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Abstract— The new field of Explainable Planning (XAIP) has
produced a variety of approaches to explain and describe the
behavior of autonomous agents to human observers. Many
summarize agent behavior in terms of the constraints, or
“rules,” which the agent adheres to during its trajectories.
In this work, we narrow the focus from summary to specific
moments in individual trajectories, offering a “pointwise-in-
time” view. Our novel framework, which we define on Linear
Temporal Logic (LTL) rules, assigns an intuitive status to any
rule in order to describe the trajectory progress at individual
time steps; here, a rule is classified as active, satisfied, inactive,
or violated. Given a trajectory, a user may query for status of
specific LTL rules at individual trajectory time steps.

In this paper, we present this novel framework, named Rule
Status Assessment (RSA), and provide an example of its imple-
mentation. We find that pointwise-in-time status assessment is
useful as a post-hoc diagnostic, enabling a user to systematically
track the agent’s behavior with respect to a set of rules.

I. INTRODUCTION

Planning and performing on their own, autonomous agents
are useful in a wide variety of roles, from self-driving
vehicles [1] and task-executing robots [2] to decision-making
software [3]. However, it can be challenging to under-
stand or characterize agent behavior. The emerging field
of Explainable Planning (XAIP), a subfield of Explainable
AI (xAI), takes on this explanatory challenge with mixed
results [4]–[6]. Some approaches allow the user to query
hypotheticals (“What would [agent] do in [state]?”, etc.) [7];
others generate domain alterations that would cause hypo-
thetical route changes (“What needs to change to make [plan]
optimal instead?”) [8] or use visualizations to help reconcile
a human’s mental model with that of the agent (“Where does
the agent’s behavior differ from my expectations?”) [9].

A large body of work explains agent plans as a whole us-
ing rule inference, an approach originating in formal methods
and software model checking [10]. Here, an agent is ob-
served, and the explainer infers which “rules” or constraints
the agent tends to follow (“What does the agent usually, or
never, do?”). Rules may be expressed in signal temporal logic
(STL) [11], [12] or, more commonly, linear temporal logic
(LTL) [13], [14]. Approaches have learned contrasts between
acceptable and unsatisfactory plans [15], inferred rules from
purely positive behavior [16] and noisy data [17]. In general,
rule inference provides global summaries of agent behavior
by providing a set of satisfied (or violated) rules.
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For live assessment, the related field of LTL monitoring
predicts the future satisfaction of rules at a current point in
a(n unfinished) trajectory [18]; similar methods have been
used for STL rules in dynamic planning [19].

While global summaries produced by inference and mon-
itoring are certainly valuable, they do not address local
behavior of the agent, which evokes other questions (“Which
rules is the agent following at time t? Which rules are not
relevant at t?”). We may ask, for example, whether a rule
is still in progress at t or already completed. Moreover,
implication-type (x→ y) rules require a consequence y only
after a triggering condition x occurs, making the rule trivially
satisfied when x does not occur; we may want to know which
rules are thus “triggered” at a given t.

In our work, we pursue an aspect of local, time step
dependent diagnostics which, to the best of the authors’
knowledge, remains unaddressed. We consider trajectories
of an arbitrary, black-box agent and define a notion of rule
status, which we use to assess when and how a system trajec-
tory progresses through each behavior (LTL rule) of interest.
This is accomplished by defining notions of active, inactive,
satisfied, and violated rule status, such that rules are uniquely
assigned a status dependent on trajectory and time step. We
then introduce an algorithm to perform rule status assess-
ment. We categorize this novel time step-dependent analysis
method as“pointwise-in-time” explanation and demonstrate
its potential applications on illustrative examples.

II. BACKGROUND

We consider discrete-time, discrete-state systems, a com-
mon setting for modeling autonomous agents. Such systems
include Markov decision processes (MDPs) and Kripke struc-
tures; we define the latter below. We then describe Linear
Temporal Logic (LTL), a temporal-logical language which
can express constraints (“rules”) on such systems.

Kripke Structures. We define a Kripke structure over a
set of atomic propositions, named labels, as in Definition 1.

Definition 1 (Kripke structure): Given a set P of labels,
the Kripke structure K over P is a tuple

K = (S, I, T ,L). (1)

where S is a finite set of states, I ⊆ S is the set of initial
states, and T ⊆ S × S is a transition relation with (σ, σ′) ∈
T , σ′ ∈ S for all σ ∈ S. Finally, L : S → 2P is a labeling
function assigning a set L ⊆ P to each state in S.
For clarity, we establish separate notation for a state variable
st and a constant state σ ∈ S, i.e., the expression s2 = σ1
signifies the state at time t = 2 is σ1. Each unique constant
label is denoted α ∈ P .
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We consider a finite discrete time interval {t | T0 ≤ t ≤
Tf}, where T0, t, Tf ∈ N. A run κ = sT0 , ..., sTf

of the
system must satisfy sT0 ∈ I and (st, st+1) ∈ R for all t ∈
{T0, ..., Tf}. Importantly, each κ induces a trace ρ:

Definition 2 (Trace): For any state st ∈ S, T0 ≤ t ≤ Tf ,
let L(st) = Lt, where Lt is a set of labels. A trace is the
sequence ρ = (LT0 , ..., LTf

) produced by system trajectory
(sT0

, ..., sTf
) from time step T0 to Tf .

A trace suffix ρt0... = Lt0 , ..., LTf
is the part of the trace

beginning at t0 ≥ T0 and ending at Tf .
Linear Temporal Logic. Linear temporal logic (LTL) is

a human-intuitive way to express time- and order-dependent
specifications [20], [21]. An LTL formula φ may be evalu-
ated on a trace ρ provided φ is defined on labels in P .

Definition 3 (Linear Temporal Logic Formula): For the
set of LTL formulas over a finite set P of labels,

• if α ∈ T , then α is itself an LTL formula.
• if φ1 and φ2 are LTL formulas, then ¬φ1, φ1 ∨ φ2,

Xφ1, and φ1Uφ2 are LTL formulas.
Definition 4 (Formula Evaluation on Traces): LTL

formula φ is true on trace ρ, denoted ρ |= φ, in the
following cases:

• ρ |= α where α ∈ P iff α ∈ L0

• ρ |= ¬φ iff ρ ̸|= φ
• ρ |= φ1 ∨ φ2 iff ρ |= φ1 or ρ |= φ2

and for the temporal operators Next X and Until U,
• ρ |= Xφ iff ρ1... |= φ
• ρ |= φ1Uφ2 iff ∃i ≥ 0 s.t. ρi... |= φ2 and
ρk... |= φ1 for all 0 ≤ k < i

Table I intuitively describes LTL operators. Note that all of
the operators listed can be constructed from X,U,∨, and ¬
[22]. Lastly, we define formula arguments, so that we may
decompose formulas into their constituent parts.

Definition 5 (Arguments of an LTL formula): Consider
the LTL order of operations: (1) grouping symbols; (2)
¬,X, and other unary operators; (3) U and other temporal
binary operators; and (4) ∨,∧,→. For LTL formula φ, all
φj bound by the weakest operator are the arguments of φ.
For example, φ = Gα1 ∨ α2 has arguments φ1 = Gα1,
φ2 = α2. For labels, the argument is the formula itself (α).

III. PROBLEM STATEMENT

We consider a scenario in which an agent with unknown
policy (a “black box” agent) is observed by a human.
We suppose the human wishes to characterize the agent’s
behavior in terms of a set of rules; these rules may represent
tasks or safety constraints, for example. A priori, an agent
trajectory may or may not follow any of the rules.

We suppose the human would like to know (1) which
rules a trajectory follows, as well as (2) when and how
the trajectory progresses through each rule. For example, (2)
is relevant when a rule has subtasks (“do this, then that”)
or multiple fulfillment conditions (“do this or that”). The
second question requires diagnostics which check for specific
conditions at each time step in the trace; here, rule inference,
which examines entire traces at once, is insufficient.

Operator Meaning

Gφ1 Global: φ1 is always true.

Fφ1 Eventual: φ1 eventually occurs.

Xφ1 Next: φ1 must occur at the next time step.

φ1Uφ2 Until: φ1 remains true until φ2 occurs (and φ2 must
occur)

φ1Wφ2 Weak until: φ1 must remain true (1) always, or (2)
until φ2 becomes true.

φ1Rφ2 Release: φ1 must remain true (1) always, or (2) until
(and including) the time step when φ2 becomes true.

φ1Mφ2 Strong release: True only if Condition (2) for Re-
lease is met.

φ1 ∧ φ2 Conjunction: both φ1 and φ2 must be true

φ1 ∨ φ2 Disjunction: φ1 or φ2 or both must be true

φ1 → φ2 Implication: if φ1 is true, φ2 must also be true

TABLE I
SELECTED LTL OPERATORS.

Formal Problem Setting. We consider agents whose
dynamics are expressible as a Kripke structure, as well as
a set of LTL rules over P which describe behaviors of
interest. Given an observed trace ρ, our goal is to assess the
progress of rules at any time step; we propose the assignment
of a status to each rule and its arguments at query points
t∗ ∈ {T0, ..., Tf} for all trace suffixes ρt

∗
0 ... where t∗0 ≤ t∗.

Moving towards a notion of rule status, we begin with two
observations. Firstly, consider a trace ρ and rule φ. Suppose
some t0 exists such that φ is true on ρt0... no matter which
labels are contained in any Lt≥t0 . In this case, the trace
beyond t0 appears to be arbitrary with respect to φ:

Definition 6 (Arbitrariness of suffix): For LTL formula φ,
its argument(s) φj , trace ρT0..., and associated suffix ρt0...

where T0 ≤ t0 ≤ Tf , we say that ρt... is arbitrary with
respect to φ if ρt0... |= φ regardless of the truth of ρt... |= φj

for all t where t0 ≤ t ≤ Tf .
Secondly, we consider implication rules φ = φ1 → φ2.
When φ is true on ρ, there are two very distinct possibilities:
either φ1 has occurred in ρ, in which case φ2 must be made
true; or φ1 did not occur, in which case φ2 plays no role.
We call such a φ1 a precondition:

Definition 7 (Precondition): The precondition of an LTL
formula φ is defined as

1) φ1 if φ has the form φ1 → φ2

2) ⊤ otherwise
Motivated by these observations, we characterize the roles
of rules at time steps by defining a novel LTL rule status.

Definition 8 (Status of LTL rule): For LTL formula φ,
trace ρT0... and times t0, t ∈ {T0, ..., Tf}, t0 ≤ t:

• φ is active (a) at t iff (1) ρt0... |= φ, (2) ρt0... |= ψ for
precondition ψ of φ, and (3) ρt... is not arbitrary.

• φ is satisfied (s) at t iff (1) φ active at t and (2) t = Tf
or φ not active at t+ 1.

• φ is inactive (i) at t iff (1) ρt0... |= φ and (2) φ is
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neither active nor satisfied at t.
• φ is violated (v) at t iff ρt0... ̸|= φ.
We briefly illustrate the status notions in simple examples,

expressing rules in words for clarity.
Example 1 (Status): Consider trace ρ = (LT0 , ..., LTf

)
produced by a sample collection robot. Suppose we select
a suffix ρt0... to analyze, where T0 ≤ t0 ≤ Tf . Then we
have the following status examples:

Active: Let φ = “Headlight always on at night” and sup-
pose “night”, “light on” ∈ Lt for all t ≥ t0. Then φ is active
at all t ≥ t0.

Satisfied: Let φ = “Eventually deposit sample”. Suppose
“sample deposited” ∈ Lt, “sample deposited” ̸∈ Lt′ for all
t′ < t. Then φ is satisfied at t.

Inactive (done): Let φ = “Eventually deposit sample”
and suppose “sample deposited” ∈ Lt′ for some t′ < t. Then
φ is inactive at t, since φ was already satisfied.

Inactive (not triggered): Let φ = “If raining, stop” and
suppose “rain” ̸∈ Lt. Then φ is inactive at t, since precon-
dition “rain” is not occurring and stopping is not necessary.

Violated: Let φ = “Battery always above 10%” and sup-
pose “battery empty” ∈ Lt. Then φ is violated at all t.

Finally, we can express the set of all times in {t0, ..., Tf}
for which φ has status q on ρt0... as a timeset

τ q = {t ∈ {t0, ..., Tf} | t has status q}. (2)

If we recover such time sets for a rule φ, it is possible
to check its status at any moment in an agent trajectory;
moreover, time sets for each argument of φ may help to track
progress “through” the rule, such as completion of subtasks.

Formal Problem Statement. For an LTL formula φ and
a plan trace ρT0...Tf , an explainer must be able to provide:

• Status of φ at t on ρt0... for all
{t0, t ∈ {T0, ..., Tf} | t0 ≤ t}

• Status timesets τa, τs, τ i, τv of φ for each
t0 ∈ {T0, ..., Tf}

• Both of the above for any argument φj of φ.
In this paper, we propose an algorithm that returns this

information on demand and begin to explore its applications.

IV. RULE STATUS ASSESSMENT

We wish to evaluate rule status for all arguments of a
formula. To accomplish this in a structured manner, formulas
are first decomposed into a tree structure as follows.

Tree Structure. LTL formulas φ are commonly structured
as trees with φ as the base node [13] [15]. Here, the children
of a parent node are the arguments of the parent formula,
until each branch terminates in a leaf containing only a label.
We additionally store the type of the weakest operator in φj

for each node, denoted θj ; in the case where φj = α, we
assign type θj = AP (“atomic proposition”) to denote that
the node contains a label. An example is given in Figure 1.

Modules and Algorithm. Each node of a tree contains
a formula consisting of one or more arguments bound by
an operator. The operator type determines how the argument
truth values map to a status; for instance, consider a trace
ρ where a formula φj is true at a single time step t′. Here,

Fig. 1. Example formula tree for φ = α1U(Gα2).

a node with φ = Gφj (type G) is violated at all t; a node
φ = Fφj (type F) is active until satisfaction at t′. Thus, we
establish separate modules for every type, each with inputs
φ, t0, ρt0... and outputs τa, τs, τ i, τv to satisfy Definition 8.

Our proposed algorithm works node-by-node, beginning
with all leaf nodes and working up each branch until τ has
been calculated for the entire tree (child nodes are always
instantiated before their parents). The algorithm then accepts
queries and returns status at the desired time steps:

Rule Status Assessment Algorithm
1) Construct tree for LTL rule φ.
2) Find τa, τs, τ i, τv of each node for all ρt0...,

t0 ∈ {T0, ..., Tf}:
a) For each distinct label α appearing in any leaf,

pass ρt0..., φ = α into the AP module for all
t0 ∈ {T0, ..., Tf}. Store outputs τ for all leaves
containing this α.

b) For leaf φ...x.y , check parent φ...x. If τ is already
stored for all children of φ...x, proceed to (c);
otherwise, move to next leaf and repeat (b).

c) Identify θ of φ...x. Pass φ...x, ρt0... into θ module
for all t0 ∈ {T0, ..., Tf}; store output τ for φ...x.

d) Check parent of φ...x. If it exists and all its
children are instantiated, repeat step c) for this
parent. Otherwise, move to next leaf and begin
again from step (b).

3) Answer status queries:
a) Accept t∗, t∗0 and a node (e.g., φx.y) as input.
b) Return status q if t∗ ∈ τ q for ρt

∗
0 ....

The temporal and logical operator modules are defined in
Tables III and II, respectively. For proof that the modules
satisfy Definition 8, see Brindise and Langbort [23].

Algorithm Complexity. An upper bound on complexity
may be established from the modules. For each node φ...x

in a tree, the corresponding module is called once; this
module produces τ for every t0 in {T0, ..., Tf}, resulting
in ≤ |ρ| iterations. At each t0, the module performs up
to Tf − t0 ≤ |ρ| evaluations per argument φ...x.y . Thus,
any node with a binary operator (two arguments) performs
n ≤ 2|ρ|2 computations.

Now, for a tree with depth L, with base node at level l = 0
and maximum 2 children per node, the number of nodes at
level L, nL, satisfies nL ≤ 2L. Maximum complexity is thus
order 2l(2|ρ|2), or

O(2l+1|ρ|2). (3)

Logical operators with more than 2 arguments (e.g. φ1 ∨
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Not (neg) LTL: φ = ¬φ1

Initialize: Load all τq1 of child node φ1 at t0.
If τv1 = ∅ : Set τv = {t0, ..., Tf}.
Else: Set τa, τs = {t0}, τ i = {t0, ..., Tf} \ τa.

Set τv = ∅.

Or (or) LTL: φ = φ1 ∨ φ2

Initialize: Load all τq1 , τ
q
2 of child nodes φ1, φ2 at t0.

∗If τv1 , τ
v
2 ̸= ∅: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.

Else: Set τa, τs = {t0}, τ i = {t0, ..., Tf} \ τa.
Set τv = ∅.

And (and) LTL: φ = φ1 ∧ φ2

Same as ∨ with ∗ replaced by:
If τv1 or τv2 ̸= ∅: (...)

Implication (→) LTL: φ = φ1 → φ2

Initialize: Load all τq1 of child node φ1 at t0.
If τv1 ̸= ∅: Set τa, τs, τv = ∅; τ i = {t0, ..., T} \ τa.

Exit the current module.
Else: Load all τq2 of child node φ2 at t0.
If τv2 ̸= ∅: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.
Else: Set τa, τs = {t0}; τ i = {t0, ..., Tf} \ τa.

Set τv = ∅.

TABLE II
LOGICAL OPERATOR MODULE DEFINITIONS.

φ2 ∨ φ3) can be rewritten as a tree of their groupings (e.g.,
φ1 ∨ (φ2 ∨ φ3)), with L adjusted appropriately.

V. APPLICATION

In this section, we apply status assessment on hypothetical
runs of two agents using the status assessment algorithm lo-
cated at https://github.com/n-brindise/live_
expl. We also suggest a basic heuristic to identify times
t∗, t∗0 of potential interest in a trace.

Query Heuristics. Status assessment allows for a large
number of queries (O(2l+1|ρ|2)); thus, identification of
informative queries from this large set is desirable. A first-
order approach simply monitors the τ values as the algorithm
iterates over t0 ∈ {T0, ..., Tf} and stores any t0 where ρ
changes status to active or violated from the preceding t0.
We denote the set of all t∗0 of interest by τ∗.

Muddy Yard Example. The real world-inspired “muddy
yard” scenario (Fig. 2) features an “outdoor” area with two
“muddy” sections and an outdoor “mat,” as well as an
“indoor” area with a “sink.” The two areas are separated
by a “wall” with a “door.” We formulate the domain as a
Kripke structure with set S of states and set P of labels:

S = {σ1 = grass σ2 = mud σ3 = mat σ4 = floor
σ5 = sink σ6 = wall σ7 = door}

P = {α1 = outside α2 = inside α3 = muddy
α4 = wiped α5 = washed α6 = impassable}

where I = S. The transition relation T exclusively allows the
agent to transition between adjacent states (e.g., (σ1, σ2) ∈

Atomic (AP ) LTL: φ = α

If α ∈ Lt0 : Set τa, τs = {t0}, τ i = {t0, ..., Tf}\τa.
Set τv = ∅.

Else: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.

Next (X) LTL: φ = Xφ1

Initialize: Load all τq1 of child node φ1 at t10 = t1.
If τv1 = ∅: Set τa = {t0, t1}; τs = {t1}, τ i =

{t0, ..., Tf} \ τa. Set τv = ∅.
Else: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.

Eventual (F ) LTL: φ = Fφ1

For t10 = t0...Tf : Load all τq1 of child node φ1 at t10. Continue
until t10 = Tf or τv1 = ∅.

If τv1 = ∅: Set τa = {t0, ..., t10}; τs = {t10}; τ i =
{t0, ..., Tf} \ τa. Set τv = ∅. Exit the
current module.

Else: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.

Global (G) LTL: φ = Gφ1

For t10 = t0...Tf : Load all τq1 of child node φ1 at t10.
Continue until t10 = Tf or τv1 ̸= ∅.

If τv1 ̸= ∅: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.
Exit the current module.

Else: Set τa = {t0, ..., Tf}; τs =
{Tf}; τ i, τv = ∅.

Until (U) LTL: φ = φ1Uφ2

For t′0 = t0...Tf : Load all τq1 , τ
q
2 of child nodes φ1 and φ2

at t′0. Continue until τv1 ̸= ∅ or τv2 = ∅ or
t20 = Tf .

†If τv2 = ∅: Set τa = {t0, ..., t′0}; τs = {t′0}; τ i =
{t0, ..., Tf} \ τa. Set τv = ∅.

Else if τv1 ̸= ∅: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.
∗Else: Set τv = {t0, ..., Tf}; τa, τs, τ i = ∅.

W. until (W ) LTL: φ = φ1Wφ2

Same as U with ∗ replaced by:
Else: Set τa = {t0, ..., Tf}; τs =
{Tf}, τ i = ∅. Set τv = ∅.

S. release (M) LTL: φ = φ1Mφ2

Same as U with † replaced by:
If τv2 = ∅ and τv1 = ∅: (...)

Release (R) LTL: φ = φ1Rφ2

Same as U plus changes in W & M.

TABLE III
TEMPORAL OPERATOR MODULE DEFINITIONS.

T , but (σ1, σ5) ̸∈ T ). Finally, the labeling function L is

L(σ1) = {α1} L(σ2) = {α1, α3} L(σ3) = {α1, α4}
L(σ4) = {α2} L(σ5) = {α2, α5} L(σ6) = {α6}
L(σ7) = {α1, α2}.

We wish to analyze the agent run in Figure 3 subject to the
following LTL rules:

1) φ = Fα1 “Eventually be outside”
2) φ = Fα2 → Fα5 “If eventually inside, eventually

wash up”
3) φ = G(α3 → (¬α2Wα4)) “Always, if muddy, do not

go inside until wiping off”
4) φ = G(¬α6) “Never enter an impassable place”
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Fig. 2. “Muddy yard” example domain, representing a yard (“outside”)
with two muddy patches and a mat, as well as a home interior (“inside”)
with a sink. Outside and Inside are separated by an untraversable wall.

Fig. 3. Example path over the muddy yard domain. Each triangle represents
the agent position and direction of travel at a single time step.

From Figure 3, the system run is

κ = σ1, σ1, σ2, σ1, σ1, σ3, σ1, σ1, σ7, σ4, σ4, σ5,

which produces the trace

ρ ={α1}0, {α1}1, {α1, α3}2, {α1}3, {α1}4, {α1, α4}5,
{α1}6, {α1}7, {α1, α2}8, {α2}9, {α2}10, {α2, α5}11.

We now use status assessment to answer a series of questions.
(When listing timeset outputs, we omit any τ = ∅ for clarity.)

Question: “Which rules are active at time t∗?”
For t0 = T0, Rules 1-4 have (nonempty) timesets

1) τa = {0}, τs = {0}, τ i = {1, ..., 11}
2) τa = {0}, τs = {0}, τ i = {1, ..., 11}
3) τa = {0, ..., 11}, τs = {11}
4) τa = {0, ..., 11}, τs = {11}

At t∗ = 3, output is:

• “Rules 1 and 2 are inactive”
• “Rules 3 and 4 are active”

Intuitively, Rule 1 requires that the agent goes outside; this
occurred already at t = 0, hence the inactivity by t = 3.
Rule 2 requires that, if the agent will eventually go inside,
it must also eventually wash up; both of these conditions
are already true on ρ0..., and thus inactive for t∗ > 0. This
output is less intuitive, as it is not clear when the agent will
go inside or wash up. Finally, Rules 3 and 4 are global and
must be active at every time step. For 2, 3, and 4, elaboration
is likely necessary, prompting another question.

Question: “Which arguments of rules are active at t∗?”
We first query Rule 3 at node φ1. From heuristics,

τ∗ = {2}, so we query φ1 at t∗, t∗0 = 2, which yields

• τa1 = {2}, τs1 = {2}, τ i1 = {0, 1, 3, ..., 11}
• “Rule 3.1 is active and satisfied (at t∗ = 2)”

Fig. 4. Vehicle observed changing lanes and reducing speed at t = t′.

This suggests that α3 → (¬α2Wα4) is active on ρ2....
Indeed, α3 (“muddy”) occurs at t = 2, triggering the
implication. Querying φ1.2 at t∗0 = 2, t∗ = 5,

• τa1.2 = {2, ..., 5}, τs1.2 = {5}, τ i1.2 = {6, ..., 11}
• “Rule 3.1.2 is active and satisfied (at t∗ = 5)”

Intuitively, though Rule 3 always holds, it only takes direct
effect starting at 2 (when the agent becomes muddy) and
releases this effect at 5 (when the agent wipes itself off).

Moving on to Rule 2, we perform queries for φ1 = Fα2

and φ2 = Fα5, and we find that both are active at t∗0 =
0, t∗ = 3. This makes sense, as the agent has neither gone
inside nor washed up by step 3. At t∗0, t

∗ = 9, φ1 is now
inactive, since the agent has been inside for several steps,
but φ2 remains active, since it has yet to wash up. Finally,
the agent washes up at 11, and t∗ = 11 gives φ2 satisfied.

Autonomous Vehicle Example. Autonomous vehicles
must comply to safety guidelines, operational limits, and traf-
fic laws, all of which are typically expressible via temporal
logics [24]. This example considers a hypothetical setting in
which an autonomous vehicle completes three distinct trips,
producing 3 traces over a large vocabulary (|P| = 54) and
90 time steps. 21 LTL formulas describe various rules for
safety, legal, and trip requirements, such as “reduce speed
in construction zones” and “activate wipers if rain hazard
present.” The traces and list of rules are available at [23].

Notably, the raw traces are visually difficult to parse.
Single time steps contain lengthy sets of labels, for exam-
ple {leftmost, doors-closed, driver-awake, clear-ahead, want-
turn-left, clear-right, lane-to-right, gas-low, intersection-
ahead, green-ahead, reduced-speed, safe-stop} at ρ1, t = 36.

To motivate our example, suppose we observe the vehicle
changes lanes to the left and reduces speed at time t′ in all
three trips, as shown in Figure 4. We wish to investigate what
has occurred in each trace that may explain this behavior.

As the traces are dense and the list of rules is long, we
use status assessment. We place queries at t∗0, t

∗ = t′ for the
first argument of all 20 global rules G(...).

For ρ1, we find (1) satisfied gas-low →
¬(goal)Ugas-station, (2) satisfied want-left-turn ∧
near-intersection∧ clear-left∧ lane-to-left → change-left and
(3) satisfied want-turn ∧ near-intersection → reduced-speed.
In words, the vehicle is heading to a gas station, approaching
an intersection, and planning to turn left.

For ρ2, we find (1) satisfied merge-left ∧
clear-left ∧ lane-to-left → change-left and (2) satisfied
construction-zone → reduced-speedUleave-zone. Here, the
vehicle has entered a construction zone and must merge.
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Finally, for ρ3, we have (1) satisfied
short-follow-distance → reduced-speed. We place an
additional query at t∗0, t

∗ = t′ − 1, which returns (2)
satisfied short-follow-distance ∧ (clear-left ∧ lane-to-left) →
Xchange-left. Thus, the vehicle encountered another vehicle
which had dangerously reduced the following distance.

In all, status assessment processed a large set of rules
and dense traces to produce brief diagnostic statements
which highlighted the specific circumstances of each left-
lane change, a promising aid to understand the situation.

VI. DISCUSSION AND CONCLUSION

In this work, we introduce rule status assessment (RSA), a
method for explanatory diagnostics for generic autonomous
agent trajectories. RSA is applicable to any system express-
ible via Kripke structure, providing a novel framework to
classify LTL rules of interest as active, satisfied, inactive,
or violated at individual trajectory time steps. This makes
it possible to track an agent’s progress through subtasks
and more; it also provides insight into the applicability of
individual rules and reduces the total number of rules a
human must consider at once.

Multiple directions exist for future work. Firstly, the
broader application of RSA is a critical next step to demon-
strate effectiveness for practical purposes, particularly in
common settings such as Machine Learning (ML). Further
application also calls for additional query heuristics; it is a
challenge to identify useful queries to achieve insightful RSA
diagnostics. Finally, the existing framework is entirely post-
hoc; for certain families of systems, such as Reinforcement
Learning agents, use of agent internals (i.e., Q function)
could incorporate agent intentionality.
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