; γ is an auxiliary gain which helps in closed-loop
system stabilization (cf. discussion before (32)). It can be
verified that the design γ0, γ1, γ2 ∈ R+ with γ2 ≥ γ1 makes
the term ‘γ0 + γ1(||ξ||5 − ||ξ||4) + γ2(||χ||+ ||ξ||)’ in (20b)
positive for all χ, ξ.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed controller is tested on a quadrotor setup
(Q-450 frame with Turnigy SK3-2826 brushless motors,
weighing ∼ 1.5 kg), with a payload (∼ 0.2 kg) suspended
from its center. Raspberry Pi-4 is used as a processing unit
and joystick potentiometer is used to measure swing angles
of payload (cf. [25] for such arrangement). Optitrack motion
capture system (at 120 fps) and IMU were used to obtain
system pose and state-derivatives were obtained via fusing
these sensor data for the necessary feedback.

To verify the effectiveness of the proposed control law,
we compare it with the adaptive method [16]. The fol-
lowing control design parameters are selected for the
proposed controller during the experimentation: Υa =
diag{1, 1, 3, 2, 2, 2}, Γa = diag{1, 1, 2, 4, 4, 4},

Υu =

[
0.02 0 0 0 0 0
0 0.02 0 0 0 0

]T
, Γu = 2.5Υu, b̂ =

diag{1.5, 1.5, 1.5, 0.02, 0.02, 0.04}, E = 0.3,
κ̂0(0) = κ̂1(0) = κ̂2(0) = 0.01, γ(0) = 0.1, Λ =
diag{1.0, 1.0, 1.2, 0.5, 0.5, 0.2}, η0 = 2, η1 = 3, η2 = 1,
ζ0 = 1, ζ1 = 2, ζ2 = 1, β = 3, γ0 = 2, γ1 = 1, γ2 = 2,
ν = 0.001, ϵ = 0.1. For the adaptive controller [16], the
various control parameters are selected as in [16].

A. Experimental Scenario

During payload delivery operation via cable-suspended
mode, human interacts closely with the quadrotor while
attaching or detaching the payload; during such interaction,
payload swing can happen and if not properly stabilized,
such swings can cause safety hazard. We have created an
experimental scenario in an attempt to emulate such phe-
nomenon (cf. Fig. 3): in this scenario, the quadrotor hovers
at a given position (xd = yd = 0, zd = 1m) and, suddenly,
the payload is pushed by a stick at t = 2s (approx.) to
create swing angles. As mentioned before in Remark 2, the
motion in swing angles create state-dependent uncertainty.
Therefore, such an experimental scenario tests the capability

of a controller to negotiate state-dependent disturbances.
Additionally, a fan is used to introduce wind disturbance.

B. Results and Discussion

The performances of the controllers are compared via Figs.
4-6 and via Table II. The red marked zones in Figs. 6-6 high-
light the oscillations caused by the stick. It can be observed
that the proposed controller could successfully damp the
swing angle oscillations even with higher initial overshoots
compared to the other controllers. Whereas, in absence of any
measure to deal with state-dependent uncertainty, [16] fails
to damp the oscillations in swing angles leading to sustained
oscillations and drift in the quadrotor positions (cf. Fig. 4
after t = 2s). This can cause hazard to human operator.

TABLE II: Root-Mean-Squared (RMS) error comparison

Controller Position error (m) Attitude error (deg)
x y z ϕ θ ψ

Proposed 0.02 0.06 0.02 3.5 3.1 3.8
Adaptive [16] 0.08 0.08 0.12 14.8 13.05 6.6

Controller Swing angle error (deg)
αx αy

Proposed 8.5 6.9
Adaptive [16] 15.1 15.9

V. CONCLUSION

Having in mind the human-quadrotor interaction during
clasping and unclasping of a cable-suspended payload, this
work has proposed and analyzed a suitable adaptive anti-
swing controller. The suitability of the solution comes from
the fact that, contrary to the state-of-the-art, the controller
was designed to handle unknown state-dependent uncertainty
in such dynamics. Experimental studies showed that the
proposed control framework was safer and could significantly
damp the unwanted payload swings compared to the state of
the art.

APPENDIX
PROOF OF THEOREM 1

From the adaptive law (20b) and initial condition (20c), it
can be verified that ∃γ, γ ∈ R+ such that

0 < γ ≤ γ(t) ≤ γ ∀t ≥ 0. (21)

Stability is analyzed via the Lyapunov function:

V =
1

2
rT r +

1

2
χTPχ+

1

2

2∑
i=0

(κ̂i − κ̄∗i )
2 +

γ

γ
, (22)

where κ̄∗i = max{κ∗i , κ∗∗i }.
Using (8), (12) and (19), from (7) we have

rT ṙ = rT (−Λr −∆τ + σ − (bb̂−1 − I6)∆τ)

≤ −rTΛr − (1− E)ρ||r||+
2∑
i=0

κ∗i ||ξ||i||r||

≤ −rTΛr −
2∑
i=0

κ̂i||ξ||i||r||+ κ̄∗i ||ξ||i||r||. (23)
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Fig. 3: Snapshots from experimental scenario with the proposed controller: a) quadrotor takes off with the suspended payload; b) payload
is pushed at t = 2s with a stick c) payload is displaced d) quadrotor tries to stabilise itself.

Fig. 4: Quadrotor position tracking error.

Fig. 5: Quadrotor attitude tracking error.

Fig. 6: Stabilization error in payload swing angles αx and αy .

where we have used the fact that γ > 0 from (21). Further,

using (17) and (18) we have

1

2

d

dt
χTPχ = −1

2
χTQχ+ χTPB(ϖ∆τ + φ2)

≤ −1

2
χTQχ+ ρE1||χ||+ ||φ2||||PB||||χ||

≤ −1

2
χTQχ+

2∑
i=0

(κ̄∗i ||ξ||i +
E1(κ̂i||ξ||i + γ)

1− E
)||χ||.

(24)

Using the adaptive laws (20a), (20b), and (21) we have

(κ̂i − κ̄∗i )
˙̂κi = κ̂i(||r||+ ||χ||)||ξ||i − βκ̂2i ||χ||||ξ||i

− κ̄∗i (||r||+ ||χ||)||ξ||i + βκ̂iκ̄
∗
i ||χ||||ξ||i, (25)

γ̇

γ
= −γ

γ
(1 + γ1||ξ||4) +

ν

γ
≤ −γ1||ξ||4 + (ν/γ), (26)

where we have used the fact that γ ≥ γ from (21). Using
(23)-(26), the time derivative of the Lyapunov function (22)
turns out to satisfy

V̇ ≤− δm(||r||2 + ||χ||2)− γ1||ξ||4 + (ν/γ) + cγ||χ||

+

2∑
i=0

(cκ̂i − βκ̂2i + βκ̂iκ̄
∗
i )||ξ||i||χ||, (27)

where δm ≜ min{λmin(Λ), (1/2)λmin(Q)} and c ≜ 1 +
E1

1−E . From (22), the definition of V yields

V ≤ δM (||r||2 + ||χ||2) +
2∑
i=0

(κ̂2i + κ̄∗
2

i ) +
γ̄

γ
, (28)

where δM ≜ max{1, ||P ||}. Defining Ω ≜ (δm/δM ), (27)
is further simplified using (28) as

V̇ ≤ −ΩV − γ1||ξ||4 + (ν/γ) + (Ωγ̄)/γ + cγ||χ||

+

2∑
i=0

(cκ̂i − βκ̂2i + βκ̂iκ̄
∗
i )||ξ||i||χ||+Ω(κ̂2i + κ̄∗i )

2. (29)

Since β > 1 by design (20d), it is always possible to split
β as β = β1 + β2 + β3 where βi > 0, i = 1, 2, 3. Then, the
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following simplification can be made

− βκ̂2i + cκ̂i + βκ̂iκ̄
∗
i = −β1κ̂2i − β2

{(
κ̂i −

c

2β2

)2

− c2

4β2
2

}

− β3

{(
κ̂i −

βκ̄∗i
2β3

)2

− (β ¯κ∗i )
2

4β2
3

}

≤ −β1κ̂2i +
c2

4β2
+

(βκ̄∗i )
2

4β3
. (30)

Using (30), the inequality (29) becomes

V̇ ≤ −ΩV −
2∑
i=0

(β1||χ||(i+1) − Ω)κ̂2i + f(||ξ||), (31)

where f(||ξ||) ≜ −γ1||ξ||4 + ς3||ξ||3 + ς2||ξ||2 + ς1||ξ||+ ς0,

ς3 ≜c2/(4β2) + (βκ̄∗2)
2
/(4β3),

ς2 ≜
c2

4β2
+

(βκ̄∗1)
2

4β3
, ς1 ≜

c2

2β2
+

(βκ̄∗0)
2

4β3
+ cγ̄,

ς0 ≜Ω(κ̄∗0
2 + κ̄∗1

2 + κ̄∗2
2) + (ν/γ) + (Ωγ̄)/γ.

Bolzano’s Theorem and Descartes’ rule of sign change imply
that the polynomial f has finite positive real roots; let ι ∈ R+

be the maximum positive real root of f . Since the coefficient
of the highest degree of f is negative as γ1 ∈ R+, f(||ξ||) ≤
0 when ||ξ|| ≥ ι. This was possible owing to the negative
fourth degree term −γ1||ξ||4 contributed by γ̇. Define ι1 ≜
max{(Ω/β1), (Ω/β1)

1
2 , (Ω/β1)

1
3 }. Hence, from (31), V̇ ≤

−ΩV when

min {||χ||, ||ξ||} ≥ max {ι, ι1}
⇒ ||χ|| ≥ max {ι, ι1} , (32)

implying that the closed-loop system is UUB and
r, qu, q̇u, κ̂i, γ remain bounded; again, boundedness of
r, qu, q̇u ensures that ea, ėa are bounded from (6).
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