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Abstract— In this paper, we study a distributed optimization
problem, where decision variables of agents need to satisfy
different local constraints and the consensus constraint to
minimize the sum of local cost functions. We propose a novel
method to remove all these constraints by employing the exact
penalty so that the derived equivalent unconstrained problem
can be directly solved by subgradient descent type differential
inclusions. The algorithm achieves O( 1

t
) rate of convergence

when the cost functions are convex. Moreover, it achieves
exponential convergence when the cost functions are strongly
convex. Our method needs no dual variable to deal with the
constraints so that computation and communication resources
are saved in comparison with primal-dual methods. In addition,
the method overcomes a divergence problem arising from an
existing exponentially convergent distributed algorithm based
on the exact penalty when the local constraints are different.

I. INTRODUCTION

In recent years, distributed optimization has been widely
studied and applied in many fields such as machine learning
[1], localization problems [2], resource allocation [3] and
sensor networks [4]. Most works have focused on distributed
consensus optimization problems, where multiple agents
only have access to their own information to minimize
the cost function subject to the consensus constraint by
exchanging information through a network. To solve such
problems, many algorithms have been proposed, including
subgradient dynamics [5]–[7] and projected algorithms [8]–
[11].

Constrained distributed optimization problems are widely
used in modeling practical problems, where agents have
partial information. For example, in a power system, plants
usually have different local generation capacities, acting as
different local constraints. To solve distributed optimization
problems with different local constraints, some distributed
algorithms have been proposed in [7], [8], [12]. However,
[7], [8] provide no explicit convergence rate, and [12] is only
for equality constraints. Moreover, a counterexample given
in [13] showed that even if local decision variables were
initialized at some optimum, the dual averaging algorithm
could not converge to the optimal solution. Also, another
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counterexample given in [14] showed that many algorithms
fail to converge exponentially for strongly convex objectives
and different local nonsmooth terms.

Exponential convergence is important for algorithm eval-
uation, since such algorithms can reach the equilibrium fast.
Some exponential convergence results have been obtained
in the distributed optimization works [15], [16] in the ab-
sence of local constraints. Moreover, distributed algorithms
designed in [10], [17] have achieved exponential convergence
for local equality constraints. Local constraints can be sat-
isfied by local projection, whereas exponential convergence
cannot be guaranteed with the projection terms. A recent
work [11] has achieved exponential convergence by using
projected dynamics in the presence of local constraints for
strongly convex optimization. A drawback of [11] is that
agents have to know the global constraint set for the local
projections and cannot be adapted to account for different
local constraint sets. A counterexample can be given to show
that the algorithm given in [11] diverges if projections with
respect to different constraints are used.

In this paper, we consider a distributed consensus opti-
mization problem and focus on different local constraints.
We design a distributed algorithm to solve this problem and
achieve exponential convergence when the cost functions are
strongly convex. The main contributions are listed as follows.

1) We overcome the difficulties caused by different local
constraints and provide a distributed algorithm that
achieves exponential convergence. The idea is to re-
move all local constraints and the consensus constraint
by using the exact penalty method and then solve the
equivalently transformed unconstrained optimization
problem so as to remove the projection term. In [7],
[10], [12], [17] on similar problems, exponential con-
vergence is achieved only under equality constraints.

2) We design a distributed method for calculating pa-
rameters in multiple exact penalty terms. In [7], [18],
such parameters are not obtained so they introduce
additional adaptive dynamics for the estimation. Also,
the method proposed in [5], [11] cannot be directly
extended for inequality constraints. As a result, in
comparisons with [5], [7], [11], [18], our method not
only calculates the penalty parameters but also avoids
the introduction of auxiliary variables.

The rest is organized as follows. Section II introduces
the necessary definitions and concepts, and Section III for-
mulates our problem. Section IV presents the main results,
including the application of the exact penalty method, al-
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gorithm design, and algorithm analysis. Then Section V
gives two numerical simulation examples. Finally, Section
VI concludes this work.

II. PRELIMINARIES

In this section, we introduce some useful notations, defi-
nitions and results.

Let R, Rn, and Rn×m be sets of real numbers, n dimen-
sional real column vectors, and n×m matrices, respectively.
Let 0 be a vector with all zero entries. For a vector a ∈ Rn,
a ≤ 0 (or a < 0) means that each component of a is less
than or equal to zero (or less than zero). Let (·)T be the
transpose of a vector. Let | · | and ‖ · ‖ be the l1-norm and
l2-norm, respectively. Let col(x1, x2, · · · , xn) be the column
vector stacked with x1, x2, · · · , xn.

A function f : Rn → R is convex if for all x1, x2 ∈ Rn
and 0 ≤ θ ≤ 1, f(θx1 +(1−θ)x2) ≤ θf(x1)+(1−θ)f(x2).
Moreover, it is α-strongly convex for some constant α >
0 if for all x1, x2 ∈ Rn and 0 ≤ θ ≤ 1, f(θx1 + (1 −
θ)x2) ≤ θf(x1) + (1− θ)f(x2)− θ(1−θ)α

2 ‖x1 − x2‖2. The
subdifferential of a convex function f at y0 is denoted by
∂f(y0). For any z ∈ ∂f(y0), there holds f(y) ≥ f(y0) +
〈z, y − y0〉, ∀ y ∈ Rn. Also, if f is α-strongly convex, then

〈x− y, gf (x)− gf (y)〉 ≥ α‖x− y‖2, ∀x, y ∈ Rn. (1)

where gf (x) ∈ ∂f(x) and gf (y) ∈ ∂f(y).
A set-valued map F : Rn ⇒ Rn associates with any

x ∈ Rn a subset F (x) ⊂ Rn. F is said to be upper
semicontinuous if for any x ∈ Rn and any open set Q
satisfying F (x) ⊂ Q, there exists a neighborhood O of
x such that F (O) ⊂ Q. In particular, for any continuous
convex function f : Rn → R, the subdifferential map ∂f is
upper semicontinuous.

The following lemmas will be used in our analysis.
Lemma 2.1 ([19]): Let Ω ⊂ Rn be an open subset

containing a point x0 ∈ Rn. Also, let F : Ω ⇒ Rn be an
upper semicontinuous map with nonempty convex compact
values. Then there exists an absolutely continuous function
x(·) defined on [0, T ] for some T > 0 such that it is a
solution to the differential inclusion ẋ(t) ∈ F (x(t)) with
x(0) = x0.

Lemma 2.2 (Barbalat’s lemma, [20]): Let σ : R≥0 →
R be a uniformly continuous function. If limt→∞

∫ t
0
σ(s)ds

exists and is finite, then limt→∞ σ(t) = 0.

III. PROBLEM FORMULATION

Consider a multi-agent network with n agents inter-
acting over an undirected network graph G , {V, E},
where V = {1, · · · , n} is the node set and E ⊂ V ×
V is the edge set. Each agent has a local cost function
fi(x) : Rm → R and a local constraint gi(x) ≤ 0 with
gi(x) = col(gi1(x), gi2(x), · · · , gili(x)) : Rm → Rli .
Denote l =

∑n
i=1 li. The overall cost function of the system

is
∑
i∈V fi(x). This optimization problem is formulated as

min
x∈Rm

∑
i∈V

fi(x),

s.t. gi(x) ≤ 0, i ∈ V.
(2)

For i ∈ V , the ith agent can only access fi(x), gi(x) and
communicate with its neighbors, whose index set is denoted
by Ni = {j ∈ V | (i, j) ∈ E}. Also, let Si, S ⊂ Rm be
the sets of local and overall constraints as Si , {x ∈
Rm | gi(x) ≤ 0}, and S , ∩i∈VSi. Denote S̃ = ∪i∈VSi. The
following assumptions are given to ensure the well-posedness
of problem (2).

Assumption 1: For i ∈ V , fi(x) and the components of
gi(x) are convex, not necessarily smooth.

Assumption 2: For i ∈ V , fi(x) is ci-Lipschitz continu-
ous on S̃ for some constant ci > 0, i.e., |fi(x) − fi(y)| ≤
ci‖x−y‖, ∀x, y ∈ S̃. Also, gi(x) is si-Lipschitz continuous
on S̃ for some constant si > 0.

Assumption 3: The undirected graph G is connected.
Assumption 4: The constraint set S is internally

nonempty and bounded.
Assumption 5: For i ∈ V , fi is α-strongly convex.

In Assumption 1, the convexity is to ensure the solvability
of the problem (2). The local Lipschitz continuity in Assump-
tion 2 has a necessary role in reformulating (2) by the exact
penalty method. The setting of the communication topology
in Assumption 3 is widely used to ensure that all agents can
reach a consensus by communicating with their neighbors.
Assumption 4 is for the existence of a Slater’s point, i.e., a
point x̃ ∈ Rm satisfying gi(x̃) < 0, ∀ i ∈ V .

Remark 1: The problem (2) is a distributed consensus
optimization with different local constraints. Similar prob-
lems have been studied in [7], [8], [11], [21]. In particular,
[7], [8], [21] solve their problems without guaranteeing the
exponential convergence. Although [11] achieves exponential
convergence, it requires that the overall constraint set S is
available to all agents.

IV. MAIN RESULTS

In this section, we present the problem transformation,
design a distributed algorithm, and analyze its convergence.

A. Problem Transformation

In this part, we aim to transform (2) into an equivalent
unconstrained problem, which is easy to solve.

By introducing the consensus constraint, (2) is rewritten
as

min
∑
i∈V

fi(xi),

s.t. gi(xi) ≤ 0, i ∈ V,
xi = xj , i ∈ V, j ∈ Ni.

(3)

Define the consensus constraint set as Ŝ , {x : xi = xj , i ∈
V, j ∈ Ni} and the Lagrangian function L as L(x, λ) =
f(x) + λTg(x) =

∑
i∈V fi(xi) +

∑
i∈V

∑li
k=1 λikgik(xi),

where x = col(x1, x2, · · · , xn), f(x) =
∑
i∈V fi(xi), λi =

col(λi1, λi2, · · · , λili), λ = col(λ1, λ2, · · · , λn), and g(x) =
col(g1(x1), g2(x2), · · · , gn(xn)).

Then the dual problem of (3) is

max
λ≥0

q(λ), q(λ) , min
x∈Ŝ
L(x, λ). (4)
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We present two lemmas for the value of exact penalty
parameters and dual optimal solutions that are used in the
subsequent analysis.

Lemma 4.1 ([22]): The dual optimal solution λ∗ to (4)
lies in a compact set D ⊂ Rl+, given by

D ,
{
λ ∈ Rl+|‖λ‖ ≤

f(x̄)− q̃
−ĝ

}
,

where x̄ is a Slater’s point of (3), q̃ = minx∈Ŝ L(x, λ̃)

is a dual function value for an arbitrary λ̃ ≥ 0, and ĝ =
maxi=1,··· ,n,k=1,··· ,li{gik(x̄)}.

Lemma 4.2 ([23]): Consider a convex function P : Rl →
R with P (u) = 0, for ∀u ≤ 0, P (u) > 0, if uj > 0 for
some j = 1, · · · , l, where u = col(u1, u2, · · · , ul) and the
following penalized problem

min
∑
i∈V

fi(xi) + P (g(x)),

s.t. xi = xj , i ∈ V, j ∈ Ni.
(5)

In order for the penalized problem (5) and the constrained
problem (3) to have the same set of optimal solutions, it is
sufficient that there exists a dual optimal solution λ∗ such
that uTλ∗ < P (u), ∀u with uj > 0 for some j.

The following theorem gives an equivalent and uncon-
strained optimization model for the original problem.

Theorem 4.1: Under Assumptions 1—4, the constrained
optimization problem (3) shares the same optimal solutions
with the following unconstrained optimization problem:

minh(x), h(x) =
∑
i∈V

fi(xi)+K1

∑
i∈V

li∑
k=1

max(0, gik(xi))

+K2

∑
i∈V

∑
j∈Ni

|xi − xj |, (6)

where K1 > f(x̄)−q̃
−ĝ and K2 > nξ

2 are constants. Here,
ξ = maxi∈V ξi, where ξi is the local Lipschitz constant of
fi(x) + K1

∑li
k=1 max(0, gik(x)) on Si. The definitions of

x̄, q̃ and ĝ are the same as given in Lemma 4.1.

Proof: At first, to deal with different local con-
straints in (3), we introduce the penalty function P (g(x)) =
K1

∑
i∈V

∑li
k=1 max(0, gik(xi)) with the penalty parameter

K1 ≥ 0. Then (3) can be transformed into

min
∑
i∈V

fi(xi) +K1

∑
i∈V

li∑
k=1

max(0, gik(xi)),

s.t. xi = xj , i ∈ V, j ∈ Ni.

(7)

To make (3) and (7) equivalent, we need to analyze
the value range of K1. By Lemma 4.2 and the form of
the penalty function P (g(x)), if the dual optimal solution
λ∗ to (3) satisfies uTλ∗ < K1

∑l
j=1 max(0, uj) for all

u with some uj > 0, which implies K1 > |λ∗|, then
(3) and (7) have the same optimal solution set. It follows
from Lemma 4.1 that the upper bound of ‖λ∗‖ is f(x̄)−q̃

−ĝ ,
where x̄ is a Slater’s point of (3), q̃ = minx∈Ŝ L(x, λ̃)

is a dual function value for arbitrary λ̃ ≥ 0 and ĝ =
maxi=1,··· ,n,k=1,··· ,li{gik(x̄)}. By Assumption 4, there ex-
ists a Slater’s point x̄ = col(x̄, x̄, · · · , x̄) of (3) satisfying
gi(x̄) < 0, ∀i ∈ V . Thus, the optimal solution set of (3) is the
same as the optimal solution set of (7) when K1 >

f(x̄)−q̃
−ĝ .

To remove the consensus constraint in (7), we consider
the unconstrained optimization problem (6) with the penalty
parameters K1 > f(x̄)−q̃

−ĝ and K2 ≥ 0. To make (6)
and (7) equivalent, we need to analyze the value range
of K2. Let x∗ = col(x∗1, x

∗
2, · · · , x∗n) be the solution

to (6), x̄∗ = 1
n

∑
i∈V x

∗
i and x̄∗ = 1n ⊗ x̄∗. By cal-

culation, h(x∗) − h(x̄∗) =
∑
i∈V

(
fi(x

∗
i ) − fi(x̄

∗) +

K1

∑li
k=1 max(0, gik(x∗i )) − K1

∑li
k=1 max(0, gik(x̄∗)) +

K2

∑
j∈Ni

|x∗i − x∗j |
)
.

Denote Mi(x) = fi(x) + K1

∑li
k=1 max(0, gik(x)), for

i ∈ V . By Assumption 2, Mi(x) is locally Lipschitz
continuous on S̃ and its local Lipschitz constant is ξi. It
follows that Mi(x

∗
i )−Mi(x̄

∗) + ξi‖x∗i − x̄∗‖ ≥ 0. Let ξ =
maxi∈V ξi. Since |x∗i − x∗j | ≥ ‖x∗i − x∗j‖, h(x∗)− h(x̄∗) ≥
−ξ
∑
i∈V ‖x∗i − x̄∗‖+K2

∑
i∈V

∑
j∈Ni

‖x∗i − x∗j‖.
It follows from x̄∗ = 1

n

∑
i∈V x

∗
i that

∑
i∈V ‖x∗i − x̄∗‖ ≤∑

i∈V
∑n
k=1

‖x∗
i−x

∗
k‖

n . By Assumption 3, there must be a
path Pik ⊂ E connecting agent i and k for any i, k ∈ V .
Thus,∑

i∈V
‖x∗i − x̄∗‖ ≤

1

2n

∑
i∈V

∑
k∈V

∑
(r,z)∈Pik

‖x∗r − x∗z‖

≤ 1

2n

∑
i∈V

∑
k∈V

∑
i∈V

∑
j∈Ni

‖x∗i − x∗j‖


≤n

2

∑
i∈V

∑
j∈Ni

‖x∗i − x∗j‖,

which implies

h(x∗)− h(x̄∗) ≥ (K2 −
nξ

2
)
∑
i∈V

∑
j∈Ni

‖x∗i − x∗j‖.

By K2 >
nξ
2 , h(x∗) − h(x̄∗) ≥ 0 and the equality holds if

and only if x∗i = x̄∗. Therefore, if x∗ is a solution to (6),
then it is also a solution to (7). Conversely, it can be shown
that a solution to (7) is also a solution to (6).

Consequently, when K1 > f(x̄)−q̃
−ĝ and K2 > nξ

2 , (3)
can be equivalently transformed into (6), and their optimal
solution sets are the same. This completes the proof.

By Theorem 4.1, when the penalty parameters K1 and K2

are selected within the given range, we can obtain an optimal
solution to (3) by solving the unconstrained problem (6).

B. Algorithm Design
For (6), we design a distributed differential inclusion

algorithm as follows. For each i ∈ V ,

ẋi(t) ∈ −∂fi(xi(t))−K1

li∑
k=1

∂max(0, gik(xi(t)))

−K2

∑
j∈Ni

∂|xi(t)− xj(t)|
(8)
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where K1 >
f(x̄)−q̃
−ĝ and K2 >

nξ
2 are constants.

In (8), −∂fi(xi(t)) provides a possibly descending di-
rection of fi, and −K1

∑li
k=1 ∂max(0, gik(xi(t))) and

−K2

∑
j∈Ni

∂|xi(t) − xj(t)| are subdifferentials of exact
penalty terms with penalty parameters K1 and K2 to deal
with the consensus constraint and different local constraints.
Clearly, (8) is distributed since the ith agent uses only the
local data and requires only neighbors’ decision variables.

The values of K1 and K2 can be derived in a distributed
manner, provided that the values of the selected x̄ and λ̃ are
known to each agent. Here we give a distributed process to
obtain K1.

1) Each agent calculates its own fi(x̄) and gik(x̄), k =
1, 2, · · · , li.

2) Then f(x̄) and ĝ can be calculated by summing and
maximizing operations, respectively. Since the network
topology graph G is connected, agents i can commu-
nicate with their neighbors on the values of fj(x̄) and
gjk(x̄), k = 1, 2, · · · , li, j ∈ Ni.

3) We can use the algorithm in [24] to calculate q̃, which
is the optimal value of an unconstrained optimization
problem.

Then we can obtain K1. Note that the Lipschitz constant ξi
ofMi can be obtained since the local Lipschitz constants of
fi and gi are available. We can refer to the method in [11]
to calculate ξ and K2 in a distributed manner.

Remark 2: Compared with [7], [8], the dual and auxiliary
variables in their algorithms are not needed in our algorithm,
since our method is based on the exact penalty to remove
the constraints. As a result, the cost of computation and
communication with respect to those variables is reduced
in our algorithm.

C. Existence and Convergence Analysis

The compact form of (8) can be written as

ẋ(t) ∈ H(x(t)), (9)

where H(x(t)) = −∂h(x(t)) and h is defined in (6). The
existence of a trajectory solution to (9) is presented as
follows.

Theorem 4.2: Under Assumptions 1—4, for any initial
value x(0) ∈ Rnm, a solution x(t) to (9) exists globally and
is bounded.

Proof: By Assumption 1 and Lemma 2.1, the right-hand
side of (9) is an upper semicontinuous set-valued map with
nonempty convex compact values, and (9) has at least one
solution on [0, T ] with T > 0 for any initial value x(0) ∈
Rnm. Let x∗ = col(x∗1, x

∗
2, · · · , x∗n) be an optimal solution

to (6). By the first-order optimality condition, for each i ∈ V ,

0 ∈ ∂fi(x∗i )+K1

li∑
k=1

∂max(0, gik(xi))+K2

∑
j∈Ni

∂|x∗i−x∗j |

(10)
Define

V (t) ,
1

2

∑
i∈V
‖xi(t)− x∗i ‖2. (11)

The set-valued Lie derivative of V (t) with respect to (9) is

LHV (t) =

{
a(t) ∈ R : a(t) =

∑
i∈V

〈
xi(t)− x∗i ,−ηi

−K1

li∑
k=1

γik(t)−K2

∑
j∈Ni

ζij(t)
〉
, ηi(t) ∈ ∂fi(xi(t)),

γik(t) ∈ ∂max(0, gik(xi(t))), ζij(t) ∈ ∂|xi(t)− xj(t)|
}
.

(12)
Let W (t) = h(x(t))− h(x∗) ≥ 0. It follows from the basic
property of the subdifferential that

a(t) ≤
∑
i∈V

(fi(x
∗
i )− fi(xi(t)))

+K1

∑
i∈V

( li∑
k=1

max(0, gik(x∗i ))−
li∑
k=1

max(0, gik(xi(t)))
)

+K2

∑
i∈V

(
∑
j∈Ni

|x∗i − x∗j | −
∑
j∈Ni

|xi(t)− xj(t)|)

≤ h(x∗)− h(x(t)) = −W (t) ≤ 0.
(13)

Therefore, V (t) is monotonically decreasing and V (t) ≤
V (0), ∀ t ∈ [0, T ]. Thus, x(t) is bounded on [0, T ]. By the
extension theorem given in [19], x(t) exists globally and
remains bounded. This completes the proof.

Theorem 4.2 proves the boundedness and global existence
of a solution x(t) to (9). Next, we present the convergence
analysis as follows.

Theorem 4.3: Under Assumptions 1—4, the trajectory
x(t) converges to an equilibrium point x̂∗, which is also
an optimal solution to (3) and (6).

Proof: Let x∗ = col(x∗1, x
∗
2, · · · , x∗n) be an equilibrium

point of (9). By (10), x∗ is also the optimal solution to (6).
Consider the Lyapunov function (11). By (13), for any

a(t) ∈ LHV , a(t) ≤ 0. Recall that W (t) = h(x(t)) −
h(x∗) ≥ 0. Since h(·) is locally Lipschitz continuous and
x(t) is absolutely continuous, W (t) is uniformly continuous
with respect to t. Therefore, W (t) is Riemann integrable. It
follows from (13) that

∫∞
0
W (x(τ))dτ ≤ V (0) < ∞. By

Lemma 2.2, limt→∞W (x(t)) = 0, i.e., x(t) converges to
the set Φ = {x ∈ Rnm |W (x) = 0}.

Next, we prove that x(t) converges to one point in
Φ. By the convergence of x(t), there exists a strictly
increasing sequence {tk} with limk→∞ tk = ∞ such
that limk→∞ x(tk) = x̂∗, x̂∗ ∈ Φ. Consider a new
Lyapunov function V̂ (t) = 1

2

∑
i∈V ‖xi(t) − x̂∗i ‖2. Then

lim inft→∞ V̂ (t) = 0. Also, by similar analysis about V
in (11), V̂ (t) is also monotonically decreasing. As a result,
limt→∞ V̂ (t) = 0, which implies limt→∞ x(t) = x̂∗.

Since x̂∗ ∈ Φ, it is an optimal solution to (6). When K1

and K2 satisfy the value range given in Theorem 4.1, x̂∗ is
also an optimal solution to (3). This completes the proof.

Remark 3: The convergence of (9) is proved under As-
sumptions 1—4 without Assumption 5, which is different
from the strict convexity required in [5].
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Further we analyze the convergence rate in the following.
Theorem 4.4: Under Assumptions 1—4, (9) converges to

its equilibrium point with O( 1
t ) rate as

0 ≤ h(x̂(t))− h(x∗) ≤ 1

t
V (0), ∀ t ≥ 0

where x̂(t) , 1
t

∫ t
0
x(τ)dτ .

Proof: Let x∗ be an equilibrium point of (9). Moreover,
x∗ is also the minimum point of h(x). Then h(x̂(t)) −
h(x∗) ≥ 0. It follows from (13) that

a ≤ h(x∗)− h(x(t)). (14)

Integrating both sides of (14) over the interval [0, t) yields

−1

t
V (0) ≤ 1

t

(
V (t)− V (0)

)
≤ 1

t

∫ t

0

(
h(x∗)− h(x(τ))

)
dτ.

Since h(x) is convex with respect to x, using the Jensen’s
inequality yields h(x̂(t)) ≤ 1

t

∫ t
0
h(x(τ))dτ. Therefore,

h(x̂(t)) ≤ 1
tV (0) + 1

t

∫ t
0
h(x∗)dτ , i.e., h(x̂(t)) − h(x∗) ≤

1
tV (0). This completes the proof.

In Theorem 4.4, we prove that when the cost functions are
convex, (9) achieves O( 1

t ) rate of convergence. This result
has also been obtained in [5], whereas their cost functions are
required to be strictly convex. Moroever, our method can also
guarantee the exponential convergence with strongly convex
functions, as shown in the next theorem.

Theorem 4.5: Under Assumptions 1—5, (9) converges
exponentially to its equilibrium point with

V (t) ≤ V (0)e−2αt, ∀ t ≥ 0

where the rate α is the strong convexity parameter.

Proof: By Assumption 5, (6) has only one optimal
solution, and the equilibrium of (9) is also unique, denoted by
x∗ = col(x∗1, x

∗
2, · · · , x∗n). Consider the Lyapunov function

(11). It follows from (12) that for any a ∈ LHV ,

a =
∑
i∈V

〈
xi − x∗i ,−ηi −K1

li∑
k=1

γik −K2

∑
j∈Ni

ζij

〉
,

ηi ∈ ∂fi(xi), γik ∈ ∂max(0, gik(xi)), ζij ∈ ∂|xi − xj |.
(15)

Moreover, x∗ is the optimal solution to (6) if and only if〈
xi − x∗i , η∗i +K1

li∑
k=1

γ∗ik +K2

∑
j∈Ni

ζ∗ij

〉
≥ 0,∀xi ∈ Rm,

(16)
where η∗i ∈ ∂fi(x

∗
i ), γ

∗
i ∈ ∂max(0, gi(x

∗
i )), ζ

∗
ij ∈ ∂|x∗i −

x∗j |. Substituting (16) into (15) yields

a ≤−
∑
i∈V

〈
xi − x∗i , ηi − η∗i +K1

li∑
k=1

γik −K1

li∑
k=1

γ∗ik

+K2

∑
j∈Ni

ζij −K2

∑
j∈Ni

ζ∗ij〉

≤ −
∑
i∈V
〈xi − x∗i , ηi − η∗i 〉.

By Assumption 5, a ≤ −
∑
i∈V α‖xi−x∗i ‖2 = −2αV. Then

V (t) ≤ V (0)e−2αt, which completes the proof.

Remark 4: The exponential convergence under the strong
convexity condition has also been considered in [11], [15],
[16] without local constraints or with global constraints.
In addition, it has been achieved in [10] for optimiza-
tion problems with local linear equality constraints, but
the exponential convergence cannot be guaranteed in the
presence of inequality constraints. In contrast, our algorithm
achieves exponential convergence for optimization problems
with different local inequality constraints.

V. NUMERICAL SIMULATION

In this section, we give two numerical simulation examples
to verify the effectiveness of (9).

Example 1: Consider two agents which can communicate
with each other for the optimization problem (2). Their cost
functions are f1(x) = x2

1 + x2
2, f2(x) = x2

1 + (x2 −
0.19)2, where x ∈ R2 is the decision variable. The local
constraints g1(x) : R2 → R4, g2(x) : R2 → R5 are
g1(x) = col(−x1 − 2, x1,−x2 − 2, x2), g2(x) = col(−x1 −
2, x1,−x2 − 0.01, x2 − 0.19, 0.1x1 − x2 + 0.19).

We make a simulation comparison between our algorithm
and the one in [11] as shown in Figures 1 and 2. Our
algorithm makes the agents reach a consensus and converge
to the optimal solution, whereas the algorithm in [11] fails
to find the correct solution.

Fig. 1. The comparison of our algorithm and the algorithm in [11].
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Fig. 2. The error comparison of our algorithm and the algorithm in [11].

Example 2: We discuss the case of strongly convex cost
functions to verify the exponential convergence. Consider
the optimization problem (2) with a multi-agent network
consisting of 30 agents connected by a cyclic graph. For i =
1, 2, · · · , 30, fi(x) = 1

2x
TPix+qTi x+ri|x|, where x ∈ R10
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is the decision variable, Pi ∈ R10×10 is a positive definite
matrix, and qi ∈ R10, ri ∈ R1

>0 are randomly generated
known coefficients. The local constraints are gi(x) ≤ 0,
i = 1, 2, · · · , 30, where gi(x) : R10 → R2 and gi(x) =

col(x1 + · · ·+ x2
i + · · ·+ x10 − 9− i, 0), i = 1, · · · , 10,

col(x1 + x2 + · · ·+ x10 + 6− i, 0), i = 11, · · · , 20,

col(xi−20 + 16− i,−xi−20 + 16− i), i = 21, · · · , 30.

The simulation results are shown in Figures 3 and 4, where
V is given in (11). As can be seen from Figure 3, our
algorithm achieves exponential convergence. Also, Figure 4
shows that both our algorithm and the adaptive one in [7]
converge to the optimal value, while our algorithm converges
fast.
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Fig. 3. Exponential convergence of the algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time

-1000

0

1000

2000

3000

4000

5000

f(
x
)

our algorithm
adaptive algorithm

Fig. 4. Comparison of our algorithm and the adaptive algorithm.

VI. CONCLUSION

In this paper, a distributed continuous-time differential
inclusion algorithm has been designed to solve a distributed
optimization problem with different local constraints. A
novel method by removing both the consensus constraint
and different local constraints based on the exact penalty
have been proposed. Moreover, the feasibility and conver-
gence of the algorithm have been proved theoretically. The
convergence rate of O( 1

t ) has been achieved when the cost
functions are convex, and the exponential convergence rate
has been achieved when the cost functions are strongly
convex. Finally, the convergence and effectiveness of the
algorithm have been verified by two numerical examples.
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