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Abstract— We estimate the probability that the first achieve-
ment of a given level by the component y1(x) of n-dimensional
continuous process y(x)={y1(x), ..., yn(x)} occurs at some mo-
ment x∗ from a given interval (x′, x′′) and, at this moment x∗,
the condition (y2(x

∗), ..., yn(x
∗))∈D holds, where D is a given

domain of (n− 1)-dimensional Euclidean space Rn−1. The
need to calculate the above-mentioned probability arises in the
problems of aircraft control during landing.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider a point M moving in the n-dimensional Eu-
clidean space Rn; changing the position of point M is
described by an n-dimensional continuous random process
y(x). At the initial moment x = x0, the point is located
at position y(x0) = y0; in general case, this position may
be unknown. The independent variable is time or one of
the components of the process y(x) (provided that this
component changes continuously and monotonously). We
denote by Q a given domain in Rn; by ∂Q, the boundary
of domain Q; and by ∂1Q, some part of boundary ∂Q. It is
known that y0∈Q. We are to find the probability

P

{
there exists some value x∗ from a given interval (x′, x′′)

such that M(x∗)∈∂1Q and M(x)∈Q ∀x<x∗

}
of the event that point M will reach the boundary of domain
Q for the first time at some moment x∗ from a given
interval (x′, x′′) and it will reach specifically the part ∂1Q
of boundary ∂Q (see Fig. 1).
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Fig. 1. The problem statement

This mathematical problem was posed in [1]. This problem
appears in studying stochastic systems in situations when
a normal system operation corresponds to a position of a
point depicting the system in a certain domain Q of the
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system state space and consequences of the point leaving
this domain depend on what part of the domain boundary it
will leave through.

We consider the particular case of domain Q; namely,
when Q is a half-space:

Q = {(v1, . . . , vn) ∈ Rn : v1>h}, (1)

where h is a given number; in this case (see Fig. 2),

∂Q = {(v1, . . . , vn) ∈ Rn : v1 =h},
∂1Q = {(v1, . . . , vn) ∈ Rn : v1 =h, (v2, . . . , vn) ∈ D},

where D is a given subset of the (n − 1)-dimensional
Euclidean space Rn−1.
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Fig. 2. The problem statement in the special
case when domain Q is a half-space

In this important special case, the mathematical statement
of the general problem described above is formulated as
follows. Let y(x)={y1(x), . . . , yn(x)} be an n-dimensional
continuous random process and let h be a given number.
We will consider process y(x) defined on the semiinterval
(x0, x

′′], x0≥−∞, and satisfying the condition

lim
x→x0

P{y1(x)>h}=1. (2)

The physical meaning of condition (2) is that, at the initial
time moment, the stochastic system whose behavior is de-
scribed by process y(x) is located inside a known domain
of system’s state space; in our case (see Fig. 2), this domain
is defined by equality (1).

Choose arbitrary x′∈(x0, x
′′) and D, a subset of Rn−1.

Define the events L and ZD as follows:

L =
{
∃ x̂∈(x0, x

′′] ∀x∈(x0, x̂) y1(x)>h
}

and

ZD =

{
∃x∗∈(x′, x′′) ∀x∈(x0, x

∗) y1(x)>h;

y1(x∗)=h; (y2(x∗), . . . , yn(x∗))∈D

}
. (3)

Event ZD consists in the fact that the first achievement of
a given level h by the component y1(x) occurs at some
moment x∗ from a given interval (x′, x′′) and, at this
moment x∗, the condition (y2(x∗), . . . , yn(x∗))∈D holds.
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We are to find the conditional probability P{ZD|L} of
event ZD given that event L has occurred1.

As shown in [2], [3], and [4], the problem of calculating
the probability of an aircraft safe landing is the prob-
lem of calculating the probability P{ZD} if the condition
(y2(x∗), . . . , yn(x∗))∈D from (3) is specified as follows:

yi,min ≤ yi(x∗) ≤ yi,max, i = 2, . . . , n, (4)

where yi,min and yi,max are given numbers. In this case
(see Fig. 3), process y(x) describes an aircraft’s behav-
ior during landing, component y1(x) is the flight altitude,
level h equals zero, independent variable x is the flight
length, and event ZD denotes safe landing, i.e., the fact
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Fig. 3. Landing an aircraft

that the aircraft first touches the landing surface on a given
interval (x′, x′′) and, at the moment x∗ of this touching, the
aircraft’s phase coordinates (elevation angle, banking angle,
vertical velocity, and so on), which represent components of
vector y(x), remain inside admissible ranges that exclude an
emergency. Numbers yi,min and yi,max from (4) define the
range of safe values of phase coordinates at the moment x∗

of landing.

II. PRELIMINARIES
A. General Description of the Situation

There are a large number of publications devoted to
problems about achievements and crossings of a given level
by a random process; see, e.g., survey publications [5]–
[9]. The systematic study of these problems was started
in [10]. Using heuristic methods, a number of important
results, in particular a formula for the average number of
crossings of a fixed level, were obtained in [10]. Decades
and efforts of many researchers were required to find the
weakest conditions for the correctness of these results and
the mathematically faultless formulations and proofs of the
corresponding statements and their further generalizations;
see, e.g., [11]–[35].

For a certain class of continuous Markov processes, the
problem described in Section I can be reduced to solv-
ing a boundary value problem for a partial differential
equation (see [1]). For smooth differentiable processes, the
above mathematical problem has not been solved. It is
those processes that describe the changes of the aircraft’s
phase coordinates during landing. These processes are non-
Markovian processes. All (known to the authors) results for

1We note that if x0 is finite then all results shown below also hold if
instead of processes defined on the semiinterval (x0, x′′] and satisfying
condition (2) we consider processes defined on the segment [x0, x′′] and
satisfying condition P{y1(x0) > h} = 1; in this case, event L will be
defined as L = {y1(x0)>h}.

the probability of reaching the given boundaries by a non-
Markovian process refer to the one-dimensional case and to
the situation when a random process under consideration is
a stationary Gaussian process with a correlation function of
a special type (see, e.g., [23] and [28]).

We also note that there is an approach to studying the safe
functioning of continuous-time stochastic systems based on
finding the so-called barrier certificates (see, e.g., [36], [37],
and [38]): using a special technique, an upper estimate is
found for the probability that the system will be in an unsafe
domain of the state space. However the corresponding tech-
nique assumes that the behavior of the system is described
by a Markov process.

In this paper, we present the results concerning the es-
timates of the probability of event (3) for non-Markovian
processes.

B. Previously Established Result

Following [5], we denote by Gh(x0, x
′′) the set of scalar

functions continuous on [x0, x
′′] or (x0, x

′′] (depending on
the set of values for variable x that we consider) that do
not identically equal h on any subinterval inside interval
(x0, x

′′). For functions from Gh(x0, x
′′), we use the concepts

“crossing of level h”, “touching of level h”, “upcrossing of
level h”, and “downcrossing of level h” in accordance with
their definitions given in [5].

We will assume that with probability 1 sample functions
y1(x) belong to the set Gh(x0, x

′′) and do not touch the
level h, and the average2 number of crossings N(x0, x

′′) of
level h by process y1(x) on the interval (x0, x

′′) is finite.
Then, taking into account condition (2), it is easy to see
that P{ZD|L} = P{ZD}, i.e., instead of bounds on the
conditional probability P{ZD|L} we can prove bounds on
the unconditional probability P{ZD}.

By N+(x1, x2) denote the average number of upcrossings
of level h by the component y1(x) on the interval (x1, x2), by
N−(x1, x2) denote the average number of downcrossings of
level h by the component y1(x) on the interval (x1, x2), and
by N−D (x1, x2) denote the average number of downcrossings
of level h by the component y1(x) on the interval (x1, x2)
such that at moments of these downcrossings the condition
(y2, . . . , yn)∈D is satisfied for other components y2, . . . , yn
of process y(x). The following result takes place (see [39]).

Theorem 1. Suppose that 1) with probability 1 sample
functions y1(x) belong to the set Gh(x0, x

′′) and do not
touch the level h on the interval (x0, x

′′), N(x0, x
′′) <∞;

2) P{y1(x′) = h} = 0; 3) condition (2) holds. Then at any
l = 2, 3, . . . and any partition of the interval (x0, x

′′)

x0 < x1 < . . . < xl−1 < xl = x′′,

where for every i=1, 2, . . . , l−1 P{y1(xi)=h} = 0, the
inequalities

N−D (x′, x′′)−N+(x0, x
′′) + ∆ ≤ P{ZD} ≤ N−D (x′, x′′)

hold, where

2The term “average” means the mathematical expectation of the corre-
sponding random variable.
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∆ = ∆(x1, . . . , xl)

=

l−1∑
i=1

P

{(
y1(xi) < h

)
∩
[ l⋂
j=i+1

(
y1(xj) > h

)]}
.

And if we add to existing points xi, i= 1, 2, . . . , l−1, new
points xk, for which P{y1(xk)=h} = 0, the value of ∆ can
only increase as a result.

In order for sample functions y1(x) to belong to the set
Gh(x0, x

′′), it suffices to require that sample functions are
continuous with probability 1 on the corresponding interval
and that equality P{y1(xr)=h}=0 holds for every rational
point xr from this interval. In order to ensure that there are
no touchings of level h with probability 1 and the average
number of crossings N(x0, x

′′) is finite, it suffices to require
that for every fixed x the one-dimensional distribution den-
sity of process y1(x) is bounded and that sample functions
y1(x) are continuously differentiable with probability 1 on
the corresponding interval (see, e.g., [13]).

If the process y1(x) is differentiable in mean-square,
then the number N+(x0, x

′′) can be calculated by the Rice
formula (see, e.g., [18])

N+(x0, x
′′) =

x′′∫
x0

dx

∞∫
0

vfx(h, v)dv.

Here fx(h, v) = fx(u1, v)
∣∣∣
u1=h

, fx(u1, v) is the joint

distribution density of random values y1(x) and ζ(x), where
ζ(x) ≡ y′1(x) is the derivative in mean-square of process
y1(x). The number N−D (x′, x′′) can be calculated as

−
x′′∫
x′

dx

∫
. . .

∫
D

du2 . . . dun

0∫
−∞

vfx(h, v, u2, . . . , un)dv,

where fx(u1, v, u2, . . . , un) is the joint distribution density
of random values ξ1(x), ζ(x), ξ2(x), . . . , ξn(x). This result
is obtained by generalizing the Rice formula.

Examples of numerical estimates of probability P{ZD}
by Theorem 1 can be found in [2], [3], [4], [40], and [41].

III. EXACT FORMULA FOR THE REQUIRED
PROBABILITY IN THE ONE-DIMENSIONAL CASE

We denote by A−j (x1, x2), j = 1, 2, . . . , the event that
the number of crossings of level h by process y1(x) on
interval (x1, x2) is equal to j and the first crossing is a
downcrossing. Based on the intermediate results obtained in
the course of the proof of Theorem 1, it is not difficult to
establish the following result concerning a question about
the existence of lim ∆(x1, . . . , xn) as a cross-partition of
the interval (x0, x

′′).
Theorem 2. Suppose that the conditions of Theorem 1 are

satisfied, x0>−∞. Let x0<x1<. . .< xi. . .<xn=x′′ and
x0 = x̃0 < x̃1 < . . . < x̃j < . . . < x̃m = x′ be any partitions
of segments [x0, x

′′] and [x0, x
′]; P{y1(xi) = h} = 0 for

every i = 1, . . . , n−1 and P{y1(x̃j) = h} = 0 for every
j = 1, . . . ,m. In addition, suppose that

lim
max

i=0,1,...,n−1
(xi+1−xi)→0

n−1∑
i=0

P

{ ∞⋃
k=1

A−2k(xi, xi+1)

}
=0. (5)

Then there exist limits

lim
max

i=0,1,...,n−1
(xi+1−xi)→0

∆(x1, . . . , xn) = ∆lim(x0, x
′′)

and
lim

max
j=0,1,...,m−1

(x̃j+1−x̃j)→0
∆(x̃1, . . . , x̃m) = ∆lim(x0, x

′);

and the exact equality takes place for the probability P{Z}:

P{Z}=N−(x′, x′′)−N+(x′, x′′)+∆lim(x0, x
′′)−∆lim(x0, x

′),

where symbol Z denotes event ZD when D = Rn−1. The
numbers ∆lim(x0, x

′′) and ∆lim(x0, x
′) have the following

sense:

∆lim(x0, x
′′) = P

{ ∞⋃
k=1

A−2k(x0, x
′′)

}
,

∆lim(x0, x
′) = P

{ ∞⋃
k=1

A−2k(x0, x
′)

}
.

The following lemma gives sufficient conditions for hold-
ing assumption (5).

Lemma. Let with probability 1 sample functions y1(x)
be continuous on the segment [xI , xII ] and belong to the
set Gh(xI , xII). Let P{y1(x) = h} = 0 for every point
x ∈ [xI , xII ] except, perhaps, a finite number of points and
there exists a positive constant C such that the condition

P
{(
y1(xi)>h

)
∩
(
y1(xi+

xi+1−xi
2

)<h
)
∩
(
y1(xi+1)>h

)}
(6)

≤ Cε(xi+1 − xi), i = 0, 1, . . . , n−1,

is satisfied for every rather small partition xI =x0 < x1 <
. . . < xn−1 < xn=xII , where the function ε(τ) satisfies the
condition

lim
max

i=0,1,...,n−1
(xi+1−xi)→0

n−1∑
i=0

∞∑
m=0

2mε
(xi+1 − xi

2m

)
=0. (7)

Then equality (5) holds.
Proof. Consider the sample functions y1(x) such that at

every m = 0, 1, 2, . . . , every l = 1, 2, 3, . . . , 2m, and every
i = 0, 1, . . . , n−1

y1

(
xi +

xi+1 − xi
2m

l
)
6= h.

Under the conditions of the Lemma, the probability of such
sample functions is equal to 1. We introduce the event

Bm,k(xi, xi+1) =

{
y1

(
xi +

k − 1

2m
(xi+1−xi)

)
>h

}
∩
{
y1

(
xi+

k− 1
2

2m
(xi+1−xi)

)
<h

}
∩
{
y1

(
xi+

k

2m
(xi+1−xi)

)
>h

}
.

If the event
∞⋃
k=1

A−2k(xi, xi+1) occurs, then either at least one

of a denumerable number of events

B0,1(xi, xi+1),

B1,1(xi, xi+1), B1,2(xi, xi+1),

B2,1(xi, xi+1), B2,2(xi, xi+1), B2,3(xi, xi+1), B2,4(xi, xi+1),

. . .
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Bm,1(xi, xi+1), Bm,2(xi, xi+1), . . . , Bm,2m(xi, xi+1),
. . .

occurred or the equality y1
(
xi + xi+1−xi

2m l
)

=h was satisfied
at some m (from the set of 0, 1, 2, . . .) and some l (from the
set of 1, 2, 3, . . . , 2m). Since P

{
y1
(
xi+

xi+1−xi
2m l

)
=h
}

= 0,
we have

P

{ ∞⋃
j=1

A−2j(xi, xi+1)

}
≤
∞∑
m=0

2m∑
k=1

P
{
Bm,k(xi, xi+1)

}
.

Under the conditions of the Lemma, at every m = 0, 1, 2, . . .
and every k = 1, 2, 3, . . . , 2m

P
{
Bm,k(xi, xi+1)

}
≤ Cε

(xi+1 − xi
2m

)
.

Therefore,
n−1∑
i=0

P

{ ∞⋃
j=1

A−2j(xi, xi+1)

}
≤
n−1∑
i=0

∞∑
m=0

2mCε
(xi+1 − xi

2m

)
.

Passing this inequality to a limit as max
i=0,1,...,n−1

(xi+1−xi)→0

and using condition (7), we obtain result (5). The Lemma is
proved.

We note one important case of function ε(τ) when condi-
tion (7) is satisfied.

Remark. Condition (7) is satisfied if ε(τ) = τ1+α, where
α > 0.

Proof. We have
n−1∑
i=0

∞∑
m=0

2mε
(xi+1 − xi

2m

)
=

n−1∑
i=0

∞∑
m=0

2m(xi+1 − xi)1+α

2m2mα

=

n−1∑
i=0

(xi+1 − xi)1+α
∞∑
m=0

1

2mα
=

n−1∑
i=0

(xi+1 − xi)1+α

1− (1/2)α

≤

(
max

i=1,...,n−1
(xi+1−xi)

)α
1− (1/2)α

n−1∑
i=0

(xi+1 − xi)

=

(
max

i=1,...,n−1
(xi+1−xi)

)α
1− (1/2)α

(xII−xI).

The last expression tends to zero as max
i=0,1,...,n−1

(xi+1−xi)→0.

The Remark is proved.
Now suppose that y1(x) is a Gaussian process. We repre-

sent it as
y1(x) = m(x)+

◦
y1(x),

where m(x) = E{y1(x)} is a mathematical expectation of
process y1(x) and

◦
y1 (x) is a centered process. We find

conditions for m(x) and
◦
y1(x) when the Lemma can be

used. For this purpose we consider the probability

p(x, τ)=P
{(
y1(x)>h

)
∩
(
y1(x+τ)<h

)
∩
(
y1(x+2τ)>h

)}
;

this probability is similar to the probability on the left side
of inequality (6).

Let us introduce the following notation:

σ1 =σ(x)=

√
E{ ◦y1(x)}2, σ2 =σ(x+τ)=

√
E{ ◦y1(x+τ)}2,

σ3 =σ(x+ 2τ)=

√
E{ ◦y1(x+ 2τ)}2, r11 =r22 =r33 =1,

r12 = r(x, x+ τ) =
E{ ◦y1(x)

◦
y1(x+ τ)}
σ1σ2

,

r13 = r(x, x+ 2τ) =
E{ ◦y1(x)

◦
y1(x+ 2τ)}
σ1σ3

,

r23 = r(x+ τ, t+ 2τ) =
E{ ◦y1(x+ τ)

◦
y1(x+ 2τ)}

σ1σ3
,

r21 = r12, r31 = r13, r32 = r23;

m1 = m(x), m2 = m(x+ τ), m3 = m(x+ 2τ);

R=

∣∣∣∣∣∣
r11 r12 r13
r21 r22 r23
r31 r32 r33

∣∣∣∣∣∣=1+2r12r13r23−r212−r213−r223;

Rij is the algebraic addition of the element rij of the
determinant R. Without loss of generality it can be assumed
that h = 0. Then

p(x, τ) =
1

(2π)3/2σ1σ2σ3
√
R

·
∞∫
0

dz1

0∫
−∞

dz2

∞∫
0

exp

{
− 1

2R

3∑
i,j=1

Rij
(zi−mi)(zj−mj)

σiσj

}
dz3.

By means of the replacement of variables

z̃1 =
z1 −m1

σ1
, z̃2 =

z2 −m2

σ2
, z̃3 =

z3 −m3

σ3

we obtain
p(x, τ) =

1

(2π)3/2
√
R

·
∞∫

−m1
σ1

dz̃1

−m2
σ2∫

−∞

dz̃2

∞∫
−m3
σ3

exp

{
− 1

2R

3∑
i,j=1

Rij z̃iz̃j

}
dz̃3.

Taking into account that

R11 =1− r223, R12 =r13r23 − r12, R13 =r12r23 − r13,

R21 =r13r23 − r12, R22 =1− r213, R23 =r12r13 − r23,

R31 =r12r23 − r13, R32 =r12r13 − r23, R33 =1− r212,
we have

1

R

3∑
i,j=1

Rij z̃iz̃j =
1− r223
R

z̃21 +
1− r213
R

z̃22 +
1− r212
R

z̃23

+
2(r13r23 − r12)

R
z̃1z̃2 +

2(r12r23 − r13)

R
z̃1z̃3

+
2(r12r13 − r23)

R
z̃2z̃3

=

(√
1− r223√
R

z̃1 +
r13r23 − r12√
R(1− r223)

z̃2 +
r12r23 − r13√
R(1− r223)

z̃3

)2
+

(
1√

1− r223
z̃2 −

r23√
1− r223

z̃3

)2
+ z̃23 .

By definition, put

v1 =

√
1−r223√
R

z̃1+
r13r23−r12√
R(1−r223)

z̃2+
r12r23−r13√
R(1−r223)

z̃3, (8)
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v2 =
1√

1−r223
z̃2−

r23√
1−r223

z̃3, v3 =
√
Rz̃3. (9)

Then
p(x, τ) =

1

(2π)3/2
√
R

·
∞∫

−m3
σ3

{ −m2
σ2∫

−∞

( ∞∫
−m1
σ1

e−v
2
1/2dz̃1

)
e−v

2
2/2dz̃2

}
e−v

2
3/2Rdz̃3.

We will make a change of variables in the inner integral
∞∫

−m1
σ1

e−v
2
1/2dz̃1;

namely, instead of integrating over the variable z̃1, we will
integrate over the variable v1. When we integrate over z̃1,
variables z̃2 and z̃3 are fixed. Therefore v2 and v3 (see (9))
are also fixed. It follows from (8) and (9) that

z̃3 =
v3√
R
, z̃2 =

√
1− r223v2 +

r23√
R
v3,

and

v1 =

√
1− r223√
R

z̃1 +
r13r23 − r12√
R(1− r223)

(√
1− r223v2 +

r23√
R
v3

)
+
r12r23 − r13√
R(1− r223)

v3√
R

=

√
1− r223√
R

z̃1 +
r13r23 − r12√

R
v2 −

r13
√

1− r223
R

v3,

i.e., when the variable z̃1 is changed from −m1

σ1
to +∞, the

variable v1 is changed from −η(v2, v3) to +∞, where

η(v2, v3)=

√
1−r223√
R

m1

σ1
− r13r23−r12√

R
v2 +

r13
√

1−r223
R

v3.

(10)
By definition, put

Φ(y) =
1√
2π

y∫
−∞

e−u
2/2du.

Then
∞∫

−m1
σ1

e−v
2
1/2dz̃1 =

√
R√

1− r223

∞∫
−η(v2,v3)

e−v
2
1/2dv1

=

√
R√

1− r223

η(v2,v3)∫
−∞

e−v
2
1/2dv1 =

√
2π

√
R√

1− r223
Φ
(
η(v2, v3)

)
and

p(x, τ) =
1

2π
√
R

·
∞∫

−m3
σ3

{ −m2
σ2∫

−∞

√
R√

1− r223
Φ
(
η(v2, v3)

)
e−v

2
2/2dz̃2

}
e−v

2
3/2Rdz̃3.

Let us consider the inner integral on the right side of the
last equality. Integration is carried out over variable z̃2 when

variable z̃3 is fixed. If variable z̃3 is fixed, then variable v3
is also fixed. It follows from (9) that

v2 =
1√

1− r223
z̃2 −

r23√
1− r223

√
R
v3,

i.e., when the variable z̃2 is changed from −∞ to −m2

σ2
, the

variable v2 is changed from −∞ to µ(v3), where

µ(v3) = −m2

σ2

1√
1− r223

− r23√
1− r223

√
R
v3. (11)

Passing in the inner integral from integrating over z̃2 to
integrating over v2, we obtain

p(x, τ) =
1

2π
√
R

·
∞∫

−m3
σ3

{ µ(v3)∫
−∞

√
RΦ
(
η(v2, v3)

)
e−v

2
2/2dv2

}
e−v

2
3/2Rdz̃3.

Passing in the outer integral from integrating over z̃3 to
integrating over v3, we get

p(x, τ) =
1√

2π
√
R (12)

·
∞∫

−m3
√
R

σ3

{ µ(v3)∫
−∞

1√
2π

Φ
(
η(v2, v3)

)
e−v

2
2/2dv2

}
e−v

2
3/2Rdv3,

where η(v2, v3) is determined by formula (10) and µ(v3) is
determined by formula (11).

By assumption of stationarity of the process
◦
y1(x), the

following theorem establishes conditions for m(x) and
◦
y1(x)

when the Lemma can be used and equality (5) holds.
Theorem 3. Let y1(x) = m(x)+

◦
y1(x), where m(x) =

E{y1(x)} is a mathematical expectation of process y1(x)

and
◦
y1(x) is a stationary Gaussian process with variance

σ2 =E{ ◦y1(x)}2 and normalized correlation function r(τ)=

E{ ◦y1 (x)
◦
y1(x+ τ)}/σ2. Let I be a finite open or closed

interval from domain of definition of process y1(x), and there
exist positive constants ∆, δ,Θ, θ, and τ0 such that

1) r(τ) is twice differentiated on the segment [0, τ0],
r′(0)=0, r′′(0) < 0, and

|r′′(τ1)−r′′(τ2)|≤∆|τ1−τ2|δ for all τ1,τ2∈(0, τ0);

2) m(x) is continuous on I and differentiated at every
internal point x ∈ I , and

|m′(x1)−m′(x2)|≤Θ|x1−x2|θ when |x1−x2|<τ0.

Then there exist positive constants τ∗,Γ, and γ such that the
inequality

p(x, τ) ≤ Γτ1+γ

holds for every τ ∈(0, τ∗) and every x∈I , where x+2τ ∈I .
Proof is based on a detailed analysis of formula (12).3

Now we can state that if the process y1(x) satisfies the
conditions of Theorem 3, then condition (7) holds. Therefore,
by the Lemma, it follows that equality (5) and the conclu-
sions of Theorem 2 hold.

3The publication of the proof takes up a lot of space and for this reason
cannot be given in this conference paper.
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IV. CONCLUSION
For continuous random processes, we continued the re-

search related to estimating the probability of the event
ZD, which consists in the fact that the first achievement
of a given level h by the component y1(x) of process
y(x)={y1(x), . . . , yn(x)} occurs at some moment x∗ from
a given interval (x′, x′′) and, at this moment x∗, the condition
(y2(x∗), . . . , yn(x∗)) ∈ D holds. The ability to estimate
the probability P{ZD} is required in problems related to
ensuring the safety of an aircraft landing (see, e.g., [2], [3],
[4], [41], and [42]).

For the case D=Rn−1, we have obtained the exact result
for the probability P{ZD} (see Theorem 2) if equality (5)
holds. For stationary Gaussian processes, we have found
sufficient conditions (see Theorem 3) for the fulfillment of
equality (5).
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