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Abstract— This paper investigates the bipartite flocking be-
havior of multi-agent systems with coopetition interactions,
where communications between agents are described by signed
digraphs. The scenario with switching topologies due to the
movement of agents, and time delays caused by the limited
data transmission capability, is considered comprehensively.
Nonlinear weight functions are designed to describe the re-
lationship between the communication distance of agents and
the coopetition degree in real biological networks. A distributed
update rule based on the neighbors’ information and the
designed weight functions is proposed. By the aid of the graph
theory and sub-stochastic matrix properties, the effectiveness
of the proposed update rule is proved theoretically, and the
algebraic conditions for achieving the bipartite flocking behav-
ior are obtained. Finally, the theoretical results are verified by
numerical simulations.

I. INTRODUCTION

In natural biological groups, simple individuals are often
able to coordinate with each other to accomplish a range
of complex tasks, such as ants nest-building, fishes swift-
swimming, birds migrating and so on. The idea of mul-
tiple agents originated from such natural phenomena, and
researchers have begun to explore engineering applications
of multi-agent collective behavior since the middle of the last
century. The flocking behavior, in which agents can form
orderly movements with only limited information of their
neighbors and simple rules, has received a lot of attention in
recent years. This is due to its wide range of applications,
such as mobile robots formation [1], [2], unmanned aerial
vehicle flight [3], [4], and target tracking [5], [6].

In the past decades, many meaningful results have been
presented for the flocking problem (see, e.g., [7]–[10]). Since
agents are more susceptible to be influenced by neighboring
agents, the Cucker-Smale (C-S) flocking model was proposed
in [7] and a nonlinear weight function was utilized to portray
this phenomenon. Along this line, the C-S flocking model in
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the discrete-time setting was introduced in [8]. Then in [9],
the noise was added to the C-S model. Subsequently, a more
general mathematical form for the weight function in the C-S
model was given in [10]. It should be noted that the literature
[7]–[10] always assumed that there exist only cooperative
relationships between agents. However, in most biological
groups, individuals often compete with others for habitat,
food and reproduction in order to survive. For instance,
the competition between plants for survival necessities, such
as sunlight, water and nutrients, was described in [11]. In
addition to this, competitions between agents can also occur
due to conflicting goals as mentioned in [12]. The above
analysis points out that it is necessary to consider the flock-
ing problem under cooperative-competitive networks, which
helps us to decipher the intrinsic mechanism of biological
collective movements.

In cooperative-competitive networks, agents may move
in opposite directions due to different opinions. This phe-
nomenon of classifying agents as two subgroups with oppo-
site movement trends is called the bipartite flocking [13].
In recent years, researches about bipartite flocking have
been emerging. A control strategy was proposed in [14]
to guarantee the appearance of bipartite flocking without
collisions over structurally balanced signed graphs. The study
was carried out in [15] for the fixed-time bipartite flocking
behavior based on nonlinear systems. The work in [16] in-
vestigated the bipartite flocking behavior with random packet
loss. In the literature [13]–[15], the coopetition degree among
agents is independent of the communication distance in order
to achieve the bipartite flocking. However, in biological
groups, the communication distance is a significant factor
affecting agents’ closeness, thus constructing appropriate
weight functions in the C-S model is necessary.

It is also important to note that the investigation on the
bipartite flocking with switching topologies [17], [18] and
time delays [19], [20] is inadequate or insufficient in the
existing works. Since the communication range of sensors
carried by agents is limited, an increase of the communica-
tion distance can destroy the reliability of the communication
link. This can cause the neighbor set of agents to change,
which makes the network topology different or switching.
At the same time, limited network bandwidth and remote
data transmission capabilities may cause agents to be unable
to receive real-time information from others, which requires
considering time delays. However, only the bipartite flocking
behavior with packet dropouts and denial-of-service attacks
was considered in [16] and [21], respectively.

Inspired by the above discussion, this paper concentrates
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on the bipartite flocking emergence mechanism with switch-
ing topologies and time delays under coopetition interactions.
The contributions are reflected in research content and the-
oretical analysis. We first construct positive and negative
weight functions to quantify the relationship between the
communication distance and the coopetition degree. Sec-
ondly, the bipartite flocking behavior is generalized by con-
sidering the switching topologies and time delays scenario.
Based on the specificity of our research content, we propose a
method in terms of the convergence of infinite sub-stochastic
matrices. We also establish an algebraic condition character-
izing the coopetition degree between agents by analyzing the
stability of the error system, which ensures the emergence
of the bipartite flocking behavior.

The paper is constructed as follows. Section II is about
the basics of graph theory. The mathematical formulation
of the bipartite flocking problem is given in Section III. In
Section IV, we provide an algebraic condition for achieving
the bipartite flocking behavior. Computer simulations to
verify the theoretical results are presented in Section V.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Notations

Symbols R and N denote the set of real numbers and the
set of natural numbers, respectively. Rn×m represents the set
of (n×m)-dimensional real matrices. Let diag(x), x ∈ Rn×1
represent an n×n diagonal matrix with [diag(x)]ii = xi. For
a set S, the number of elements is represented by |S|. For
matrix Q =

[
Qij
]
n×n ∈ Rn×m, let Λi{Q} =

∑n
j=1Qij and

|Q| be the matrix with element |Qij |, i.e., |Q| =
[
|Qij |

]
n×n.

‖Q‖∞ = maxi{Λi{|Q|}} denotes the infinity norm and
Q(1 : s) denotes a sub-matrix consisting of the first s rows
and s columns of matrix Q. The product of matrices Qi, i ∈
{1, 2, . . . , n} is denoted by

∏n
i=1Qi = QnQn−1 · · ·Q1. A

nonnegative matrix Q with Λi{Q} ≤ 1 (i = 1, 2, . . . , n) is
called a sub-stochastic matrix. sgn(x) denotes the signum
function of a real number x.

B. Signed Digraph

Consider a multi-agent system containing n + 1 agents
(labelled by 1, 2, . . . , n+ 1), where agent n+ 1 is the leader
and the remaining agents are the followers. The agent, called
the leader, only sends information to other agents, but does
not receive any information from others. The agent, called the
follower, has responsibilities of both sending and receiving
information.

Information exchanges among all agents are represented
by a signed digraph G = (E ,V ), where E and V are the
edge set and the node set, respectively. An edge (j, i) ∈ E
exists if node i can receive information from node j. It should
be noted that there is no self-loop in E , i.e., edge (i, i),
i = 1, 2, . . . , n + 1, does not exist. Let Ni = {j ∈ V |
(j, i) ∈ E } denote the neighbor set of agent i, and |Ni|
denote the number of its neighbors. A =

[
aij
]
(n+1)×(n+1)

is the adjacency matrix associated with the digraph G , and
the element aij denotes the weight coefficient of edge (j, i).

In this paper, the signed digraph G is structurally bal-
anced, which means that all agents can be divided into two
subgroups V1 and V2, such that V = V1∪V2 and V1∩V2 =
∅. If the neighboring agents i and j belong to the same
subgroup, then they only have the cooperative relationship
and aij > 0; if they belong to different subgroups, then
they are competitive and aij < 0. Here, suppose that V1 =
{1, 2, . . . ,m} and V2 = {m + 1,m + 2, . . . , n + 1}. The
directed path from agent i0 to agent ir exists, if a series of
non-duplicate edges (i0, i1), (i1, i2), . . . , (ir−1, ir) ∈ E can
be found, and d(i0, ir) denotes the number of edges for the
shortest directed path from i0 to ir. If there exists a directed
path from the leader to any follower, then the digraph G is
said to contain a spanning tree rooted at the leader.

III. PROBLEM FORMULATION

This paper considers the discrete-time setting. Let
t0, t1, t2, . . . represent the orderly communication time se-
ries, which satisfies tk+1 > tk, k ∈ N. Each agent i ∈ V is
modeled by the second-order dynamics:

xi(tk+1) = xi(tk) + Tϑi(tk),

ϑi(tk+1) = ϑi(tk) + Tui(tk),
(1)

where xi(tk) ∈ Rp×1, ϑi(tk) ∈ Rp×1, and ui(tk) ∈ Rp×1
denote the position, the velocity and the control input of
agent i at time instant kT , respectively. T = tk+1 − tk is
the finite time update step and t0 = 0. To simplify notation,
we usually let p = 1, and handle the case p > 1 with the
help of Kronecker product “⊗”. Since the leader does not
receive information from the followers, the leader’s velocity
is fixed, and let ϑn+1(tk) = ϑ̃.

In cooperative networks, the cooperation (trust) degree
between agents is different, which is influenced by the state
of the agents. The agents are more susceptible to neighbors
with a large cooperation degree. This relationship between
agents is quantified by the weight coefficient aij > 0,
i.e., the more trust agent i has for agent j, the larger the
value of aij . Similarly, aij < 0 quantifies the competition
degree between agents, and a larger |aij | indicating a greater
resistance of agent i towards agent j. In addition, the digraph
G (tk) = (V ,E (tk)) is used to describe the time-varying data
exchange between agents, where (j, i) ∈ E (tk) indicates that
agent i can receive the message from agent j at time instant
tk. Considering coopetition interactions, the elements in the
adjacency matrix A (tk) = [aij(tk)](n+1)×(n+1) satisfy

aij(tk)=

{
f+(|xi(tk)−xj(tk)|), i and j are cooperative,
f−(|xi(tk)−xj(tk)|), i and j are competitive,

(2)

where the positive weight function (denoted by f+(·)) and
the negative weight function (denoted by f−(·)) are estab-
lished in this paper to quantify the relationship between the
communication distance and cooperation/competition degree.

Different from the traditional C-S model with the specific
mathematical form for the weight function, f+(·) and f−(·)
only need to satisfy the following assumption.
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Assumption 1:
1) f+(·) is a decreasing function with an upper bound

φ+u and a nonzero lower bound φ+l , e.g., 0 < φ+l ≤
f+(y2) ≤ f+(y1) ≤ φ+u as 0 ≤ y1 ≤ y2.

2) f−(·) is an increasing function with a nonzero upper
bound φ−u and a lower bound φ−l , e.g., φ−l ≤ f−(y1) ≤
f−(y2) ≤ φ−u < 0 as y1 ≤ y2 ≤ 0.

During information interactions of agents, network band-
width and remote-data transmission may also cause that
agents cannot receive information from others in a timely
manner. Therefore, let τij denote the time delay when agent
i receives information from agent j and 0 ≤ τij ≤ τ , where
τ > 0 is the upper bound of the time delays τij . The control
input under switching topologies and time delays can be
constructed in the following form:

ui(tk)=
∑

j∈Ni(tk)

|aij(tk)|
[
sgn(aij(tk))ϑj(tk−τij)−ϑi(tk)

]
. (3)

Based on the concept of bipartite flocking in the literature
[13], we give the definition of the bipartite flocking behavior
of the C-S model over cooperative-competitive networks.

Definition 1: The bipartite flocking behavior for the C-S
model over coopetition networks is said to be achieved, if
the following conditions are satisfied:

lim
k→∞

‖xi(tk) + xn+1(tk)‖∞ <∞, i ∈ V1,

lim
k→∞

‖xi(tk)− xn+1(tk)‖∞ <∞, i ∈ V2,

lim
k→∞

‖ϑi(tk) + ϑ̃‖∞ = 0, i ∈ V1,

lim
k→∞

‖ϑi(tk)− ϑ̃‖∞ = 0, i ∈ V2.

(4)

IV. MAIN RESULTS

In this section, the C-S model under switching topologies
and time delays is analyzed based on the signed graph
theory and the sub-stochastic matrix properties, and sufficient
conditions for achieving the bipartite flocking are established.

Let

ex(tk) = [(x1(tk)+xn+1(tk))T, (x2(tk)+xn+1(tk))T, . . . ,

(xn−1(tk)−xn+1(tk))T, (xn(tk)−xn+1(tk))T ]T ,

eϑ(tk) = [(ϑ1(tk) + ϑ̃)T , (ϑ2(tk) + ϑ̃)T , . . . ,

(ϑn−1(tk)− ϑ̃)T , (ϑn(tk)− ϑ̃)T ]T .

Then the error system of system (1) can be expressed as

ex(tk+1) = ex(tk) + Teϑ(tk),

eϑ(tk+1) = (In − TD(tk))⊗ Ip × eϑ(tk)

+T

τ∑
j=1

|Aj(tk)| ⊗ Ip × eϑ(tk−j+1),

(5)

where

D(tk) = diag

{ n+1∑
j=1

|a1j(tk)|, . . . ,
n+1∑
j=1

|anj(tk)|
}
,

and Aj(tk) ∈ Rn×n, j = 1, 2, . . . , τ are utilized to
indicate the information interactions between agents under

time delays. Specifically, if there exists the time delay τim =
j − 1, j ∈ {1, 2, . . . , τ} between agent i and agent m,
i.e., the follower i receives information of agent m at time
instant tk−j+1, then [Aj(tk)]im = [A (tk)]im; otherwise
[Aj(tk)]im = 0. Since the time delays are bounded, we can
get
∑τ
j=1 Aj(tk) = A (tk)(1 : n). Let φl and φu denote the

lower and upper bounds of element |aij(tk)|, respectively,
where φl = min{φ+l ,−φ−u } and φu = max{φ+u ,−φ−l }.

In order to analyze the convergence of the error system
(5), let η(tk) =

[
eTϑ (tk), eTϑ (tk−1), . . . , eTϑ (tk−τ+1)

]T
. Then

the error system (5) is transformed into the vector form:

ex(tk+1) = ex(tk) + Teϑ(tk),

η(tk+1) = Ξ(tk)η(tk),
(6)

where

Ξ(tk)=


Ξ1(tk) Ξ2(tk) · · · Ξτ−1(tk) Ξτ (tk)
Inp 0 · · · 0 0
0 Inp · · · 0 0
...

...
. . .

...
...

0 0 · · · Inp 0


npτ×npτ

(7)

with Ξ1(tk) = [In−T (D(tk)−|A1(tk)|)]⊗Ip and Ξj(tk) =
T |Aj(tk)| ⊗ Ip, j = 2, . . . , τ .

It is worth to underline that Ξ(tk) is an important factor
to guarantee the convergence of the error system (6), so the
matrix Ξ(tk) needs to satisfy the following lemma.

Lemma 1: For all k ∈ N, if the time step T satisfies

T <
1

Nmaxφu
, (8)

where Nmax = max{|Ni(tk)| | i = 1, . . . , n}, then the
matrix Ξ(tk) is a sub-stochastic matrix.

Proof: First, we make it clear that Ξ(tk), k ∈ N should be
a nonnegative matrix. From the construction of the matrix
Ξ(tk), it follows that [Ξ(tk)]ij = 0 or [Ξ(tk)]ij = 1 if i, j ∈
{np+1, np+2, . . . , npτ}. Therefore, it is only necessary to
ensure that Ξµ(tk), µ = 1, . . . , τ are nonnegative matrices.
The expression (7) indicates that the nonzero elements in the
matrix Ξ(tk) are T |aij(tk)| > 0 or

Ξ1(tk)zz=1−T
∑

j∈Ni(tk)

|aij(tk)|, z=1, . . . , np, i∈ {1, . . . , n}.

Based on the assumptions that 0 < |Ni(tk)| ≤ Nmax and
0 < |aij(tk)| ≤ φu, the diagonal elements of Ξ1(tk) satisfy
the inequality Ξ1(tk)zz ≥ 1− TNmaxφu. The restriction of
the time step T by condition (8) ensures that Ξ1(tk)zz > 0.
This means that the matrix Ξ(tk) is a nonnegative matrix.

Next, we only need to prove that the row sum of the
matrix Ξ(tk) is not larger than 1. Similarly, based on the
construction of the matrix Ξ(tk), we know that Λi{Ξ(tk)} =
1, i ∈ {np + 1, np + 2, . . . , npτ}. If i ∈ {1, 2, . . . , np},
then the row sum of Ξ(tk) is associated with the element
am,n+1(tk), m ∈ {1, 2, . . . , n}. Specifically, for i ∈ {(m −
1)p+ 1, (m− 1)p+ 2, . . . ,mp}, if am,n+1(tk) 6= 0, then

Λi{Ξ(tk)} = 1− T |am,n+1(tk)| ≤ 1− Tφl < 1, (9)
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otherwise Λi{Ξ(tk)} = 1.
The above analysis proves that condition (8) can ensure

that Ξ(tk) is a nonnegative matrix with a maximum row sum
of 1, i.e., Ξ(tk) is a sub-stochastic matrix.

Based on the matrix Ξ(tk), we construct the matrix Ξ̂(tk):

Ξ̂(tk) =

[
Ξ(tk) b(tk)

01×npτ 1

]
(npτ+1)×(npτ+1),

where b(tk) = [b1(tk), b2(tk), . . . , bnpτ (tk)]T with bi(tk) =
1 − Λi[Ξ(tk)], i = 1, 2, . . . , npτ . Meanwhile, the digraph
Ĝ (tk) = (Ê (tk), V̂ ) with Ξ̂(tk) as the weighted adjacency
matrix is constructed, where V̂ = {1, 2, . . . , npτ + 1}.

The next assumption provides the basic topological condi-
tions to solve the bipartite flocking problem in the switching
topologies and time delays environment.

Assumption 2: The time series {t0, t1, t2, . . .} is divided
into infinite uniformly bounded time intervals [tkj , tkj+1

),
j = 0, 1, 2, . . ., starting at k0 = 0. In each time inter-
val [tkj , tkj+1

), the union of digraphs G (tkj ), G (tkj+1),
. . . ,G (tkj+1−1) contains a spanning tree rooted at n+ 1.

Suppose that there are at most H instants in the time
interval [tkj , tkj+1), i.e., max (tkj+1 − tkj ) = HT . Before
proceeding, we provide a lemma to guarantee the topological
properties of the digraph Ĝ (tk).

Lemma 2: If Assumption 2 holds, then the union of
digraphs Ĝ (tkj ), Ĝ (tkj+1), . . . , Ĝ (tkj+1−1) contains a span-
ning tree rooted at the node npτ + 1.

Proof: To simplify the notation of this lemma, we let p =
1. We below consider the directed path from node nτ + 1 to
node rz ∈ {1, 2, . . . , nτ} in two cases.

Case I: rz ∈ {1, 2, . . . , n}. Since Assumption 2 is satis-
fied, there exists a directed path (n + 1, r1), . . . , (rz−1, rz)
from the leader n + 1 to node rz , where (rk, rk+1) ∈
E (t), t ∈ [tkj , tkj+1

). It follows from the structure of the ma-
trix Ξ1(tk) that the directed path (nτ+1, r1), . . . , (rz−1, rz)
from nh + 1 to rz can be found without time delays at the
time interval [tkj , tkj+1). If there exists an upper bound of
the time delays, then we can still find an associated directed
path.

Without loss of generality, assume the edge (rm, rm+1)
cannot be found in the time interval [tkj , tkj+1

) with time de-
lays. Based on

∑τ
j=1 Aj(t) = A (t)(1 : n) and Assumption

2, it is not hard to find the directed path (rm, rm+n), (rm+
n, rm + 2n), . . . , (rm + βn, rm+1), where t ∈ [tkj , tkj+1),
β ∈ {1, 2, . . . , (τ − 1)}. Therefore, we can always find the
directed path from node nτ + 1 to node rz ∈ {1, 2, . . . , n}.

Case II: rz ∈ {n + 1, n + 2, . . . , nτ}. According to the
structure of Ξ(t), there is always a directed path (i, i+n), (i+
n, i + 2n), . . . , (i + n(τ − 2), i + n(τ − 1)) from node i to
node i+ n(τ − 1), where i ∈ {1, 2 . . . , n}, t ∈ [tkj , tkj+1

).
Case I and Case II show that for all rz ∈ {1, 2, . . . , nτ},

we can find a directed path from nτ + 1 to rz at the time
interval [tkj , tkj+1), which means that there is a spanning tree
of the union of digraphs Ĝ (tkj ), Ĝ (tkj+1), . . ., Ĝ (tkj+1−1)
with the root node nτ + 1. The proof is complete.

Let D = max{d(npτ + 1, j)|j = 1, 2, . . . , npτ} and
P = DH . Then we divide {tk}∞k=0 into a series of contin-

uous, nonempty, uniformly bounded time intervals [0, tP ),
[tP , t2P ), . . . , [tαP ,tαP+P ), . . . , α ∈ N. Now the following
theorem provides the properties of the matrix Ξ(tk).

Theorem 1: If system (1) satisfies Assumption 1, As-
sumption 2 and condition (8), then for each time interval
[tαP , tαP+P ), there holds

‖η(tαP+P )‖∞ ≤ (1− βDTφl)‖η(tαP )‖∞, (10)

where β = (1− TNmaxφu)H .
Proof: According to the error system (5), we can get

η(tαP+P ) =

D∏
ω=1


H∏
ψ=1

Ξ(tαP+(ω−1)H+ψ−1)

 · η(tαP ).

We first analyze
∥∥∏H

ψ=1 Ξ(tαP+ψ−1)
∥∥
∞ in the time interval

[tαP , tαP+H−1). For the sake of notational simplicity, let
tkj = tαP+(j−1)H and tkj+1−1 = tαP+jH−1. Due to
max (tkj+1

− tkj ) = HT , Lemma 2 holds in the time
interval [tαP , tαP+H−1). From Assumption 2 and Lemma 2,
there exists an agent s1 that communicates directly with the
leader npτ+1 and (npτ+1, s1) ∈ Ê (tkj+1−1)∪Ê (tkj+1−2)∪
· · · ∪ Ê (tkj ). Assume that (npτ + 1, s1) ∈ Ê (tkj+lj ),
0 ≤ lj < H , which means that am,n+1(tkj+lj ) 6= 0 with
s1 ∈ {(m − 1)p + 1, (m − 1)p + 2, . . . ,mp}. According to
(7), we know that s1 ∈ {1, 2, . . . , np} and Λs1{Ξ(tkj+lj )} =
1−T |am,n+1(tkj+lj )| ≤ 1−Tφl < 1.

Since Ξ(tkj ) is a sub-stochastic matrix, there holds
Λi{Ξ(tkj )} ≤ 1 for all i ∈ {1, . . . , npτ}. It is further
concluded that Λi{Ξ(tkj+1)Ξ(tkj )} ≤ 1, i ∈ {1, . . . , npτ}.
As Ξ(tkj+1)Ξ(tkj ) is a sub-stochastic matrix, we also
know that

∏tkj+lj−1

t=tkj
Ξ(t) is a sub-stochastic matrix and

Λi

{∏tkj+lj−1

t=tkj
Ξ(t)

}
≤ 1. Based on the above facts, we get

Λs1


tkj+lj∏
t=tkj

Ξ(t)

 =

npτ∑
i=1

[
Ξ(tkj+lj )

]
s1i

Λi


tkj+lj−1∏
t=tkj

Ξ(t)


≤ 1− Tφl. (11)

Considering (11) and the following fact: tkj+1−1∏
t=tkj+lj+1

Ξ(t)


s1s1

≥ (1− TNmaxφu)H , (12)

we can obtain

Λs1


tkj+1−1∏
t=tkj

Ξ(t)

=

npτ∑
i=1,i6=s1

 tkj+1−1∏
t=tkj+lj+1

Ξ(t)


s1i

Λi


tkj+lj∏
t=tkj

Ξ(t)


+

 tkj+1−1∏
t=tkj+lj+1

Ξ(t)


s1s1

Λs1


tkj+lj∏
t=tkj

Ξ(t)


≤Λs1


tkj+1−1∏

t=tkj+lj+1

Ξ(t)

−
 tkj+1−1∏
t=tkj+lj+1

Ξ(t)


s1s1

+(1− TNmaxφu)H(1− Tφl)
≤ 1− (1− TNmaxφu)HTφl < 1.
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Next, we analyze the matrix
∏tkj+2−1

t=tkj+1
Ξ(t) in the time

interval [tkj+1
, tkj+2

). From Assumption 2, the union of
digraphs Ĝ (tkj+1

), Ĝ (tkj+1+1), . . . , Ĝ (tkj+2−1) contains a
spanning tree, which is denoted by F (tkj+1

). Then we
consider two ways for the followers to communicate with
the leader npτ + 1 in F (tkj+1).

Case I: The node s1 communicates indirectly with the
leader npτ + 1 or there exist two different nodes s1 and
s2, both of which communicate directly with the leader. We
assume that (npτ + 1, s2) ∈ Ê (tkj+2−1) ∪ Ê (tkj+2−2) ∪
· · ·∪Ê (tkj+1

). Repeating the analysis process with the matrix∏tkj+1−1

t=tkj
Ξ(t), it is easy to obtain that

Λs2


tkj+2−1∏
t=tkj+1

Ξ(t)

 ≤ 1− (1− TNmaxφu)HTφl,

Λj


tkj+2−1∏
t=tkj+1

Ξ(t)

 ≤ 1, j 6= s2.

Considering the row sum of the matrix
∏tkj+2−1

t=tkj
Ξ(t), we

can get

Λs1


tkj+2−1∏
t=tkj

Ξ(t)

≤1−β2Tφl, Λs2


tkj+2−1∏
t=tkj

Ξ(t)

≤1−β2Tφl.

(13)

Case II: If only s1 is directly connected to the leader
in F (tkj+1), then there exists a node s2 6= s1 such that
(s1, s2) ∈ F (tkj+1). It may be assumed that (s1, s2) ∈
Ê (tkj+1+lj+1

). Then [Ξ(tkj+1+lj+1
)]s2s1 ≥ Tφl andtkj+2−1∏

t=tkj+1

Ξ(t)


s2s1

> (1− TNmaxφu)H .

With the help of the analysis of Case I, we can also obtain
the equation (13)

The above analysis shows that we can find different nodes
s1, s2, . . . , sD in the time interval [tkj , tkj+D

) such that

Λj


tkj+D−1∏
t=tkj

Ξ(t)

 ≤ 1−βDTφl, j ∈ {s1, s2, . . . , sD}. (14)

It is worth noting that for any directed path, we can still
use the same analysis to reach the conclusion (14), that is,
(14) is valid for all node j ∈ {1, 2, . . . , npτ}. Therefore,∥∥∥∥∥∥

tkj+D−1∏
t=tkj

Ξ(t)

∥∥∥∥∥∥
∞

≤ 1− βDTφl < 1. (15)

Furthermore, we can infer that

‖η(tαP+P )‖∞ ≤ (1− βDTφl)‖η(tαP )‖∞.

This completes the proof.
Following the result of Theorem 1, we next state the

conclusion of the bipartite flocking with switching topologies
and time delays.

Theorem 2: If Assumption 1, Assumption 2 and condi-
tion (8) are satisfied, then the bipartite flocking behavior of
system (1) is realized with the control input (3), i.e.,

lim
k→∞

‖ex(tk)‖∞ ≤ ξ, lim
k→∞

‖eϑ(tk)‖∞ = 0,

where

ξ = ‖ex(0)‖∞ +
P

βDφl
‖eυ(0)‖∞.

Proof: Based on the result of Theorem 1, we attain

lim
k→∞

‖η(tk)‖∞ ≤ lim
α→∞

(1− βDTφl)α+1‖η(0)‖∞ = 0,

which means that limk→∞ ‖eϑ(tk)‖∞ = 0.
Observing the error system (6), we can get

‖ex(tαP+P )‖∞ = ‖ex(tαP+P−1)‖∞+T‖eϑ(tαP+P−1)‖∞

≤ ‖ex(0)‖∞ + PT

α∑
i=0

‖eϑ(tiP )‖∞.

Further, we can obtain

lim
k→∞

‖ex(tk)‖∞ ≤ ‖ex(0)‖∞+PT lim
α→∞

α∑
i=0

‖eϑ(tiP )‖∞.

According to (15), we know

‖eϑ(tiP )‖∞ ≤ (1− βDTφl)i‖eϑ(0)‖∞, i = 0, 1, . . . , α.

Now, a bounded geometric sequence {‖eϑ(tiP )‖∞}αi=0 with
a ratio of 1 − βDTφl is obtained. According to the sum
formula of the geometric sequence, we arrive at

lim
α→∞

α∑
i=0

‖eϑ(tiP )‖∞ =
1

βDTφl
‖eϑ(0)‖∞.

This means that

lim
k→∞

‖ex(tk)‖∞ = lim
α→∞

‖ex(tαP+P )‖∞ ≤ ξ.

The proof is complete.

V. SIMULATION RESULTS

This section provides simulation results to verify that the
control input (3) can achieve the bipartite flocking in multi-
agent systems with switching topologies and time delays, if
Assumption 1, Assumption 2 and condition (8) are satisfied.

Consider a multi-agent system with one leader (labeled by
9) and eight followers (labeled by 1, 2, . . . , 8). The communi-
cation topology of agents at time instant tk ∈ {t0, t1, t2, . . .}
is chosen randomly among Ga,Gb,Gc as shown in Fig. 1. Let
the time interval [tkj , tkj+1

), j = 0, 1, 2, . . ., contain at most
H = 6 time instants. Since the union of digraphs Ga,Gb,Gc
contains a spanning tree rooted at the leader 9, it is important
to ensure that the topology in Fig. 1 is selected at least once
during time intervals [tk, tk+6), k ∈ N. Assume that τ = 3,
which means that the time delays of all agents is chosen
randomly in {0, T, . . . , 3T}.

In the simulation, the positive and negative weight func-
tions are chosen respectively as follows:

f+(y) =
1

1 + 0.2y
+ 1.5, f−(y) = − 1

1 + 0.2y
− 1.5,
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(a) Ga (b) Gb (c) Gc

Fig. 1. Switching communication topologies, where circles denote agents
and circles of the same color belong to the same subgroup. The solid and
dotted lines indicate the cooperative and competitive relationships between
agents, respectively.

(a) Position (b) Velocity
Fig. 2. Position and velocity evolutions of all agents.

where f+(y) and f−(y) satisfy Assumption 1. Based on
the settings of the communication topology and the weight
functions, it is known that φu = 2.5 and Nmax = 2. For this
reason, let T = 0.1 in order to satisfy condition (8).

From Fig. 2(a), we can see that the position evolutions of
all agents, where the positions and velocities are marked by
red “•” and black “→”, respectively. The agents eventually
split into two subgroups based on the control protocol (3)
and the position error vector limk→∞ ||ex(tk)||∞ is bounded.
Fig. 2(b) shows that the velocities of the followers, who
cooperate with the leader, are consistent with the leader,
while the velocities of the followers, who compete with the
leader, are opposite to the leader, i.e.,

lim
k→∞

||eϑ(tk)||∞ = 0.

In other words, the bipartite flocking behavior of multi-agent
systems is achieved under switching topologies and time
delays, which means that Theorem 2 is validated by the
simulation results.

VI. CONCLUSION

This paper has studied the bipartite flocking behavior
of the C-S model over coopetition networks for multi-
agent systems. The stability problem has been transformed
into a convergence problem of infinite products with sub-
stochastic matrices by constructing the error system. With
the help of the theories of sub-stochastic matrix and signed
digraph, we have systematically analyzed this convergence
problem and obtained the algebraic conditions for achieving
the bipartite flocking. Lastly, the presented simulation results
have effectively supported our theory. The algorithm in this
paper can facilitate the application of flocking in real systems
due to the relaxation of the constraints on the communication

conditions. However, the volume of the agents and collision
avoidance issues are ignored. In the future work, the flocking
behavior under safety constraints is a worthwhile topic.
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