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Abstract— In this paper we propose a data-driven approach
to the design of a residual generator, based on a dead-beat
unknown-input observer, for linear time-invariant discrete-time
state-space models, whose state equation is affected both by
disturbances and by actuator faults. We first review the model-
based conditions for the existence of such a residual generator,
and then prove that under suitable assumptions on the collected
historical data, we are both able to determine if the problem
is solvable and to identify the matrices of a possible residual
generator. We propose an algorithm that, based only on the
collected data (and not on the system description), is able
to perform both tasks. An illustrating example concludes the
paper.

Index Terms— Fault detection and identification, actuator
fault, data-driven methods.

I. INTRODUCTION

Data-driven approaches to the solution of control problems
are quite pervasive in nowadays literature. In particular, data-
driven fault detection (FD) methods have been the subject of
a significant number of papers [3], [8], [9], [7], [17] Since
the early works of J.F. Dong and M. Verhaegen [12] and of
S.X. Ding et al. [10], FD schemes that are designed directly
based on collected data, by avoiding the preliminary step
of system identification, have been proposed. Most of the
available results, however, focus on detection, rather than
identification, [10], [9] and provide algorithms to design the
matrices of a residual generator, based for instance on QR-
decomposition and SVD [9]. Also, necessary and sufficient
conditions for the problem solvability have typically been
expressed in terms of the original system matrices, and not
on the available data. This means that the assumption that
fault detection and identification (FDI) can be successfully
performed on the system is taken for granted and not directly
checked on data.

Leveraging some recent results on data-driven unknown-
input observer (UIO) design (see [19] or [11]), we propose
a data-driven approach to the design of a residual generator,
based on a dead-beat UIO [1], [15], for a generic linear time
invariant state-space model, whose state equation is affected
both by disturbances and by faults. We first provide necessary
and sufficient conditions for the problem solvability, by
adopting a model-based approach that relies on classic results
by J. Chen and R.J. Patton [4]. Secondly, we show that
under a suitable assumption on the data, that ensures that
they are representative of the original system trajectories,
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we derive necessary and sufficient conditions for the problem
solvability in terms of the available data. Such conditions are
weaker than the conditions that guarantee the identifiability
of the original system matrices. In fact, with the available
data we would not be able to identify the original system,
since we cannot measure the disturbance. Finally, we provide
an algorithm to derive the matrices of a dead beat UIO-based
residual generator that allows to identify any actuator fault.

As previously mentioned, the paper leverages the results
about asymptotic UIO proposed in [19] or [11], but signifi-
cantly advances them in three aspects: first, it provides a way
to check on the data (only) the problem solvability. Secondly,
it provides a practical algorithm to design the matrices of
a possible dead-beat UIO (while the previous references
focused only on existence conditions). Thirdly, it extends
the analysis to FDI. The more restrictive choice of focusing
on dead-beat UIOs, rather than asymptotic UIOs, is meant
to provide a cleaner set-up, that allows for exact solutions,
since one does not need to account for the contribution of
the estimation error when trying to identify the fault.

The paper is organised as follows. In Section II we intro-
duce the overall set-up and formally state the FDI problem
we address in this paper, that assumes that disturbances and
faults affect only the state update. Section III recalls the
model-based solution to the design of a residual generator
based on a dead-beat UIO, by suitably adjusting the one
available in the literature for asymptotic UIOs. We also
provide necessary and sufficient conditions for the existence
of a residual generator, based on the dead-beat UIO, that
allows to uniquely identify the fault from the residual signal.
There are high chances that this specific result is already
known in the literature, but since we were not able to find
a reference, we provided a short proof to lay on solid
ground the subsequent data-driven analysis that relies on
this result. Under a rather common assumption on the data
(see Assumption 2), that can be related to the persistence of
excitation [20], [21] of the system inputs, in Section IV we
first provide data-based necessary and sufficient conditions
for the problem solvability, and then, by resorting to a
couple of technical results, we provide a simple Algorithm
that allows to first check on data the problem solvability
conditions, and then provides matrices of a dead-beat UIO-
based residual generator. An example concludes the paper.
Due to page constraints, we refer to [13] for the proof of
Proposition 7 as well as for a technical lemma.

Notation. Given two integers h, k ∈ Z, with h ≤ k, we
let [h, k] denote the set {h, h + 1, . . . , k}. Given a matrix
M ∈ Rn×m, we denote by M⊤ its transpose, and by M†

its Moore-Penrose inverse [2]. If M is of full column rank
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(FCR), then M† = [M⊤M ]−1M⊤. A similar expression can
be provided in the case when M is of full row rank (FRR).
Given an n-dimensional vector sequence {ω(k)}k∈Z+ taking
values in Rn and a positive integer N , we set

ωN (k)
.
=


ω(k)

ω(k + 1)
...

ω(k +N − 1)

 ∈ RNn. (1)

II. UIO-BASED FAULT DETECTION AND
IDENTIFICATION: PROBLEM STATEMENT

Consider an linear time invariant discrete-time dynamical
system Σ, described by the state-space model:

x(k + 1) = Ax(k) +Bu(k) + Ed(k) +Bf(k), (2a)
y(k) = Cx(k), k ∈ Z+, (2b)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp, d(k) ∈ Rr

and f(k) ∈ Rm are the state, input, output, disturbance and
actuator fault signals, respectively, while A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n and E ∈ Rn×r. We assume that E has
rank r. Indeed, if rankE = r̄ < r, we can rewrite it as
E = ĒT , where Ē ∈ Rn×r̄ is FCR and T ∈ Rr̄×r is FRR,
and define as new unknown input d̄(t) .

= Td(t).
We assume for the UIO-based residual generator the

following description [4], [14]:

z(k + 1) = AUIOz(k) +Bu
UIOu(k) +By

UIOy(k), (3a)
x̂(k) = z(k) +DUIOy(k), (3b)
r(k) = y(k)− Cx̂(k), k ∈ Z+, (3c)

where z(k) ∈ Rn is the residual generator state vector,
x̂(k) ∈ Rn denotes the state estimate and r(k) ∈ Rp

the residual signal. The real matrices AUIO, B
u
UIO, B

y
UIO

and DUIO have dimensions compatible with the previously
defined vectors.
If we let e(k)

.
= x(k) − x̂(k) denote the state estimation

error at time k, then our goals are:
i) We want to ensure that there exists k0 > 0 such

that, when the system is not affected by actuator faults, for
every initial condition e(0), and every input and disturbance
sequences applied to the original system Σ, the error e(k) is
zero for every k ≥ k0 (and hence so is the residual signal).
This means that equations (3a) and (3b) describe a dead-beat
UIO [1], [15] for Σ.

ii) If a fault affects the system from some kf ≥ k0
onward, then the residual signal r(k) becomes nonzero
(fault detection) and the knowledge of the residual allows
to uniquely identify the fault that has affected Σ (fault
identification).

III. MODEL BASED APPROACH

A. Dead-beat UIO

In the following we will steadily work under the following:

Assumption 1. We assume that
A. rank(CE) = rank(E) = r;

B. rank

([
zIn −A −E

C 0p×r

])
= n+ r, ∀ z ∈ C, |z| ≠ 0.

Assumption 1 corresponds to what in the sequel we
will call strong* reconstructability property of the triple
(A,E,C), due to its relationship with the well known
strong* detectability property, as defined in [5], [16].

Proposition 1. There exists a dead-beat UIO for system Σ
described as in (3a) - (3b) if and only if Assumption 1 holds.

Proof: The proof is a slight modification of the one
for asymptotic UIOs (see [5], [6]) and we report it here in
concise form. By making use of the equations describing
the system and the UIO, we deduce that the estimation error
evolves according to the following difference equation:

e(k + 1) =[(In −DUIOC)A−AUIO(In −DUIOC)

−By
UIOC]x(k) + (In −DUIOC)Ed(k)

+AUIOe(k) + (In −DUIOC)Bf(k)

+ [(In −DUIOC)B −Bu
UIO]u(k). (4)

If no fault affects the system Σ (namely f(k) = 0 for every
k ∈ Z+), the estimation error converges to zero in a finite
number of steps, independently of the initial conditions of
the system and the UIO, of the input u and of the disturbance
d, if and only if (iff ) the matrices AUIO, Bu

UIO, By
UIO and

DUIO satisfy the following constraints:

(In −DUIOC)A−AUIO(In −DUIOC) = By
UIOC (5a)

Bu
UIO = (In −DUIOC)B (5b)

(In −DUIOC)E = 0n×r (5c)
AUIO nilpotent (5d)

By making use of the analysis in [5], [6], we can claim that
equations (5) hold iff Assumption 1 holds.

As a result of Proposition 1, under Assumption 1 there
exist matrices AUIO, Bu

UIO, By
UIO and DUIO satisfying (5)

and hence the error dynamics becomes

e(k + 1) = AUIOe(k) +Bu
UIOf(k),

where AUIO is nilpotent. In particular, if f(k) = 0, the
equation becomes e(k + 1) = AUIOe(k). This implies that
after a finite number of steps the estimation error becomes
a function of the fault signal only.

Remark 2. Assumption 1.A is necessary and sufficient for
the solvability of (5c). Once a solution to (5c) is obtained,
conditions (5a) and (5b) immediately follow. The general
solution of (5c) is given in [6].
If, in addition, Assumption 1.B holds, then (see [6], Theorem
2) among the matrices DUIO satisfying (5c) there exist some
for which the pair ((In −DUIOC)A,C) is reconstructable.
This is always the case if rank(In−DUIOC) = n−r (which
also means that ker(In−DUIOC) = Im(E)). Lemma 11 in
[13] proves that if DUIO is a solution of (5c) of rank r (e.g.,
DUIO = E(CE)†), then rank(In −DUIOC) = n− r. This
implies that if we choose a solution DUIO of rank r for (5c),
then the pair ((In −DUIOC)A,C) is reconstructable.
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When so, a possible way to compute AUIO is the following
one. From (5a), we deduce that AUIO can be expressed as

AUIO = (In −DUIOC)A− (By
UIO −AUIODUIO)C

= (In −DUIOC)A− LC,

for L
.
= By

UIO −AUIODUIO. Consequently, we first choose
L so that AUIO = (In −DUIOC)A− LC is nilpotent and
then deduce By

UIO as By
UIO = L+AUIODUIO.

To summarise, by making use of Theorem 2 in [6] and the
assumption that (A,E,C) is strong* reconstructable, we first
find a solution DUIO of (5c) of rank r. Then we determine
L such that AUIO = (In − DUIOC)A − LC is nilpotent
and finally we set By

UIO = L + AUIODUIO and Bu
UIO =

(In −DUIOC)B.
In the sequel, we will always assume that rank(DUIO) = r.

B. Fault Detection and Identification

Under the hypothesis that AUIO is nilpotent, in the ab-
sence of faults, the estimation error e(k) goes to zero in a
finite number of steps k0. So, if we assume that the time
kf at which the fault affects the system is greater than or
equal to k0, then e(kf ) = 0n. Therefore, the dynamics of
the estimation error for k ≥ kf is

e(k + 1) = AUIOe(k) +Bu
UIOf(k),

r(k) = Ce(k),

with e(kf ) = 0n, and ∀ k > kf , the residual signal is

r(k) =

k−1∑
i=kf

CAk−i−1
UIO Bu

UIOf(i),

in particular, r(kf + 1) = CBu
UIOf(kf ), and hence, it is

immediate to see that we are able to uniquely identify every
fault from the residual (with one step delay), iff CBu

UIO is
FCR. It is worth noting that the FCR condition on CBu

UIO

remains necessary and sufficient for the fault identification
even if we consider a longer time window. Indeed, if we
assume as observation window [kf + 1, kf + N ], then the
family of residual signals r(k), k ∈ [kf +1, kf +N ], can be
described as follows:

rN (kf + 1) = MNfN (kf ),

where rN (kf + 1) and fN (kf ) are defined as in (1), and

MN
.
=


CBu

UIO

CAUIOB
u
UIO CBu

UIO

...
. . .

. . .
CAN−1

UIOBu
UIO . . . CAUIOB

u
UIO CBu

UIO

 .

We can identify the vector fN (kf ) ∈ RNm from the residual
vector rN (kf + 1) ∈ RNp iff the matrix MN ∈ RNp×Nm is
FCR and this is the case iff CBu

UIO ∈ Rp×m is FCR.
A necessary and sufficient condition for the matrix

CBu
UIO to be FCR is given in Proposition 3, below.

Proposition 3. Suppose that Assumption 1.A holds. Then the
following facts are equivalent:

i) rank([CB CE ]) = m+ r;
ii) CBu

UIO = C(In −DUIOC)B is FCR.

Proof: i) ⇒ ii) follows immediately from Lemma 11
in [13].

ii) ⇒ i) Assume that rank([CB CE ]) is smaller than m+
r. Then there exists a nonzero vector v = [ v⊤

B v⊤
E ]⊤ such that[

CB CE
] [vB

vE

]
= 0p. (6)

Note that vB cannot be zero, otherwise (6) would become
CEvE = 0p and this would contradict Assumption 1.A.
Consequently,

0p = (Ip − CDUIO)
[
CB CE

] [vB
vE

]
= CBu

UIOvB .

Since vB ̸= 0m, this implies that CBu
UIO is not FCR.

The results so far obtained can be summarised in the
following proposition.

Proposition 4. Under Assumption 1, there exists a residual
generator, based on a dead-beat UIO and described as in
(3), for the discrete-time state-space model (2), that allows
to uniquely identify an arbitrary fault affecting the actuators,
iff rank ([CB CE ]) = m+ r.

As Assumption 1.A is encompassed in condition
rank ([CB CE ]) = m + r, an alternative way to state the
previous result is the following one, to which we will steadily
refer for the problem solution in the model-based approach.

Proposition 5. The following conditions are equivalent:
i) There exists a residual generator, based on a dead-beat

UIO and described as in (3), for the discrete-time state-
space model (2), that allows to uniquely identify an
arbitrary fault affecting the actuators;

ii) Assumption 1.B holds and rank ([CB CE ]) = m+ r.

IV. DATA-DRIVEN APPROACH

We assume to have collected offline input, state and output
measurements from the system (affected by disturbances but
not by faults) on a finite time window of (sufficiently large)
length T : ud

.
= {ud(k)}T−2

k=0 , xd
.
= {xd(k)}T−1

k=0 and yd
.
=

{yd(k)}T−1
k=0 . Accordingly, we set

Up =
[
ud(0), . . . , ud(T − 2)

]
∈ Rm×(T−1)

Xp =
[
xd(0), . . . , xd(T − 2)

]
∈ Rn×(T−1)

Yp =
[
yd(0), . . . , yd(T − 2)

]
∈ Rp×(T−1)

Xf =
[
xd(1), . . . , xd(T − 1)

]
∈ Rn×(T−1)

Yf =
[
yd(1), . . . , yd(T − 1)

]
∈ Rp×(T−1)

Note that it not uncommon to assume that the state variable
is accessible (only) during the preliminary data collection
process [11], [19], [18]. Moreover, if this were not the case,
state estimation based on data could not be possible, as the
input and output data do not provide information about the
specific state realization Σ. Also, even if we assume that
no direct measurements of the disturbance sequence dd

.
=
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{dd(k)}T−2
k=0 associated with the historical data are available,

nonetheless, for the subsequent analysis, it is convenient
to introduce the symbol Dp =

[
dd(0), . . . , dd(T − 2)

]
∈

Rr×(T−1).
In the sequel, we will make the following:

Assumption 2. The dimension r of the disturbance vector
d is known, and the (m+ r + n)× (T − 1) matrixUp

Dp

Xp

 is FRR.

Note that this assumption holds true, in particular, if the
pair (A, [B E]) is controllable and the sequence {ud, dd} is
persistently exciting of order n + 1 (see [20], Theorem 1).
See [11] for additional comments on this aspect.

We want to prove that, under Assumption 2, the two
necessary and sufficient conditions for the existence of a
residual generator, based on a dead-beat UIO, that we derived
in Proposition 5 via a model-based approach, find immediate
counterparts in terms of the data matrices Up, Xp, Xf , Yp and
Yf . This means that, under Assumption 2, the solvability
conditions derived in a data-driven set-up are equivalent to
those one needs to verify when relying on the system model.

Proposition 6. Under Assumption 2, the following facts are
equivalent:

i) Assumption 1.B holds and rank ([CB CE ]) = m+ r;
ii) The following conditions on the data matrices hold:

iia) rank

zXp −Xf

Yp

Up

 = n+r+m, ∀z ∈ C, z ̸= 0;

iib) rank

([
Xp

Yf

])
= n+ r +m.

Proof: We first prove that Assumption 1.B is equivalent
to iia). Since the data are derived from the state-space model
(2), it follows that they satisfy the state equation and hence

Xf = AXp +BUp + EDp. (7)

Consequently,

zXp −Xf = (zIn −A)Xp −BUp − EDp

=
[
−B −E zIn −A

] Up

Dp

Xp

 .

This implieszXp −Xf

Yp

Up

 =

−B −E zIn −A
0 0 C
Im 0 0

Up

Dp

Xp

 .

By Assumption 2 the matrix of data on the right is FRR
(= m+ r + n), therefore condition iia) holds iff

rank

−B −E zIn −A
0 0 C
Im 0 0

 = m+ r + n, ∀z ̸= 0,

which is equivalent to Assumption 1.B. We now show that

[CB CE ] is FCR iff iib) holds. Making use, again, of the fact
that the data are generated by the system (2), we can write:[

Xp

Yf

]
=

[
0n×m 0n×r In
CB CE CA

]Up

Dp

Xp

 .

As the last matrix is FRR by Assumption 2, condition iib)
holds iff

rank

([
0n×m 0n×r In
CB CE CA

])
= m+ r + n,

which in turn holds true iff [CB CE ] is FCR.
The previous proposition is extremely useful because it

allows one to immediately check from data if the problem
is solvable. We now provide a path to explicitly determine a
solution, provided that the aforementioned conditions hold.

Proposition 7. [13] Under Assumption 2, the following facts
are equivalent:

i) Assumption 1.B holds and rank ([CB CE ]) = m+ r;
ii) There exist real matrices T1, T3 and T4, of suit-

able dimensions, such that (T3, C) is reconstructable,
rank(CT1) = m, and

Xf =
[
T1 T3 T4

] Up

Xp

Yf

 ; (8)

iii) There exist real matrices T1, T2, T3 and T4, of suitable
dimensions, with T3 nilpotent and rank(CT1) = m,
such that

Xf =
[
T1 T2 T3 T4

] 
Up

Yp

Xp

Yf

 . (9)

We now summarize the outcome of the previous analysis.
In Section III we have proved (see Proposition 5) that a
residual generator, based on a dead-beat UIO and described
as in (3), exists iff Assumption 1.B and rank ([CB CE ]) =
m+r hold. In Proposition 6 we showed how such conditions
can be equivalently checked on the available data. Finally,
Proposition 7 tells us that such conditions are equivalent
to the existence of a solution (T1, T2, T3, T4) of (9), with
T3 nilpotent and rank(CT1) = m. By resorting to the
results derived in [11] (see, also, [19]), we can immediately
determine the matrices AUIO, Bu

UIO, By
UIO and DUIO of

the (dead-beat) UIO (3a), (3b) as

AUIO = T3, DUIO = T4,
Bu

UIO = T1, By
UIO = T2 + T3T4.

(10)

Also, as a consequence of Assumption 2, we can claim that
Xp is FRR, and hence by exploiting the relationship Yp =
CXp we can uniquely identify C as C = YpX

†
p . This allows

us to also determine the expression of the residual (3c).
Proposition 7 together with identities (10) allow to derive

the matrices of the desired residual generator. However,
once the necessary and sufficient conditions for the problem
solvability have been checked on the historical data, it

6834



is not obvious how to identify, among all the solutions
(T1, T2, T3, T4) of (9), one with T3 nilpotent and CT1 FCR.
To this end we provide an algorithm which is based on a first
important observation, condensed in the following lemma.

Lemma 8. The following facts are equivalent:
i) There exists a solution (T1, T3, T4) of (8), for which

(T3, C) is reconstructable and rank(CT1) = m;
ii) There exists a solution (T1, T3, T4) of (8), for which

rank(T4) = r, and for every such solution the pair
(T3, C) is reconstructable and rank(CT1) = m.

Proof: ii) ⇒ i) is obvious, so we only need to prove that
i) ⇒ ii). By mimicking the proof of iii) ⇒ i) in Proposition 7
[13], we claim that a triple (T1, T3, T4) solves (8) iff it solves

[
T1 T3 T4

]  Im 0m×r 0m×n

0n×m 0n×r In
CB CE CA

 =
[
B E A

]
,

namely iff (T1, T3, T4) = ((In − T4C)B, (In − T4C)A, T4),
with T4 any matrix satisfying E = T4CE.

Now, let (T̄1, T̄3, T̄4) be any solution of (8), satisfying the
hypotheses in i). This implies that T̄4CE = E (and hence
rank(CE) = rank(E) = r), the pair ((In − T̄4C)A,C) =
(T̄3, C) is reconstructable, and C(In − T̄4C)B = CT̄1 is
FCR. But by the analysis we carried out in Section III, we
can claim that there exists T ∗

4 of rank r, satisfying T ∗
4CE =

E, and for every such T ∗
4 it will still be true that ((In −

T ∗
4C)A,C) is reconstructable, and C(In−T ∗

4C)B has FCR.
This completes the proof.

The previous Lemma 8 tells us that in order to find a
solution (T1, T3, T4) of (8) with the required properties we
need to focus on those for which rank(T4) = r. On the other
hand, the proof of Lemma 8 shows that the solutions of (8)
are those and only those expressed as (T1, T3, T4) = ((In −
T4C)B, (In − T4C)A, T4), with T4 any matrix satisfying
E = T4CE. However, the matrix E is not available, and
hence we need to select such matrices T4 by making use
only of data. Let S be a (T − 1) × (T − 1) nonsingular
square (NSS) matrix such thatUp

Xp

Yf

S =

 Im 0m×(T−1−m−n) 0m×n

0n×m 0n×(T−1−m−n) In
YB YE YA

 , (11)

for suitable matrices YA, YB and YE with p rows. Such a
matrix exists because

[
U⊤
p X⊤

p

]⊤
is FRR (as a consequence

of Assumption 2). Set X̄f
.
= XfS and block-partition

it, according to the block-partitioning of YfS, as X̄f =[
XB XE XA

]
. Then, (T1, T3, T4) solves (8) iff it solves[

XB XE XA

]
=

=
[
T1 T3 T4

]  Im 0m×(T−1−m−n) 0m×n

0n×m 0n×(T−1−m−n) In
YB YE YA

 ,

namely iff (T1, T3, T4) = (XB − T4YB , XA − T4YA, T4),
with T4 any matrix satisfying XE = T4YE . This allows to
say that T4 satisfies XE = T4YE iff it satisfies E = T4CE.

The previous analysis and results lead to Algorithm 1 that
describes a procedure to determine from data the matrices
of a dead-beat UIO-based residual generator (AUIO, Bu

UIO,
By

UIO, DUIO, C) for system (2) (under Assumption 2).

Algorithm 1 Data Driven UIO matrix estimation procedure
Input: r, Up, Xp, Yp, Xf , Yf .
Output: AUIO, Bu

UIO, By
UIO, DUIO, C.

1. Check if conditions iia) and iib) in Proposition 6 hold.
If not, the problem is not solvable. Otherwise, go to
Step 2.

2. Set C = YpX
†
p . Let S be a (T−1)×(T−1) NSS matrix

such that (11) holds, for suitable matrices YA, YB and
YE with p rows. Find a solution T ∗

4 of XE = T4YE

with rank(T ∗
4 ) = r, and set T ∗

1 = XB − T ∗
4 YB and

T ∗
3 = XA − T ∗

4 YA. Since at Step 1 we have checked
that the problem is solvable, then necessarily (T ∗

3 , C) =
(XA − T ∗

4 YA, C) is reconstructable and CT ∗
1 is FCR.

3. Let L be such that T ∗
3 − LC is nilpotent. Then

Xf =
[
T ∗
1 L T ∗

3 − LC T ∗
4

] 
Up

Yp

Xp

Yf

 .

So, by making use of (10), the matrices of the residual
generator are: AUIO = T ∗

3 − LC, DUIO = T ∗
4 , C =

YpX
†
p , Bu

UIO = XB − T ∗
4 YB , By

UIO = L + (T ∗
3 −

LC)T ∗
4 .

Example 9. Consider the system Σ, of dimension n = 5,
with describing matrices:

A =


0.8 0 0 0 0
−0.8 0 0 0 0
−1 0 −1.2 −0.5 −1.3
2 −0.6 2.6 1 2.3
0.8 −0.9 0.6 0.1 0

 ,

B =


1
0
0
0
0

 , E =


0 0
0 0
1 1
0 1
0 0

 , C =

 1 0 0 0 0
0 0 1 −2 0
−1 0 0 1 0

 .

The historical (both known and unknown) input data have
been randomly generated, uniformly in the interval (−5, 5)
for the known input u(k), and in the interval (−2, 2) for the
disturbance d(k). The time-interval of the offline experiment
has been set to T = 150. We have collected the data
corresponding to the input/output/state trajectories and then
checked assumptions iia) and iib) of Proposition 6. Clearly,
from Yp and Xp we deduce C. By making use of the

6835



Algorithm 1, we have chosen as matrices of the UIO (3):

AUIO =


0 0 0 0 0

−0.8 0 0 0 0
0.8 0 0 0 0
−1.6 0 0 0 0
0.8 −0.9 0.6 0.1 0

 , Bu
UIO =


1
0
1
−2
0

 ,

By
UIO =


0.8 0 0
0 0 0
0 0 0
0 0 0
0.9 0.6 1.3

 , DUIO =


0 0 0
0 0 0
1 1 2
3 0 1
0 0 0

 .

It is easy to verify that AUIO is nilpotent with nilpotency
index kN = 3. In order to test the performance of the dead-
beat UIO generator, we fed the system with the (known) input
u(k) = 0.9 sin(0.4k + 3), k ∈ Z+, a random disturbance
d(k) whose first and second entries take values uniformly in
the interval (−5, 5) and (−2, 2), respectively, and the fault
signal

f(k) =

{
0 k < kf ,

max
{
0.1 + exp

(
−10

k−kf+1

)
, 0.9

}
k ≥ kf .

We let kid denote the first time at which we start the fault
estimation. We have simulated four different scenarios in
which we changed the relative position of kN , kid and kf .

In Fig. 1 (a) we have the ideal case, as the identification
starts only when the estimation error has become zero (kid =
kN ) and the fault starts after kid. In this scenario, the fault
is perfectly estimated (f̂(k) = f(k),∀k ≥ kid). In Fig. 1 (b),
the fault appears before e(k) becomes zero (kf < kN ), and
the identification starts at kid = kN . In Fig. 1 (c), we start
the identification before kN , when the residual is nonzero
only due to the estimation error (kid < kN ), and the fault
affects the system at kf > kN . Finally, in Fig. 1 (d), the
identification starts after the fault appears and the effect of
e(0) is extinguished (kN ≤ kf < kid). In the last three cases
the fault estimate f̂ oscillates around the real value of f and,
in a finite number of steps, it reaches the correct value, as
expected. From the third plot we deduce that starting the
FDI before kN may lead to false alarms; on the other hand,
from the fourth plot we can see that late estimation leads to
errors. The best choice is to start the identification exactly
when e(k) becomes zero, i.e. to assume kid = kN .
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