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Abstract— Building on our recent research on neural heuris-
tic quantization systems, results on learning quantized motions
and resilience to channel dropouts are reported. We propose
a general emulation problem consistent with the neuromimetic
paradigm. This optimal quantization problem can be solved by
model predictive control (MPC), but because the optimization
step involves integer programming, the approach suffers from
combinatorial complexity when the number of input channels
becomes large. Even if we collect data to train a neural network,
collection of training data and the training itself are still time-
consuming. Therefore, we propose a general Deep Q Network
(DQN) algorithm that not only learns trajectories but also
exhibits the advantages of resilience to channel dropout. Fur-
thermore, to transfer the model to other emulation problems, a
mapping-based transfer learning approach can be used directly
on the current model to obtain the optimal trajectory steps for
the new emulation problems.

I. INTRODUCTION

The work being reported continues our effort to develop
the theoretical foundations of control system designs that
exhibit key features of the neural mechanisms that govern
movement and other behaviors in animals. One such feature
is control modulation involving actions of very large numbers
of simple inputs and outputs that are effective in influencing
the system dynamics only in their aggregate operation. The
goal of research on such control systems is to understand
the engineering analogs of neuroplasticity, learning and re-
learning, memory and adaptation. Previously reported work
has introduced what we call neuromimetic linear models.
The focus has been on finite dimensional linear systems that
are overcomplete in that they have many more input and
output channels than the dimension of the state [1],[6]. Such
systems have been shown to have reduced cost of operation
in terms of standard L2 metrics, reduced uncertainty in
the face of input channel noise, and resilience with respect
to drop-outs of input or output channels, [9]. With such
qualities in mind, research is now aimed at overcomplete
models with simple neuron-like discrete inputs taking values
{−1, 0, 1} and exploring how well these are able to emulate
the behaviors of systems with standard continuous feedback
designs. In [10], algorithms based on ideas from machine
learning were used to solve a restricted emulation problem.
The solutions were useful in comparing optimal and nearby
suboptimal designs as well as in suggesting approaches
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to understanding the complexity of neuromimetic feedback
designs.

One of the approaches to feedback control using the quan-
tized control inputs of [10] involved reinforcement learning
(RL)–specifically, a DQN-like algorithm [13],[14]. RL can
solve continuous decision-making tasks remarkably effec-
tively. Agents can improve their performance by interacting
with the environment through trial-and-error to minimize an
emulation error metric [2]. However, when the state and
action sets become large or possibly infinite, tabular solution
methods must be abandoned in favor of approaches that lead
only to approximate solutions. The approach here, following
basic ideas from [13], is to replace the Q-table of basic RL
with a deep Q neural network (DQN). Revisiting [5] in what
follows, we examine the inherent complexity arising from the
set of state-action pairs being infinite and the decision space
being discrete. Even in this somewhat simple case, obtaining
a sufficient sample of interactions as the emulation problem
under study changes remains challenging since it is a time-
sensitive problem, [7]. For this reason, we consider transfer
learning (TL) [3] as a way to utilize the experience from
other emulation problems to accelerate the learning process
for the new problem, [8].

The rest of the paper is organized as follows. Section
II describes the emulation problems, our system models,
and the design goals of the learning algorithm. Section
III introduces two approaches: an MPC-data based learning
method and a generalized deep Q-network (DQN). Section
IV presents the transfer learning algorithm to adapt the
learned model a new emulation problem. Section V shows
simulation results that illustrate the proposed approaches, and
we make a summary in Section VI.

II. PROBLEM DESCRIPTION

Consider linear time-invariant (LTI) systems of the form

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rm, and

y(t) = Cx(t), y ∈ Rq.
(1)

By applying the simple feedback control law u = Kx, where
K is a stabilizing gain chosen as in [10], we obtain the
closed-loop LTI system

ẋ(t) = Hx(t), x(0) = x0, (2)

where H = A + BK ∈ Rn×n is Hurwitz. Following [9],
[10], we consider the problem of emulating (2) by means of
a discrete-time system with quantized inputs

xqs(k + 1) = eAhxqs(k) +

∫ h

0

eA(h−s)Bu(k)ds, (3)
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where xqs ∈ Rn is the system state, u ∈ U = {−1, 0, 1}m
is the set of possible quantized inputs. Following [10], we
refer to these inputs u(k) as activation patterns. h is the time
step and m≫ n denotes the large number of input channels.
Here we provide an example.

Example 1: Suppose the n = 2,m = 4 and that

A =

[
0 0
0 0

]
, B =

[
1 0 −1 0
0 1 0 1

]
.

Then the update law (3) is written as

xqs(k + 1) = xqs(k) + hBu(k). (4)

Taking the 81 activation patterns {−1, 0, 1}4 as inputs, we
see that at each time step, (3) can move in any of the 25
directions (including a zero vector) depicted in Fig. 1.

Consider solutions to the linear ordinary differential equa-
tion (ODE) (2). The goal of the general emulation problem
is to find piecewise constant quantized inputs with sampling
interval h > 0 such that the resulting trajectories of (3)
with initial state xqs(0) = x0 approximate the continuous
system (2). Here, we solve the emulation problem that finds
a partition of the state space {Ui : ∪ Ui = Rn; Uo

i ∩Uo
j =

∅; Uo
i = interior Ui} and a selection rule depending on

the current state xqs(k) for assigning values of the input
at the k-th time step to be u(k) ∈ U = {−1, 0, 1}m, so
that for each xqs ∈ Ui, eAhxqs(k) +

∫ h

0
eA(h−s)dsBu(k)

is as close as possible to the emulated LTI system (2). We
have defined various metrics in terms of which we determine
the fitness of an approximation such as the direction and
magnitude between two systems as was studied in [9]. When
m is large (B is n × m with m ≫ n), it will frequently
be the case that several activation patterns have comparable
fitness. Because two or more activation patterns may give
approximately equal quality of emulation, it may be the case
that over the course of a trajectory, we need to consider
multi-step fitness. This is illustrated in the Fig.1, where we
see that the red approximants have the best first vector step
matching the vectorfield (black vector), but in considering
pairs of steps, the blue pair of vectors end up closer to the
black pair than the red. Hence, when applying algorithms to
learn to optimally emulate a given system, we need to focus
on methods that consider multiple steps, and we need to be
aware that there may be multiple solutions of approximately
equal value.

Our goal is to design algorithms that can meet the follow-
ing objectives:

• The quantized system (3) can emulate the continuous-
time LTI system (2), i.e., at any given point, the model
generated by the algorithm can compute an optimal
quantized direction taking into account multiple steps.

• The emulation task can still be achieved when there are
channel dropouts in the quantized system during the
emulating process.

• When the emulated LTI system changes, the model still
works well under new circumstances directly without
the need of retraining.

Fig. 1. The figure on the left is an example of a set of quantized directions
(as considered in [10] and related to the 81 activation patterns of Example
1), while the figure on the right shows choices of vector pairs (red vs blue)
chosen for emulating a LTI vectorfield (gray curves and black tangents)
when considering multiple steps.

III. LEARNING METHODS FOR EMULATION PROBLEMS

For emulation learning of trajectories of a given LTI
system, we propose two approaches: an MPC data-based
supervised learning approach that trains a neural network
using training data collected from solving the MPC op-
timization problem and a generalized DQN algorithm by
exploring the environment. We shall discuss the advantages
of these approaches in terms of the optimality of trajectory,
computational efficiency and resilience to channel dropouts.

A. MPC Data-based Supervised Learning

Many works utilize MPC with neural networks in con-
trol problems, including [11], [12]. However, the notable
difference from what we are proposing is that the basic
model formulated for our neuromimetic quantized control
systems is far more complex, and the solutions cannot be
expressed as affine functions as was done in [12]. Despite
this, the potential savings in real-time implementations of
neural network solutions are of considerable significance in
our quantized inputs. Results obtained from neural networks
to realize the trajectories are more substantial than when
problems involve continuous control variables.

As described in [19], the Model Predictive Control (MPC)
approach can be formulated as solving the following opti-
mization problem:

min
u0|k,...,uN−1|k

J = |un|k|2R + |xN |k − xref (N |k)|2P

+

N−1∑
n=0

|xn|k − xref (n|k)|2Γ

s.t. un|k ∈ {−1, 0, 1}m ,

xn+1|k = Axn|k +Bun|k,

xref (n+ 1|k) = eHhxref (n|k),
∀n = 0, 1, ..., N − 1, (5)

where P,Γ are positive semi-definite matrices, R is positive
definite and the function |x|2P = xTPx, with similar defini-
tions for Γ and R. The reference values xref are sampled
values of trajectories of the linear time-invariant system (2).
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By solving the optimization problem (5), we obtain a
sequence of activation patterns generating a sequence of p.w.
-constant vector directions such that (3) tracks the refer-
ence generated by (2). Unfortunately, this approach involves
integer programming, which is a computational challenge,
especially since the dimension m is large in our case.

We approach the problem by means of a neural network
with training data comprised of many solutions that have
been obtained off-line. The idea is that at run time the trained
model will directly select appropriate activation patterns
at each time step, without the need to resolve (5). Once
the model is trained, it can steer (3) to emulate (2) in
a way that is optimal or nearly optimal in terms of (5).
Unfortunately, collecting sufficient training samples remains
prohibitive. Nevertheless, the kinds of resilience encountered
in previously studied overcomplete systems, [9], [10] are
seen to be present. From the simulation experiments in
Section V below, we find that even when there were channel
dropouts (simulating neuronal damage), the systems were
able to choose new quantized trajectories emulating the
desired asymptotically stable motion.

In an attempt to find an approach that is both more compu-
tationally tractable and more similar to learning mechanisms
of neurobiology, we next propose a deep Q-learning method
that works well in the presence of channel dropouts at both
the training and final execution stages.

B. Generalized DQN-like Algorithm

Reinforcement learning using deep neural networks has
been proven successful from experiments in various areas
recently [22]. The basic idea of RL is that an agent and an
environment interact continuously. The agent receives a state
(st) at step t from the environment and chooses an action
(at), then the environment reacts to this action leading to a
new state (st+1) for the agent along with a reward (rt) that
reflects the value of the action taken. Q-learning is one of the
most efficient strategies for carrying out this type of learning
[23]. It operates using a Q function that stores state-action
pairs and maps them to Q values defined by

Qπ(st, at) = E[rt +
T−t∑
i=1

γirt+i], (6)

where γ < 1 is a discount factor and π is the policy for
choosing actions in terms of states. Since in what follows
we only consider the deterministic case, the notation E[·]
can be ignored. The goal is to find an optimal policy π∗

that maximizes Qπ . The optimal Q function satisfies the
Bellman’s equation:

Q∗(st, at) = rt + γmax
a′

Q∗(st+1, a
′). (7)

An iterative update of the Q function is given by

loss = (rt + γmax
a′

Q(st+1, a
′)−Q(st, at))

2. (8)

Iterating updates using this state-action pair expression is
only practical when the number of these pairs is finite and
not too large. When the state and action space have large

numbers of elements or perhaps take on continuous values, it
becomes infeasible to construct a Q table. Therefore, a neural
network with learnable parameters ϕ is used to approximate
the complex nonlinear Q function. The learning rule for ϕ
with learning rate α is constructed as

ϕi+1 = ϕi−α∇ϕi
(rt+γmax

a′
Qϕi

(st+1, a
′)−Qϕi

(st, at))
2.

(9)
It is well-known that direct iteration of (9) may not converge
since the term max

a′
Qϕi(st+1, a

′) also depends on ϕi, [21].
The deep Q network (DQN) algorithm solves this problem by
introducing another neural network called the target network
with parameters ϕ̂ to predict the target Q value. It can
stabilize the learning by replacing the term max

a′
Qϕ(st+1, a

′)

with max
a′

Qϕ̂(st+1, a
′). Therefore, when it learns parameters

ϕ, only the part Qϕ(st, at) changes, keeping the target
function (rt+γmax

a′
Qϕ̂(st+1, a

′) fixed to avoid oscillations.
Therefore, the loss function of the DQN algorithm is

lDQN (ϕ; ϕ̂) = (rt + γmax
a′

Qϕ̂(st+1, a
′)−Qϕ(st, at))

2.

(10)
For every C steps, the parameters ϕ from the prediction
network Qϕ are copied to the target network Qϕ̂.

The efficiency of the DQN algorithm has been illustrated
in several experiments, such as playing Atari games [13] and
planning vehicle routing [18]. Inspired by these successes,
we proposed a DQN-like algorithm to solve the restricted
emulation problem in [10], which focused on one-step op-
timization of quantized system motion starting from points
on the unit sphere. In what follows, we provide an extension
by proposing a generalized DQN-like Algorithm 1 for the
quantized system to learn the whole emulation trajectory for
any linear dynamic system. M,T,C in this algorithm are the
hyperparamters, which denote the total number of episodes,
iterations and steps. To guarantee this emulation problem is a
Markov Decision Process (MDP) [4], the state st needs to be
designed carefully so as to incorporate information regarding
states of both the emulating and emulated systems as well
as the time. Therefore, st ∈ R2n in this paper contains two
parts: the error vector between two systems, i.e., x(t)−xqs(t)
and the state of the emulated LTI system x(t). The action
space is a set of quantized directions (Dir) so that we use
dt (as illustrated in Fig. 1) instead of at. Therefore, in each
transition, when st and the action dt are given, we can
determine the next state st+1. The reward rt is a function
involving the L2 norm of the error, which is also determined.
The quantized direction is obtained by following an ϵ-greedy
policy, which is

dt =

{
choose d ∈ Dir randomly, p = ϵ

argmax
d

Q∗
ϕ(st, d), p = 1− ϵ

(11)

Since the convergence of this DQN algorithm has only been
demonstated by experiments and is known sometimes diverge
[16], [17], a new loss function from [21] is utilized:

Loss(ϕ; ϕ̂) = max{lDQN (ϕ; ϕ̂), lMSBE(ϕ)}, (12)
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where

lMSBE(ϕ) = (rt+γmax
d′

Qϕ(st+1, d
′)−Qϕ(st, dt))

2 (13)

denotes the mean squared Bellman error. By using this loss
function (12) and since ϕ̂i+1 = argmin

ϕ
Loss(ϕ; ϕ̂i), the

non-increasing relation

min
ϕ

Loss(ϕ; ϕ̂i+1) ≤ Loss(ϕ̂i+1; ϕ̂i+1) = lMSBE(ϕ̂i+1)

≤ Loss(ϕ̂i+1; ϕ̂i) = min
ϕ

Loss(ϕ; ϕ̂i)

(14)

is obtained, which means the iteration ϕ̂ ←
argmin

ϕ
Loss(ϕ; ϕ̂) is bounded and non-increasing.

Numerical experiments in Section V show that the proposed
algorithm is convergent in the sense that the loss is
monotonically decreasing up to a limiting value, after which
it is no longer guaranteed to decrease.

Algorithm 1 Learning optimal path to emulate dynamic
systems

1: Input: Activation patterns U = {u1, u2, ..., uK} and
its direction vectors of quantization output alphabet to
form an action space Dir = {d1, d2, ..., dK′}, a learning
metric G;

2: Initialize replay memory D with capacity N ;
3: Initialize action-value Q function with parameter ϕ and

target-Q function with parameter ϕ̂ = ϕ;
4: for episode= 1,M do
5: Start from the initial state s0 = {e(0), xref (0)},

which contains the initial error vector between emulated
and quantized systems and the location of the reference
system;

6: for t= 1,T do
7: Observe two systems and record the error vector

and location of emulated system as st = {e(t), xref (t)}.
Choose direction dt = πϵ(st), get reward rt = −G(st)
and new state st+1 = {e(t+ 1), xref (t+ 1)};

8: Store (st, dt, rt, st+1) as a memory cue to D;
9: Sample random minibatch of cues

(sj , dj , rj , sj+1), j ∈ [0, t] from D;
10: Apply the loss function Loss(ϕ; ϕ̂) =

max{lDQN (ϕ; ϕ̂), lMSBE(ϕ)} to train Q network
and every C steps, ϕ̂← ϕ;

11: end for
12: end for

Remark 1: It is noted that Algorithm 1 can not only be
used for the quantized system to learn the trajectory of LTI
systems but also any given system. An example of using this
algorithm to track a nonlinear system around equilibria will
be considered elsewhere.

Remark 2: (On resilient learning) When using our deep
Q network to learn the trajectories, channels can drop out
at any time without causing problems. Since at each step,
it chooses the optimal available action (direction) by (11).

When there channels have dropped out and the optimal
quantized direction is unavailable, the policy can generate
the direction with the optimal Q value from all available
remaining candidates.

IV. MAPPING-BASED TRANSFER LEARNING

In addition to the ability to learn, neurobiological systems
have the ability to generalize and adapt what they have
learned to new but similar problem domains. To explore such
transfer learning in the context of our emulation problems,
suppose that a DQN has been trained for emulating a
particular LTI system. Suppose another LTI system has the
form

ż = Hoz, (15)

and Ho = OHO−1 where O is known and invertible.
To emulate this LTI system, we utilize a mapping-based
transfer learning method [15]. The coordinate is transformed
by setting z = Ox, then the dynamic equations of these two
LTI systems have the following relation:

ż = Hoz = OHO−1z = OHO−1Ox = OHx,

ż = Oẋ = OHx
(16)

Assume we have already obtained a trained model from the
MPC data-based or the DQN-like algorithm for the emulation
problem of (2) using (3), say F : R2n → Rn, which is
expressed by a neural network. 2n is the dimension of state
s and n is the dimension of the quantized direction d. The
model can predict the optimal quantized direction at any
given state s. For example, d = argmax

d
Q∗

ϕ(s, d) if the
DQN model is used.

Instead of learning Fo by constructing another dataset
by solving a new MPC problem or learning a new deep
Q network—which are time-consuming, we try to obtain
a selection policy Fo from F . The strategy will be to use
mapping-based transfer learning, [14]. The main idea is to
express the relationship of features. Therefore, F can be used
directly by the following steps to obtain the learned policy
Fo:

• Record the learning metric like the error vector between
the new LTI system (15) and the quantized system (3) as
feature f1 ∈ Rn, the direction (i.e., [x(k+1)−x(k)]/h)
or the location of the LTI system (i.e., x(k)) as feature
f2 ∈ Rn. Combine these features to be fo = [f1; f2] ∈
R2n;

• Transform the coordinate of features fo to the coordi-

nate system of (2): f =

[
O−1 0
0 O−1

]
fo;

• Predict the optimal direction by d⃗ = F (f);
• Change back the predicted direction to the coordinate

system of (15): d⃗o = Od⃗. It is noted that d⃗o may not
be in the quantized direction set formed in the current
coordinate;

• Find the nearest neighbor of d⃗o in the direction set
by kd-tree or Hebbian-Oja algorithm [10], and denote
this by d⃗∗. The mapping rule that computes the nearest
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neighbor is denoted by M : Rn → Rn and Fig. 2 is an
example.

• It is the (sub)optimal output direction for emulating the
system (15).

Lemma 1: Following the above steps, the learned pol-

icy that gives d⃗o is F̃o = OF (

[
O−1 0
0 O−1

]
fo) and the

learned policy for the new emulation problem is Fo =

M(OF (

[
O−1 0
0 O−1

]
fo)).

Proof: By applying the transformation steps on the
given model, the formula for Fo is easily derived, and the
details are omitted.

Fig. 2. An example of a mapping function that partitions the space
according to the closest quantized direction (not including zero direction).
The black vectors are the quantized directions formed by Bu corresponding
to Fig. 1(a), and the red lines are the division boundaries between the cells
Ui.

It can be observed that there is a special case when the
transformation matrix O makes no change of the action
space, which is the set of all combinations of Bu. In
this case, Dir, is the same as the set Diro formed by
OBu. Therefore, d⃗o = d⃗∗ and the last step to find the
nearest neighbor is no longer needed. Section V provides
a simulation of such a case.

Let π∗, Q∗
ϕ denote the optimal policy and optimal Q

function for the original emulation problem, and π∗
o , Q∗

ϕo

for the new one. According to the definition,

π∗(s) = argmax
d

Q∗
ϕ(s, d),

π∗
o(so) = argmax

do

Q∗
ϕo
(so, do).

(17)

Theorem 1: The optimal learning policy for
this new emulation problem can be expressed as

π∗
o(so) = Oπ∗(

[
O−1 0
0 O−1

]
so), when the following

conditions are satisfied:
(a) The direction space is invariant before and after the
transformation.
(b) The first layer of the Qϕ network is linear and Qϕo has
the same structure as Qϕ.
(c) The reward function for the new problem is designed to

be r(

[
O−1 0
0 O−1

]
so), where r(·) is the reward function

of original problem.

Proof: From the basic setup of Q-learning, we have

Q∗
ϕ(s, d) = r(s) + γmax

d′
Q∗

ϕ(s
′, d′),

where s′ is the state after the system at state s taking
direction d. Here we only consider deterministic policy so
that s′ is also deterministic. For the new problem, we first
transfer the coordinate to the original one. Since state s ∈
R2n contains the error vector as well as the current location
of the LTI system, so →

[
O−1 0
0 O−1

]
so and do → O−1do.

Then,

Q∗
ϕ(

[
O−1 0
0 O−1

]
so, O

−1do) = r(

[
O−1 0
0 O−1

]
so)

+ γ max
O−1d′

Q∗
ϕ(

[
O−1 0
0 O−1

]
s′o, O

−1d′).

(18)

If the first layer of Qϕ is linear, say {ω1is + b1i}, ∀i =
1, 2, · · · k, then ω1i can absorb the transformation matrix

and becomes ω1i

[
O−1 0
0 O−1

]
, where k is the number of

units in the first layer. Assume all other parameters are
the same as in Qϕ except ω1i. We denote this new family
of parameters to be ϕn. Fig. 3 shows the detail of such
parameters transformation. Then, (18) becomes

Q∗
ϕn

(so, O
−1do) = r(

[
O−1 0
0 O−1

]
so)

+ γ max
O−1d′

Q∗
ϕn

(s′o, O
−1d′).

(19)

Fig. 3. The parameter tranformations from Qϕ to Qϕn .

Since the direction space is invariant under matrix O,
O−1do and d lie in the same space and we can write (19) as

Q∗
ϕn

(so, d) = r(

[
O−1 0
0 O−1

]
so) + γmax

d′
Q∗

ϕn
(s̃o, d

′),

(20)
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where s̃o is the state after the new system at state so taking
direction d. From the uniqueness of the optimal Q-network,
it is proved that Q∗

ϕo
(so, do) = Q∗

ϕn
(so, do) as long as the

reward function in the new problem is r(

[
O−1 0
0 O−1

]
so).

From (17) and the invariant direction space, we have

π∗
o(so) = argmax

do

Q∗
ϕo
(so, do)

= O arg max
O−1do

Q∗
ϕn

(

[
O 0
0 O

]
s,O−1do)

= O argmax
d

Q∗
ϕ(s, d) = Oπ∗(s)

= Oπ∗(

[
O−1 0
0 O−1

]
so).

(21)

Therefore, the optimal policy π∗
o(so) of Theorem 1 coincides

with the policy prescibed by applying Algorithm 1 directly.

Corollary 1: Qϕo is convergent that is limk→∞(Qϕo)
k =

Q∗
ϕo

.
Proof: From the proof of Theorem 1, we obtain the

relationship between ϕo and ϕ when both of them construct
the optimal Q function. Therefore, from the convergence of
Q∗

ϕ, Q∗
ϕo

is also convergent.
For general cases, in the last step above, finding the nearest
neighbor of d⃗o is a challenging task when there are numerous
candidate quantized directions if we use exhaustive search.
We may use the Hebb-Oja algorithm which has been intro-
duced in [10], [20] to compute the nearest direction through
iterations. Another approach is construsting a kd-tree, which
is a binary space partitioning data structure. Each non-leaf
node can be thought of as a dividing hyperplane. The points
on one side of this hyperplane are represented by the left
subtree of the node, while the right subtree represents the
points on the other side of the hyperplane. Each node in
the tree is associated with one of the k dimensions, and the
hyperplane is perpendicular to the axis of that dimension.
Here, the quantized directions can be viewed as nodes and
the direction d⃗o is the search key. This tree structure is well
suited for channel dropout situations because when nodes in
the tree have been removed, instead of destroying the whole
structure, we only need to form the set of all nodes and
leaves from the children of the removed nodes and recreate
that part of the tree.

By applying either of two approaches mentioned above,
the mapping function M is obtained. We can directly use
this model in Lemma 1 to compute a (sub)optimal direction.
In addition, it can also be used to learn the Q-network by
the same structure of loss function (12) and the initial ϕo =
ϕ. From experients in Section V, it can be observed that
with these initial parameters, the training efficiency improves
compared with a randomly generated initialization.

V. SIMULATION AND ANALYSIS

In this section, we provide simple simulations of the
learned trajectory per the MPC-based method and per the
DQN algorithm. The LTI system to be emulated is ẋ =

Hx =

[
0 1
−1 −2

]
x with all its eigenvalues located in the

left-half plane. To simplify the example, we let A and B
be as in Example 1 and choose time step h = 0.05. In

the cost function, we design P = Γ =

[
5 0
0 5

]
and R to

be 0.05 ∗ Im. The result is shown in Fig. 4(a), which is
generated by adopting the solver Cplex [24] to solve the
integer programming optimization problem (5). It can be
observed that by solving the MPC optimization problem, we
generate a sequence of vector steps that emulate the LTI
system moving towards the origin.

(a) (b)

Fig. 4. Figure (a) is the emulation result when solving the integer
optimization problem (5) directly. Blue trajectories are the LTI system and
red ones are the quantized system. Figure (b) is the emulation result using
the MPC data-based learned model.

At the same time, we collect a total of 10000 data points
with error vector, i.e., x(k) − xqs(k) and directions, i.e.,
[x(k + 1) − x(k)]/h and [xqs(k + 1) − xqs(k)]/h of two
systems as features, and quantized directions as their labels.
Then, we construct a regular densely-connected four-layer
neural network with ReLU, Sigmoid, or Linear as their
activation functions. The number of nodes in each layer is
1200, 1200, 1200, and 25, respectively. After 20 training
epochs, we obtain a model with a training accuracy of 94.1%.
The test dataset comes from another emulation with all initial
points in the unit circle, which contains 840 data points, and
the accuracy is 90.7%. The trajectory generated by this model
is shown in Fig. 4(b).

Using the same A,B matrices and the same emulated
system, we also construct a two linear-layer Q network with
a hidden layer with 200 activation units between them to
learn the trajectory. The activation function is ReLU. Fig.
5(a) is an emulating system produced by the generalized
DQN algorithm. The learning metric in the algorithm only
considers the L2 norm of the error vector between two
systems. At time T , the location of the LTI system is
x(T ) = eTHhx0, while the quantized system is in the
location xqs(T ) = x0+hBu(0)+hBu(1)+· · ·+hBu(T−1).
Therefore, G(u, T ) = ||eTHhx0 − (x0 + hB

∑T−1
t=0 u(t))||2,

where x0 is the initial point. In this simple example, there
are 25 distinct directions (including zero vector) in the
quantization output alphabet formed by Bu, where ui ∈
{−1, 0, 1}4. Fig. 5(b) provides an example of having one
channel randomly dropout at each time instant. Though it
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has degraded performance, it still has the ability to emulate.

(a) (b)

Fig. 5. Figure (a) is generated by the DQN algoirhm with time step
h = 0.05, while figure (b) is using the same model but having channel
dropouts.

Next, we use the mapping-based transfer learning method

to emulate another LTI system ż = Hoz =

[
−2 1
−1 0

]
z. The

transformation matrix is O =

[
0 1
−1 0

]
in (16), which results

in the action space being invariant. The models we use are
the MPC data-based learning and the DQN-like algorithm,
respectively. The tracking performance is shown in Fig. 6. It
illustrates that both of these two models can be transferred
to solve another emulation problem.

(a) (b)

Fig. 6. Figures show the emulation trajectory of another LTI system ż =

Hoz =

[
−2 1
−1 0

]
z by transferring the MPC-based and DQN model.

When the transform matrix is O =

[
1 0.5
−0.5 1

]
in (16),

the action space is no longer invariant as is illustrated in Fig.
7(a). The red vector directions form the new action space,
used in emulating a new LTI system. For this example, the

new emulated LTI system is ż = Hoz =

[
−0.5 0
−1 −2.5

]
z.

The model we used is the DQN-like Algorithm 1 and the
tracking performance is shown in Fig. 7(b).

To compare the training time of the model with initial
weights and the existing model obtained from the previous
emulation problem, we still choose the new emulated LTI

system to be ż = Hoz =

[
−0.5 0
−1 −2.5

]
z. The existing

DQN model is obtained from emulating the LTI system

ẋ = Hx =

[
0 1
−1 −2

]
x, which generates the trajectory

(a) (b)

Fig. 7. Figure (a) shows the new sequence of quantzied directions in red to

emulate the LTI system ż = Hoz =

[
−0.5 0
−1 −2.5

]
z, while black ones

are the previous directions to be used to train the DQN model. Figure (b)
is the emulation trajectory using new vector directions.

of Fig.5(a). Then, we train 20 episodes of these two models,
respectively. Simulation results are shown in Fig. 8. It can
be observed that the existing model has a better emulation
performance after the same training episodes. The reason is
that borrowing the existing model’s structure and parameters
for the new problem can reduce the value of the loss function
to a certain extent during the initial training to shorten the
training time.

(a) (b)

Fig. 8. Figure (a) shows the learned trajectories after 20 training episodes
of a DQN model with randomly initialized parameters, while figure (b) uses
the previously trained LTI system DQN model as initializations for the new
system’s model.

VI. CONCLUSIONS AND FUTURE WORK

The work we have reported examines techniques in ma-
chine learning by which the neuromimetic linear models
introduced in [9] and [10] can learn to emulate stable
closed-loop systems. We have proposed a learning model
incorporating model predictive control (MPC) as well as
a custom deep Q network (DQN) algorithm. For both ap-
proaches, we have studied specific cases in which transfer
learning is possible for systems related by certain classes of
coordinate transformations. For all cases, it is noted that the
kinds of resilience to channel dropouts reported previously
persist in the learned models. Future work will be aimed at
showing how a continuous observer can be used to synthesize
quantized trajectories for the class of overcomplete systems
under consideration.
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