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Abstract— Adaptive dynamic programming (ADP) is one of
the main methods to solve the optimal control problem of
nonlinear systems. Eligibility traces are utilized in recent years
to reduce the computing burden of the value function, but
the existing fixed eligibility trace is difficult to ensure stable
convergence especially when facing environmental changes and
complex neural network structures. To solve the above issues,
a novel off-policy algorithm, T-HDP(λ) with Multiple Time-
scale Eligibility Traces (MET), is proposed. By utilizing MET,
the new algorithm can adaptively accumulate gradients and
include more gradient information, which guides the control
faster in the optimal direction. T-step Truncated λ-returns are
utilized to solve the infinite-horizon optimal control problems,
and a new importance sampling ratio is designed to correct the
value function. Furthermore, the convergence and boundedness
of the algorithm are proved. Based on the actor-critic network
architecture, the optimal value function and policy are well
approximated. Finally, compared with the original algorithm
by a simulation example, the proposed algorithm has a faster
convergence speed and lower variance.

I. INTRODUCTION

Adaptive dynamic programming (ADP) is a traditional
method to solve the optimal control problems of nonlinear
systems. It can speed up the process of the solution by
avoiding the “curse of dimensionality” [1]. Policy iteration
(PI) and value iteration (VI) are two traditionally used
iterative ADP algorithms. During the iteration process, the
performance index and the control law will finally converge
to the optimal value respectively [2]–[4].

The accurate numerical solution of the Hamilton-Jacobi-
Bellman (HJB) equation is still the main obstacle. The key
step of the ADP method is approximating the performance
index so as to determine the optimal control policy, which
exactly meets the goal of reinforcement learning (RL). Thus,
the optimal control problems of discrete systems combing
with RL have sprung up in recent years [5]–[8]. Lots of
advanced achievements and technology are introduced into
ADP to realize the optimal controller design of the system.

There are many derived approaches with ADP or actor-
critic framework, such as heuristic dynamic programming
(HDP), dual heuristic dynamic programming (DHP), glob-
alized dual heuristic dynamic programming (GDHP), deep
deterministic policy gradient (DDPG) algorithm, and so on.
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All the above algorithms are derived by the temporal differ-
ence (TD) learning, which is used to approximate the value
function that depends on future values under a given policy.
Affected by harsh environments or destructive tests, in many
cases, the sampling data of the control system is limited.
Designing a control algorithm with limited information is
another problem that needs to be solved emphatically.

Although there are many methods to expand the data
set, such as data augmentation and generative adversarial
networks [9]–[12], the special properties of timing and tran-
sition probability involved in the Markov decision process
(MDP) make these methods no longer applicable. Hence,
eligibility traces are introduced in the optimal control theory,
which records the past and current gradients to speed up
the learning process and solve the problem of sparse data.
Lots of new algorithms appeared by combining eligibility
traces. HDP(λ) [13] combined the eligibility trace with the
HDP framework. In [14], a group of expected eligibility
algorithms was proposed to make full use of the counter-
factual sequences which could also have led to the desired
state or goal. Moreover, some eligibility traces algorithms
were proposed to solve optimal control problems for discrete-
time systems, such as gradient compensation eligibility traces
[15] and GDHP schemes with eligibility traces [16]. Sarsa(λ)
algorithms are utilized to solve the optimal control problems
for real physical systems such as the community energy
storage operation problem [17], static ship path planning
problem [18] and underwater vehicles optimal control in
dynamic environments [19].

In most of these related works, however, the update of
the value function using eligibility traces depends on returns
which are quite far in the future. For the infinite-horizon
optimal control problems, the above methods are no longer
suitable, which is still a significant intractable issue [20],
[21]. Moreover, the existing fixed eligibility trace calculation
cannot realize dynamic adjustment, and it is difficult to en-
sure stable convergence when fitting environmental changes
and complex neural network structures.

Motivated by the aforementioned works, the main contri-
butions of this paper can be listed as follows:

(1) A novel model-based algorithm, named T-step Trun-
cated HDP with Multiple Time-scale Eligibility Traces (T-
HDP(λ) with MET), is proposed. The algorithm utilizes
the adaptive eligibility traces to avoid the problem that
the approximation using a deep neural network may not
converge. Compared with [13], our algorithm guides the
control faster in the optimal direction without increasing the
computational cost.
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(2) It is an off-policy algorithm to get better policy explo-
ration results and improve data utilization. A new importance
sampling ratio is designed to better match multiple time-scale
eligibility traces.

(3) T-step truncated finite terms of the optimal perfor-
mance index function are used to solve the infinite-horizon
optimal control problems. The convergence and boundedness
of finite terms in the optimal performance index are proved.

(4) A novel convergence analysis is shown to guarantee
that the iterative value function of T-HDP(λ) with MET
algorithm converges to the optimal performance index.

The next sections are organized as follows: In Section II,
the preliminaries and basic concepts are introduced. Section
III presents the details of T-HDP(λ) with MET algorithm,
including the novel multiple time-scale eligibility traces
and the convergence analysis of the state-value function
sequence. In Section IV, the simulation results show the ef-
fectiveness of the proposed algorithm Finally, the conclusion
is given.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a general discrete-time dynamic system given by

xk+1 = f (xk) + g(xk)uk (1)

where xk ∈ Rn is the state and uk ∈ Rm is the control signal.
n and m denote the dimensions of state and control space.
f (x) and g(x) are continuous functions with f (0) = 0. It is
assumed that system (1) is stabilizable on the set Ω.

In optimal control problems, the performance index,
as well as the cost function from the initial time k =
0 is denoted by J(x0) =

∑∞
k=0 γ

k
(
xT
k

Qxk + uT
k

Ruk
)
=∑∞

k=0 γ
kR(xk,uk), where 0 < γ < 1 is a discount factor, x0

denotes the initial state, and R(xk,uk) = xT
k

Qxk+uT
k

Ruk rep-
resents a utility function with Q and R being symmetric and
positive definite matrices. Denote J(xk) with only respect
to xk and R(xk,uk) as Jk and Rk at time k respectively.

The objection of the optimal control is to find an admis-
sible control law series uk (k = 0,1,2, . . . ) which minimizes
the cost function J(x0)

J ∗(x0) = J(x0,u∗k) = min
uk

(∑∞

k=0
γkR(xk,uk)

)
(2)

where the optimal control law u∗
k

can be defined as

u∗k = arg min
uk

(∑∞

k=0
γkR(xk,uk)

)
(3)

The iteration form of computing J(xk) from the initial
state xk can be rewritten as

J(xk) = R(xk,uk) + γ
∑∞

s=k+1
γs−k−1R(xs,us)

= R(xk,uk) + γJ(xk+1)
(4)

Using Bellman’s optimality principle in optimal control
theorem, the iteration form of optimality is shown as

J ∗(xk) = min
uk
(R(xk,uk) + γJ ∗(xk+1)) (5)

Definition 1 (State-value function): vπ(xk) defined in
Eq.(6) as the expected return and following policy π
thereafter, is called the state-value function for policy π.

vπ(xk) = Eπ[J(xk)] = Eπ
[∑∞

s=k
γs−kR(xs,us)

]
(6)

In fact, the accurate true value of state-value function
vπ(xk) is hard to be observed. Here, an approximate value
of state-value function Vπ(xk) estimated by neural networks
is used. The Eq.(4) can be transferred to approximate state-
value function form as follows

Vπ(xk) = min
uk
(R(xk,uk) + γVπ(xk+1)) (7)

Definition 2 (n-step return): The return Jk:k+n(xk) de-
fined in Eq.(8), which accumulates the reward from time
k to time k + n, is called n-step return.

Jk:k+n(xk) =R(xk,uk) + γR(xk+1,uk+1) + γ
nVπ(xk+n)

=
∑k+n−1

s=k
γs−kR(xs,us) + γnVπ(xk+n)

(8)

Similar to the one-step return, n-step returns accumulate
the next n-steps rewards and obtain more information about
the future. Being truncated after n steps and corrected for
the remaining missing terms by Vπ(xk+n), all n-step returns
can be considered as the approximation to the full return.

Definition 3 (λ-return): The return Jλ
k
(xk) defined in

Eq.(9) is called λ-return. It contains all the n-step returns, and
each return weighted proportionally to λn−1(where λ ∈ [0,1])
is normalized by a factor of 1− λ to ensure that the weights
sum up to 1.

Jλ
k (xk) = (1 − λ)

∑∞

n=1
λn−1Jk:k+n(xk) (9)

The λ-return is composed of all the n-step returns and
gives each of them weighted to make sure the convergence
of computing itself. It possesses an error reduction property
and thus the error convergence can be guaranteed.

Using λ-return, the update rule of estimating Vπ(xk) is
shown as Vi+1

π (xk) = V
i
π(xk) + α[J

λ
k
(xk) − Vi

π(xk)], where
i is the iteration time and Vi+1

π (xk) is the next iteration of
Vi
π(xk). After all, the value of Vi

π(xk) converges to a finite
estimated value Vπ(xk) iterated time by time.

III. ADAPTIVE DYNAMIC PROGRAMMING WITH
MULTIPLE TIME-SCALE ELIGIBILITY TRACES

Inspired by the idea of HDP(λ) method [13], we pro-
posed an off-policy algorithm, named T-step Truncated HDP
with Multiple Time-scale Eligibility Traces (T-HDP(λ) with
MET) for discrete-time dynamic systems. It can solve the
optimal control problem faster and ensure stable convergence
while using complex neural network structures without more
computing resources else.

A. T-step Truncated λ-return Method

The λ-return method is limited just to episodic tasks,
where each episode eventually has a termination state. When
solving the infinite-horizon optimal problems, the method
can not be applied directly. In the continuing tasks, the λ-
return is technically never known since it depends on n-step
returns for arbitrarily large n in the future.
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However, as the time index k gets larger, the dependence
becomes weaker and weaker for longer-delayed rewards
falling by γλ. Truncating the sequence after enough number
of steps is a natural approximation method. Here, we pro-
posed the T-step Truncated λ-return Method to estimate the
state-value function Vπ(xk). The convergence and bounded-
ness of T-step Truncated λ-return in the optimal performance
index are proved in the part of Convergence Analysis of the
Algorithm.

T-step truncated λ-return is denoted as Jλ
k:T (xk) = (1 −

λ)
∑T−k−1

n=1 λn−1Jk:k+n(xk) + λT−k−1Jk:T (xk), where T is the
truncated time during the whole control process. The last
term λT−k−1Jk:T (xk) is the approximation to replace the
remaining real values.

B. Multiple Time-scale Eligibility Traces

The overview of the traditional forward view algorithm is
summarized as follows. T-step Truncated λ-return without
eligibility traces is used to accumulate the future rewards to
update the current Vπ(xk). Different from the forward view
algorithm, a special incremental mechanism is defined as the
backward view. The eligibility traces are used to assist in the
whole learning process.

With function approximation, the standard eligibility
traces are defined in Eq.(10) as a vector zk ∈ Rm×n with the
same number of components as the weight vector of neural
network θv ∈ R

m×n.

zk = γλzk−1 + gk,z0 = 0
gk = ∇Vπ(xk |θv)

(10)

where γ is the discount factor, and λ is the trace-decay
parameter mentioned before.

Different from the standard eligibility traces, the replacing
eligibility traces [9] have been only for the tabular case or
for binary feature vectors. It is defined on a component-by-
component basis depending on whether the component of the
feature vector was 1 or 0. The original replacing eligibility
traces can be extended for the general approximation of value
functions as follows:

zk =

{
gk, ‖gk ‖ > ‖zk−1‖

γλzk−1, otherwise
(11)

Research has shown that gradient divergence is one possi-
ble reason why the eligibility traces fail in deep neural net-
works. Here, we designed an adaptively decaying eligibility
traces to better accumulate the information of gradients.

Define zi
k
(i = 1, ...,K) with K > 1 as multiple time-scale

eligibility traces(MET). They are with a K-series-layered
structure, and the maximum decaying factor of ith layer,
λimax , is given.

zik =

{
zi−1
k
, i , 1 and ∆zizi−1

k
> 0

γλimaxzi
k−1 + β

igk, otherwise
(12)

where ∆zi = zi−1
k
− zi

k−1, and βi is the sequence with three
conditions [22]: (1) βi ≤ βi+1, (2)

∑K
i=1 β

i = 1, and (3)
βK = 0. Here, we choose βi = 2(K−i)

K(K−1) and K = 2.

The MET keeps tracking which components of the weight
vector have contributed, maybe positively or negatively, to
the recent state-value function Vπ(xk), where “recent” is
represented in terms of γλ.

C. The novel proposed Algorithm: T-HDP(λ) with MET

In this part, the novel Algorithm 1, T-HDP(λ) with MET is
proposed to transfer the infinite terms of cost function into
finite terms. Moreover, the Multiple Time-scale Eligibility
Traces are utilized to approximate the cost function and
guides the control process faster in the optimal direction
without increasing the computational burden.

The basic architecture of T-HDP(λ) with MET is similar
to the actor-critic framework. The forward view of Algorithm
1 is shown in Fig.1 to better show the inner principle, though
in actual calculations the backward view based on MET
is utilized to simplify the calculation. In addition to the
traditional actor and critic networks, target networks are used
here to improve the stability of learning Vπ(xk).

The neural networks are used to approximate the state-
value function Vπ(xk) and the control signal uk under the
policy π. The actor network and critic network are adopted
to approximate them through optimizing their parameters θv
and θa respectively.

The critic network and target critic network is a three-
layer neural network with one hidden layer. The inputs of
them are both the state xk . The output is the estimated state-
value function Vπ(xk |θiv), where θiv is the weight of critic
neural network. Similarly, Vπ(xk |θiv′) is output of the target
critic network, where θi

hv′
is the weight of target critic neural

network.

Fig. 1. The neural networks structure of T -HDP(λ) with MET

T-HDP(λ) with MET is an off-policy algorithm, so the tar-
get policy π(xk) is different from the behavior policy b(xk).
The behavior policy b(xk) is fixed during the whole process
to generate the sampled sequence {(xk,uk,rk, xk+1)}

T
k=1, and

the target policy π(xk) is our final goal which converges to
optimal policy.

In order to use episodes from b(xk) to estimate values
for π(xk), we require that every action taken under π(xk)
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is also taken under b(xk) at least occasionally. Here, a new

importance sampling ratio ρλt:T =
∏T

i=k+1
Pr{ua

k
|xk}

Pr{ub
k
|xk}

where

ua
k

and ub
k

denote the control signal under target policy π(xk)
and behavior policy b(xk) during the state xk respectively, is
designed to transform the returns to have the right expected
value and better match the proposed algorithm.

Hence, the MET with importance sampling ratio ρλt:T can
be denoted as

zik =

{
zi−1
k
, i , 1 and ∆zizi−1

k
> 0

ρλt:T (γλ
i
maxzi

k−1 + β
igk), otherwise

(13)
where ∆zi = zi−1

k
− zi

k−1, and βi = 2(K−i)
K(K−1) .

The loss function of critic network is constructed as

δiv(xk) = R(xk,uk) + γVπ(xk+1 |θ
i−1
v ) − Vπ(xk |θ

i−1
v ) (14)

Employing the gradient method, the critic network and
target critic network can be updated at iteration time i by
eligibility traces zi

k
: θiv = θi−1

v − α1δ
i
v(xk)zik , θiv′ = (1 −

τ)θi−1
v′ + τθ

i
v , where 0 < τ < 1 is the updating rate.

The actor network is approximated by a three-layer neural
network with one hidden layer as well. The input is the state
xk and the output is the control signal uk under the policy π.
The control signal at iteration time i − 1 can be represented
as ui−1

k
= π(xk |θi−1

a ), where θia is the weight of actor neural
network.

When the system can be expressed as an affine nonlinear
form of Eq.(1), the target optimal control law can be ex-
pressed as follows by solving Bellman’s optimality equation
ûi−1
k
= −

γ
2 R−1gT (xk)

∂Vπ (xk+1 |θ
i−1
v )

∂xk+1
. The actor network can be

updated by the error of critic network at iteration time i by:
E i
a(xk) =

ûi−1
k
− ui−1

k

2, θia = θi−1
a − α2∇θa E i

a(xk).

Algorithm 1 The Implementation of T-HDP(λ) with MET
Input: An initial state x0, target policy π0(xk) and behavior

policy b(xk), truncated step T , initial state-value function
V0
π0 (xk), iteration time i = 0 and the given threshold ε .

Output: Optimal control policy π∗(xk).
1: Initial network parameters θiv and θiv′ θ

i
a, and the learn-

ing rate α1, α2.
2: Update the parameters of critic network by θiv ← θiv′ .
3: Get action uk under target policy πi(xk) , reward rk and

next new state xk+1 until k = T .
4: Store the sampled sequence {(xk,uk,rk, xk+1)}

T
k=1 under

behavior policy b(xk).
5: Compute T-step truncated λ-return Jλ

k:T (xk).
6: Compute eligibility traces zi

k
by Eq.(13).

7: Update the weights of the critic network and actor
network respectively.

8: if
Vi+1

πi
(xk) − Vi

πi
(xk)

 ≤ ε then
9: Stop iteration and output the optimal control policy

π∗(xk).
10: else
11: Let i ← i + 1, and go to Step 2.
12: end if

A random admissible policy is adopted as an initialized
policy. Sample the controlled system through the initial pol-
icy and store sampled sequence {(xk,uk,rk, xk+1)}

T
k=1 under

behavior policy b(xk) to calculate the T-step truncated λ-
return. Update the weights of the critic network and actor
network to obtain the optimal control policy.

D. Convergence Analysis of the Algorithm

In this section, the convergence of the sequence Vi
π(xk)

generated by Algorithm 1 (T-HDP(λ) with MET) is proved.
Theorem 1: Let the estimated state-value function se-

quence {Vi
π(xk)}

∞
i=0 be obtained by Algorithm 1.

If the following condition holds:

V0
π (xk) > min

uk

(
R(xk,uk) + γV0

π (xk+1)
)

(15)

then, 1) for arbitrary i

Vi+1
π (xk) 6 min

uk

(
R(xk,uk) + γVi

π(xk+1)
)
6 Vi

π(xk) (16)

2) lim
i→∞
Vi
π(xk) = J(xk,u

∗
k
) = J ∗(xk)

Proof: Prove the inequation (16) by using mathematical
induction method.

V1
π (xk) = (1 − λ)

∑T−k−1

n=1
λn−1J 0

k:k+n + λ
T−k−1J 0

k:T

=
∑T−k−1

n=1
λn−1J 0

k:k+n −
∑T−k−1

n=1
λnJ 0

k:k+n + λ
T−k−1J 0

k:T

=
∑T−k−2

n=0
λnJ 0

k:k+n+1 −
∑T−k−1

n=1
λnJ 0

k:k+n + λ
T−k−1J 0

k:T

=J 0
k:k+1 +

∑T−k−2

n=1
λnJ 0

k:k+n+1 − λ
T−k−1J 0

k:T−1

−
∑T−k−2

n=1
λnJ 0

k:k+n + λ
T−k−1J 0

k:T

=R(xk, û0
k) + γV

0
π (xk+1) +

∑T−k−1

n=1
λn(J 0

k:k+n+1 − J
0
k:k+n)

=R(xk, û0
k) + γV

0
π (xk+1) +

∑T−k−1

n=1
(λγ)nδ0

n(xk+n)
(17)

δ0
n(xk+n) = R(xk+n, û

0
k+n) + γV

0
π (xk+n+1) − V

0
π (xk+n) (18)

According to condition(15), one has

δ0
n(xk+n) =R(xk+n, û

0
k+n) + γV

0
π (xk+n+1) − V

0
π (xk+n)

=min
uk+n

(
R(xk+n,uk+n) + γV0

π (xk+n+1

)
−V0

π (xk+n)

6V0
π (xk+n) − V

0
π (xk+n) = 0

(19)
which means that δ0

n(xk+n) is non-positive. Therefore,

V1
π (xk) =R(xk, û

0
k) + γV

0
π (xk+1) +

∑T−k−1

n=1
(λγ)nδ0

n(xk+n)

=min
uk

(
R(xk,uk) + γV0

π (xk+1)
)
6 V0

π (xk)

(20)
Thus, the inequation (16) holds on for i = 0. Now assume
that the inequation (16) is true for index i−1 , then it suffices
to prove that inequation (16) is true for index i. To this end,
we need first to prove that

J i−1
k:k+n(xk) > R(xk+n, û

i−1
k+n) + γJ

i−1
k:k+n(xk+1) (21)

holds for n = 1,2, . . . ,T .
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In fact, according to the assumption by inequation (16),
for all n = 1,2, . . . ,T , we get

J i−1
k:k+n(xk) =

∑n−1

s=0
γsR(xk+s, ûi−1

k+s) + γ
nVi−1

π (xk+n)

>γn min
uk+n

(
R(xk+n,uk+n) + γVi−1

π (xk+n+1)
)

+
∑n−1

s=0
γsR(xk+s, ûi−1

k+s)

=
∑n

s=0
γsR(xk+s, ûi−1

k+s) + γV
i−1
π (xk+n+1)

=R(xk,u∗k) + γJ
i−1
k:k+n(xk+1)

(22)

Next, we have
Vi
π(xk) = (1 − λ)

∑T−k−1

n=1
λn−1J i−1

k:k+n(xk) + λ
T−1J i−1

k:T (xk)

> γ(1 − λ)
∑T−k−1

n=1
λn−1J i−1

k:k+n(xk)

+ R(xk, ûi−1
k ) + γλ

T−1J i−1
k:T (xk+1)

= R(xk, ûi−1
k ) + γV

i
π(xk+1) = min

uk

(
R(xk,uk) + γVi

π(xk+1)
)

(23)
Using the similar approach with Eq.(19), we get

Vi+1
π (xk) = (1 − λ)

∑T−k−1

n=1
λn−1J i

k:k+n(xk) + λ
T−1J i

k:T (xk)

=
∑T−k−1

n=1
(γλ)n

(
R(xk+n, ûik+n) + γV

i
π(xk+n+1) − V

i
π(xk+n)

)
+ R(xk, ûik) + γV

i
π(xk+1)

= R(xk, ûik) + γV
i
π(xk+1) +

∑T−1

n=1
(γλ)nδin(xk+n)

6 min
uk

(
R(xk,uk) + γVi

π(xk+1)
)
6 Vi

π(xk)

(24)
This proves that the conclusion (16) is true for index i.

Thus, the conclusion (16) is valid.
The previous part of this theorem shows that {Vi

π(xk)}
∞
i=0

is a non-increasing and non-negative sequence. As a bounded
monotone sequence, considering that {Vi

π(xk)}
∞
i=0 must have

a limit denoted by V∞π (xk,uk) = limi→∞V
i
π(xk). Take limit

on both sides of the inequation (16) with respect to i, and we
get V∞π (xk) 6 minuk

(
R(xk,uk) + γV∞π (xk+1)

)
6 V∞π (xk),

which implies V∞π (xk) = minuk
(
R(xk,uk) + γV∞π (xk+1)

)
.

It is obvious that the above equation is essentially the
Bellman equation (5) , that is lim

i→∞
Vi
π(xk) = J(xk,u

∗
k
) =

J ∗(xk). This completes the proof of the convergence of
Algorithm 1.

IV. SIMULATION RESULTS

In this section, one simulation example is utilized to show
the effectiveness of the proposed Algorithm 1. The nonlinear
discrete-time system is considered as follows:

xk+1 =

[
−x1(k) + x2(k) + 2x3

2(k)
−0.5(x1(k) + x2(k))

]
+

[
1

sin(x1(k))

]
uk
(25)

where xk+1 ∈ R2 and uk ∈ R. The utility function is
expressed as U(xk,uk) = xT

k
Qxk + uT

k
Ruk , where Q = I,

R = 5I and I is the identity matrix with suitable dimensions.
A three-layer neural network with the structure of 2−8−1

is used to bulid up the actor network. And the critic network
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Fig. 2. The states of HDP(λ) and T -HDP(λ) with MET (T = 9 and λ =
0.9)
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Fig. 3. The input control signal of HDP(λ) and T -HDP(λ) with MET (T
= 9 and λ = 0.9)

is with the structure of 2− 12− 1. The truncated step is T =
9 and λ = 0.9. Train the networks for 450 episodes.

From Fig.2-3, it is more remarkably shown that our
proposed algorithm converges much faster compared with
HDP(λ) algorithm [13]. The proposed algorithm only uses
9 steps to achieve the optimal control rather than 12 steps.
The sum of reward in T-HDPλ) with MET converges faster
and has better training stability than the original HDP(λ)
algorithm in Fig.4.

In order to show that MET has the same effect as replay
buffer to solve the problem of data scarceness, the reward of
each step between HDP with different capacities of replay
buffer (N=100 and N=200) and with MET method is shown
in Fig.5. As the capacity of the replay buffer increases from
100 to 200, the converge speed is faster in traditional HDP.
T-HDP(λ) with MET method proposed in this paper has
a higher convergence speed and quicker time than HDP(λ)
without using the replay buffer. The conclusion is that MET
plays a similar role as the replay buffer and our method
has better effectiveness to expand the data and speed up the
control process.
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Fig. 4. The sum of reward between HDP(λ) and T -HDP(λ) with MET
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Fig. 5. Reward of each step between HDP with the capacity of replay
buffer (N = 100 and N = 200), HDP(λ) and T -HDP(λ) with MET

V. CONCLUSION

To solve the optimal control problem of the discrete-
time nonlinear systems, a novel model-based T-HDP(λ)
with MET algorithm has been proposed. Different from
the traditional accumulating eligibility traces, the multiple
time-scale eligibility traces can be adaptively adjusted to
avoid the problem that the approximation using deep neural
networks may not converge. Moreover, it can make full
use of the limited data and speed up the control process.
The T-step truncated method can address the infinite-horizon
optimal problems and has the same convergence property.
Since T-HDP(λ) with MET is an off-policy algorithm, a
new importance sampling ratio ρλt:T is designed to correct
the right expected state-value function between the target
policy π(xk) and behavior policy b(xk). The simulation has
shown that the proposed algorithm converges faster than the
original algorithm, and the MET plays a significant role to
expand the data.

For the proposed T-HDP(λ) with MET algorithm, more
prospects for future research could be adding the event-
triggered scheme, input constraints and so on.
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