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Abstract— In this article, we investigate the motion planning
problem for control-affine systems with nontrivial drifts us-
ing a regularized homotopy continuation method. We prove
that when there exists a nonsingular solution of the original
motion planning problem, the regularized solution converges
to it almost everywhere, and the endpoints derived from the
regularized solutions converge to the desired target point, may
the solution of the classical continuation method is well defined
or not. This provides a way to design the steering control in
the presence of singular controls when the classical continuation
method is not applicable. The effectiveness of the regularization
is illustrated by numerical experiments on the rolling systems.

I. INTRODUCTION

In control theory, robotics and autonomous vehicles, the
problem of motion planning is fundamental. Given a con-
trolled dynamical system, this problem consists in design-
ing algorithms that derive controls steering the system to
preassigned destinations. Over the past forty years, with
the development of intelligent transportation systems, many
methods have been designed for motion planning, ranging
from feedback techniques [17], sampling-based roadmaps
[18], navigation functions [23] to computational algebraic
geometry techniques [21].

In particular, for the models with dynamics described by
finite-dimensional nonlinear control systems, the most impor-
tant and commonly investigated case for motion planning is
the control-affine system [5]

ẋ(t) = f(x(t)) +

m∑
i=1

ui(t)gi(x(t)) (1)

on an n-dimensional smooth connected Riemannian man-
ifold M , with smooth vector fields f , {gi}mi=1 and L2-
bounded controls {ui(t)}mi=1, t ⩾ 0. The motion planning
problem for (1) is formalized as: given any pair x, x1 ∈M ,
design a control u = (u1, · · · , um) ∈ L2([0, T ],Rm) with
T > 0, that yields a solution of (1), denoted by xu(t),
satisfying xu(0) = x, xu(T ) = x1.
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E. Trélat is with Laboratoire Jacques-Louis Lions (LJLL), Sorbonne
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Fig. 1: HCM for motion planning

When the drift vector field f in (1) is zero, the above
motion planning problem has been widely considered. Ex-
isting methods include the nilpotent approximation [14],
the Murray-Sastry method [22], [8], the loop method [26],
optimal control method [30] and sinusoidal controllers [20].
However, there have been fewer investigations on the motion
planning of control-affine systems with a nontrivial drift,
because the drift vector field breaks the symmetric nonholo-
nomic constraints on the tangent bundle [32] and forbids
the time-rescaling invariance [15]. Approaches proposed for
motion planning of control-affine systems with nontrivial
drifts or of nonlinear systems in more general forms include
adaptive extremum seeking control [11], sample-based dif-
ferential fast marching tree algorithm [24], affine geometric
heat flow method [19], and convex spline optimization [31].

Since the 1990s, the homotopy continuation method
(HCM) introduced in [27] has been applied to motion
planning of nonlinear systems. For the control-affine system
(1), let U = L2([0, T ],Rm) be the space of controls, define
the endpoint map Ex,T : U → M , u 7→ xu(x;T ), where
t 7→ xu(x; t) is the solution of (1) corresponding to u starting
from x ∈M in time t ⩾ 0. Then the motion planning from x
to x1 in time T aims at constructing a control u ∈ E−1

x,T (x1).
The basic idea of HCM is to reformulate this problem as a
differential equation by searching for the preimage of a curve
in M as a parametrized control in the control space U . To
be precise, let x0 ∈M be a point different from x and x1, if
there is a smooth path γ : [0, 1] → M , s 7→ γ(s) satisfying
γ(0) = x0, γ(1) = x1 which can be lifted through Ex,T to
a path us in U starting from u0, satisfying Ex,T (u0) = x0,
that is,

∃us : [0, 1] → U , s 7→ us(·),
s.t. γ(s) = Ex,T (us(·)),

(2)

then us(·)|s=1 = (u11(·), · · · , um1 (·)) ∈ U will be the desired
control that steers the system (1) from x to x1 in time T .
This is illustrated on Fig. 1.

Differentiating (2), we infer a sufficient condition for the
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curve γ to be lifted, namely, the existence of the solution of

dEx,T (us)
∂us
∂s

= γ̇(s), s ∈ [0, 1] (3)

with us|s=0 = u0, where dEx,T (u) : L2([0, T ],Rm) →
TxM is the Fréchet differential of the endpoint map Ex,T
at u ∈ U , γ̇(s) is the differential of γ with respect to s.
When the solution of (3) exists, the least L2-norm solution
of (3) satisfies

∂us
∂s

= P (us)γ̇(s), s ∈ [0, 1] (4)

with us|s=0 = u0, where P (us) is the Moore-Penrose
pseudo-inverse of dEx,T at us. When dEx,T is surjective at
u ∈ U , P (u) has the following expression:

P (u) := dE∗
x,T (u)(dEx,T (u)dE∗

x,T (u))
−1, (5)

where dE∗
x,T (u) : T

∗
xM → L2([0, T ],Rm) is the adjoint map

of dEx,T (u).
The equation (4) is called the path lifting equation (PLE).

If (4) admits a global solution on s ∈ [0, 1], then the motion
planning problem is solved by us|s=1. Thus, the problem
is reduced to finding conditions for the PLE to be globally
well-posed on s ∈ [0, 1].

If dEx,T (u) is not surjective, i.e.
rank(dE∗

x,T (u)dEx,T (u)) < n, then u is called a singular
control, and Ex,T (u) is called a critical value of Ex,T . Since
the pseudo-inverse P (u) considered in (4) is equal to (5)
only when u is nonsingular, one cannot design the path
in the domain where dEx,T is not of full rank [4], [6],
otherwise there might be a blow-up at the right-hand side of
(5). For the motion planning outside of these critical values,
it was proven [7] that (4) is globally well-posed on [0, 1]
if on any compact subset of M , the norm of P as defined
in (5) has at most linear growth in ∥u∥ at infinity; this
condition is satisfied for special types of dynamics under
strong assumptions on the Lie configuration of the system
[7], [9], [28]. The HCM has been generalized to constrained
motion planning [10], [12] and control-affine systems with
drifts [16], showing good numerical performance [2], [13].
But so far there are no theoretical results on the application
of HCM to control-affine systems in the presence of singular
controls.

In the PhD thesis [25], the author proposed a regularized
continuation method to deal with the above difficulty. If
we replace the operator P in the PLE (4) by an operator
Pδ , which is the Tikhonov regularized pseudo-inverse of
dEx,T (u), defined as

Pδ(u) := dE∗
x,T (u)

(
dEx,T (u)dE∗

x,T (u) + δIn
)−1

(6)

where the constant δ > 0 is a regularization parameter.
Compared with (5), this operator Pδ always exists for any
u ∈ L2([0, T ],Rm) and δ > 0, no matter dEx,T is singular
at u or not. The PLE (4) with P replaced by Pδ is called
the regularized path lifting equation (RPLE). If as δ tends
to zero, the solutions of the RPLE converge to those of the
PLE under the same boundary condition, then the motion

planning will be solved for singular controls. However, [25]
did not establish such convergence, although the numerical
simulations showed good performance of the regularized
method.

In this paper we consider the motion planning of control-
affine systems defined on smooth manifolds with nontrivial
drifts, and for the first time provide theoretical results on
the regularized continuation method. Based on the analysis
performed in Section II on the operator P in the PLE,
in Section III we prove the convergence of the solutions
and endpoints corresponding to the RPLE, and in Section
IV numerical simulations on the rolling systems show the
effectiveness of our method.

II. LOCALLY LIPSCHITZ PROPERTY OF THE OPERATOR P

In this section, we show that the operator P in the PLE
(4) is locally Lipschitz over nonsingular controls. This fact
is crucial for proving the convergence of the solutions of
the RPLE. Let x ∈M . Throughout, we make the following
assumption on the completeness of the system (1):
(A) For any u ∈ L2([0, T ],Rm), Ex,t(u) is well defined

for all t ∈ [0, T ].
From now on, assume that the system (1) is globally con-
trollable at x in time T . We denote Ex,T briefly by E , and
denote the integral curve of the system (1) corresponding to
u starting from x briefly by xu(t), t ∈ [0, T ].

The Fréchet differential of E is given by (see, e.g., [1])

dE(u)(v) =
∫ T

0

m∑
i=1

vi(t)Ru(T, t)gi(xu(t))dt (7)

for any v ∈ L2([0, T ],Rm), where Ru(T, t) is the transition
matrix of the system (1) under control u from time t to time
T , satisfying

∂Ru(T, t)

∂t
= −Ru(T, t)

(
df(xu(t)) +

m∑
i=1

ui(t)dgi(xu(t))
)

with Ru(T, T ) = id, where df := ∂f
∂x , dgi := ∂gi

∂x , i =
1, · · · ,m are the differentials of the vector fields. The adjoint
dE∗(u) of the differential of the endpoint map at u is given
by (see, e.g., [7])

dE∗(u)(z) = (⟨pz(t), g1(xu(t))⟩, · · · , ⟨pz(t), gm(xu(t))⟩)⊤

for any z ∈ T ∗
E(u)M , where pz(t) is the solution of

ṗz(t)=−
(
df(xu(t)) +

m∑
i=1

ui(t)dgi(xu(t))
)⊤
pz(t), (8)

with pz(T ) = z.
Denote by S̃ the set of singular controls and by S the

set of critical values, i.e., S := E(S̃). Denote by Gu :=
dE(u)dE∗(u) ∈ Rn×n the Gramian matrix of (1) at u. When
u /∈ S̃, (5) gives P (u) := dE∗(u)G−1

u , and by definition we
have [7]

∥P (u)∥ =
1

min
∥z∥=1

∥dE∗(u)(z)∥
=

1√
min Spec(Gu)

. (9)
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Denote by d the distance derived from the metric on the
Riemannian manifold M . We start with the following basic
and classical property for the endpoint map E .

Lemma 2.1: Let U ⊂ L2([0, T ],Rm) be an L2-bounded
set with d(E(U), S) > 0. If (A) holds, then there exists
a compact set V ⊂ M , such that E(U) ⊂ V ; both{
∥dE∗(u)∥

∣∣ u ∈ U
}

and {∥P (u)∥ | u ∈ U} are bounded.
Proof: By Proposition 3.5 in [29], on a weakly bounded

subset U ⊂ L2([0, T ],Rm), for any two controls u1, u2 ∈ U ,
d(E(u1), E(u2)) is bounded by ∥u1 − u2∥L2 , where d is the
distance derived from the metric of the Riemannian manifold
M . Therefore E(U) is bounded, and V can be chosen as its
closure.

By Proposition 3.7 in [29], dE(u) is weakly continuous
with respect to u, hence sup

u∈V
∥dE∗(u)∥ is bounded on the

compact set V .
Assume that d(E(U), S) = α > 0. Then for any sequence

{un} ⊂ U , d(E(un), S) ⩾ d(E(U), S) ⩾ α, ∀n, and hence
inf
n
d(E(un), S) ⩾ α > 0, therefore if inf

u∈U
(min SpecGu) =

0, then there exists a sequence {ūn} ⊂ U , such that
lim
n→∞

d(E(ūn), S) = 0, which yields a contradiction. Hence
we have inf

u∈U
(min Spec Gu) > 0, and by (9), ∥P (u)∥ is

uniformly bounded on U .
Proposition 2.2: Let U ⊂ L2([0, T ],Rm) be a weakly

bounded set. If d(E(U), S) > 0, then ∃MU > 0, s.t. ∀u1,
u2 ∈ U , ∥P (u1)− P (u2)∥ ⩽MU∥u1 − u2∥.

Proof: Since P (u) = dE∗(u)G−1
u , for any u1, u2 ∈ U

P (u1)− P (u2) =(dE∗(u1)−dE∗(u2))G
−1
u1
+

dE∗(u1)(G
−1
u1

−G−1
u2

).

As d(E(U), S) > 0, there exists α > 0 such that
min Spec(Gu) > α, ∀u ∈ U . Hence ∥G−1

u1
∥ is uniformly

bounded. Since G−1
u1

− G−1
u2

= G−1
u2

(Gu2 − Gu1)G
−1
u1

, and
Gu1

− Gu2
= dE(u1)(dE∗(u1) − dE∗(u2)) + (dE(u1) −

dE(u2))dE∗(u2), applying Lemma 2.1, the estimate is fur-
ther transformed to

∥P (u1)− P (u2)∥ ⩽ β∥dE∗(u1)− dE∗(u2)∥

where β is a constant only depending on U , obtained
from the boundedness of the operators G−1

u1
, G−1

u2
, dE∗(u1),

dE∗(u2), according to Lemma 2.1 and the fact that
∥dE(u)∥ = ∥dE∗(u)∥.

Therefore, define the switching function as ψz
u(t) :=

dE∗(u)(z) ∈ L2([0, T ],Rm), ∀z ∈ T ∗
E(u)M , it suffices to

prove the property in the lemma for ψz
u(t), given any z of

unit length. For all u1, u2 ∈ U , denote briefly g1i (t) :=
gi(xu1

(t)), g2i (t) := gi(xu2
(t)), i = 1, · · · ,m. Then

ψz
u1
(t)−ψz

u2
(t)=

 ⟨p1z(t), g11(t)⟩ − ⟨p2z(t), g21(t)⟩
...

⟨p1z(t), g1m(t)⟩ − ⟨p2z(t), g2m(t)⟩


where p1z(t), p

2
z(t) are adjoint vectors corresponding to u1,

u2 respectively. Since on a bounded subset E(U) ⊂ M
and finite time interval [0, T ], the adjoint curves and the
vector fields {gi}mi=1 together with their differentials are all

bounded, there exist C1, C2, C3 > 0, such that ∥g1j (t)∥ <
C1, ∥p2z(t)∥ < C2, ∥g1j (t)− g2j (t)∥ < C3∥xu1

(t)− xu2
(t)∥,

∀j = 1, · · · ,m, therefore we have

∥ψz
u1
(t)− ψz

u2
(t)∥

⩽
∥∥(⟨p1z(t)− p2z(t), g

1
1(t)⟩, · · · , ⟨p1z(t)− p2z(t), g

1
m(t)⟩

)⊤∥∥+∥∥(⟨p2z(t), g11(t)− g21(t)⟩, · · · , ⟨p2z(t), g1m(t)− g2m(t)⟩
)⊤∥∥

⩽C4∥p1z(t)− p2z(t)∥+ C5∥xu1(t)− xu2(t)∥, (10)

where the positive constants C4, C5 can be constructed from
the constants C1, C2, C3.

By Proposition 3.5 in [29], the second part in (10) is
bounded as

∥xu1(t)−xu2(t)∥ ⩽ A∥u1 − u2∥ (11)

where A > 0 is a constant. Since E(U) and U are both
bounded and all vector fields are smooth, the constant A are
uniform for all u1, u2 ∈ U .

Next, we estimate the first part in (10). Denote briefly
F (u, t) := [df(xu(t))+

∑m
i=1 u

i(t)dgi(xu(t))]
⊤, then over

U we have∫ t

0

∥∥∥F (u2, s)− F (u1, s)
∥∥∥ds ⩽M∥u1 − u2∥ (12)

where the positive constant M is obtained by the weak
boundedness of the controls, the smoothness of vector fields
and the estimate (11).

Since the adjoint curve satisfies equation (8), we have∥∥p1z(t)− p2z(t)
∥∥=∥∥∥∫ T

t

F (u2, s)
(
p2z(s)− p1z(s)

)
+(

F (u2, s)− F (u1, s)
)
p1z(s)ds

∥∥∥
⩽B0

∫ T

t

∥∥p1z(s)−p2z(s)∥∥ds+B1∥u1−u2∥,

where the constants B0, B1 > 0 are constructed in a similar
way as C4, C5, A were, due to smoothness of vector fields,
boundedness of adjoint curves (by Lemma 2.1), and weak
boundedness of U , together with the estimates (11)(12). By
the Grönwall lemma, integrating the above inequality yields

∥pz1(t)− pz2(t)∥ ⩽ B1∥u1 − u2∥ exp(B0t). (13)

By the similar reason as in (11), B0, B1 are also uniform
with respect to any u1, u2 ∈ U and any z of unit length.

Plugging (11)(13) into (10), we have the estimate of the
difference of switching functions, and further, of the operator
P stated in the lemma.

III. REGULARIZED CONTINUATION METHOD

We first introduce the notion of regularized pseudo-
inverse, then we show how to regularize the HCM in the
presence of singular controls.

Proposition 3.1 ([3]): ∀A ∈ Rm×n, the matrix

A+ := lim
δ→0

A∗(AA∗ + δIm)−1 (14)
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is a Moore-Penrose pseudo inverse of A, i.e. it satisfies the
following axioms: (1) AA+A = A; (2) A+AA+ = A+; (3)
AA+ ∈ Rm×m and A+A ∈ Rn×n are self-adjoint.

The procedure of adding a regularization term δIm, with
δ > 0, as in (14), is called Tikhonov regularization. Recall
that A+ = A∗(AA∗)−1 when A is of full rank. This reg-
ularization procedure allows to calculate the pseudo-inverse
of matrices that are not of full rank. In particular, this idea
can be applied to the operator dEx,T in the PLE (4).

Now we propose the regularized continuation method.
Consider the following regularized path-lifting equation

∂us,δ
∂s

= dE∗(us,δ)
(
dE(us,δ)dE∗(us,δ) + δIn

)−1
γ̇(s),

(15)

where γ : [0, 1] → M is the same smooth curve as in (4),
and δ > 0 is a constant.

The following questions emerge:
(Q1) Is the regularized solution, i.e. solution of (15), well-

posed when the solution of (4) is singular?
(Q2) As δ → 0, does the regularized solution converge to

the original one when the latter is well-posed?
(Q3) As δ → 0, does the endpoint of the regularized solution

converge to the desired target point x1?
If all the above questions can be answered positively, then

fix an initial u0,δ = u0, ∀δ, and draw a curve γ starting
from E(u0), when γ(1) = x1, the solution us,δ to (15) will
give the desired control driving the system from x to x1 as
lim
δ→0

us,δ|s=1, even if the solution of the PLE (4) is not well
defined for every s ∈ [0, 1]. The motion planning will thus
be solved.

We first give a positive answer to (Q1).
Proposition 3.2: For any u ∈ L2([0, T ],Rm), the operator

Pδ defined by (6) satisfies ∥Pδ(u)∥ ⩽ 1
2
√
δ

; when P (u)

defined by (5) exists, we have lim
δ→0

∥Pδ(u)∥ = ∥P (u)∥.
Proof: By definition,

∥Pδ(u)∥2 = max
∥z∥=1

z∗
(
Gu + δIn

)−1
Gu

(
Gu + δIn

)−1
z

= max
i=1,...,n

λiu
(λiu + δ)2

,

where λiu, i = 1, · · · , n are the eigenvalues of Gu. Therefore

∥Pδ(u)∥ = max
λi
u ̸=0

1√
λiu + δ√

λi
u

⩽
1

2
√
δ
,

and when P (u) is well defined, λiu, i = 1, · · · , n are all
nonzero; then lim

δ→0
∥Pδ(u)∥ = max

i=1,...,n

1√
λi
u

= ∥P (u)∥.

Remark 3.3: The above proposition shows that the RPLE
(15) is well defined for all s ∈ [0, 1] when δ > 0, making it
possible to lift the path through Pδ(u) even if the control u
is singular.

Based on Proposition 2.2, we answer the question (Q2) by
proving the convergence of the regularized solutions to the
un-regularized ones as δ → 0.

Theorem 3.4: Assume that the solution s 7→ us to (4) is
nonsingular and well-defined for all s ∈ [0, 1]. Then there

exists µ > 0 such that us,δ /∈ S̃, ∀s ∈ [0, 1], ∀δ ∈ [0, µ],
where us,δ is the solution of (15) for s ∈ [0, 1] such that
u0,δ = u0 for every δ ∈ [0, µ]. Moreover, for any s ∈ [0, 1],

we have us,δ(t)
L2

−−→ us(t) as δ → 0.
Proof: As us is globally well defined, there exists

α > 0 such that d(E(us), S) ⩾ α for all s ∈ [0, 1]. By
the continuity of E and d(·, S), together with Lemma 2.1,
there exists α̃ > 0 such that d̃(us, S̃) ⩾ α̃ for all s ∈ [0, 1],
where d̃ is the distance on L2([0, T ],Rm) induced by the
L2-norm.

For any µ > 0, since u0,δ = u0 for all δ ∈ [0, µ] and
d̃(u0, S̃) > 0, there exists sµ ⩽ 1, such that us,δ /∈ S̃,
∀s ∈ [0, sµ], ∀δ ∈ [0, µ] (we will later prove that, actually,
sµ = 1 for some µ specially chosen).

Define es,δ := us−us,δ , and denote Gus,δ
briefly by Gs,δ ,

Gus
by Gs. Then for any s ⩽ sµ, we have

∥es,δ∥ =
∥∥∥∫ s

0

[
dE∗(uτ )G

−1
τ − dE∗(uτ,δ)G

−1
τ,δ +

dE∗(uτ,δ)
∗(G−1

τ,δ − (Gτ,δ + δI)−1
)]
γ̇(τ)dτ

∥∥∥
⩽
∫ s

0

[
∥P (uτ )− P (uτ,δ)∥+

δ∥dE∗(uτ )∥∥G−1
τ,δ∥∥(Gτ,δ + δI)−1∥

]
∥γ̇(τ)∥dτ

Since u0,δ = u0, there exists a bounded set W ⊂
L2([0, T ],Rm) satisfying d̃(W, S̃) > 0, such that us, us,δ ∈
W , ∀s ∈ [0, sµ], ∀δ ∈ [0, µ]. As ∥P (u)∥ is (by Proposition
2.2) Lipschitz and (by Lemma 2.1) uniformly bounded over
W , we have the boundedness of ∥dE∗(us)∥∥G−1

s,δ∥∥(Gs,δ +

δI)−1∥ over s ∈ [0, 1], δ ∈ [0, sµ]. The above inequality can
be therefore reduced to

∥es,δ∥ ⩽ C1

∫ s

0

∥eτ,δ∥dτ + C2δ, ∀s ∈ [0, sµ], (16)

where C1, C2 > 0 are constants only depending on µ, and
hence by the Grönwall lemma, lim

δ→0
∥es,δ∥L2 = 0 for all

s ∈ [0, sµ].
It remains to prove that, actually, we can take sµ = 1. For

any µ ⩾ 0, let

σ(µ) := sup
{
s′∈ [0, 1]

∣∣∣ us,δ /∈ S̃, ∀(s, δ) ∈ [0, s′]×[0, µ]
}
.

Let us prove that there exists µ0 > 0 such that σ(µ0) = 1. By
contradiction, assume that there exists a decreasing sequence
of positive real numbers {µn}n∈N satisfying σ(µn) < 1 and
lim
n→0

µn = 0. Moreover, there exist two sequences {sn}n∈N

and {δn}n∈N such that σ(µn) < sn < 1, δn ⩽ µn,
usn,δn ∈ S̃, and considering a subsequence if necessary,
lim
n→∞

σ(µn) = lim
n→∞

sn = s̄ ⩽ 1. By continuity of us,δ with
respect to s, applying the convergence derived from (16) of
us,δ with respect to δ yields lim

n→∞
usn,δn = us̄, and hence

us̄ ∈ S̃, which contradicts the fact that d̃(us, S̃) ⩾ α̃ for
every s ∈ [0, 1].

Therefore, there exists µ > 0 such that us,δ /∈ S̃ for all
δ ∈ [0, µ] and s ∈ [0, 1]. The theorem is proven.
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Next, we characterize the discrepancy between the end-
point derived from the solution of the RPLE and the desired
target for the motion planning in terms of the regularization
parameter δ, answering positively the question (Q3).

Theorem 3.5: Consider a smooth curve γ : [0, 1] → M
and u0 ∈ L2([0, T ],Rm) so that E(u0) = γ(0). Assume that
γ(s) /∈ S for every s ∈ [0, 1) and that the solution s 7→ us
of the PLE (4) starting from u0 along γ is well defined on
[0, 1). Let us,δ be the solution of the corresponding RPLE
(15) and let xδ1 := E(us,δ)|s=1. Then lim

δ→0
xδ1 = γ(1).

Proof: The assumption on the PLE means that, for
every ε ∈ (0, 1), the solution us of (4) starting from u0
along γ is defined over s ∈ [0, ε]. Then, E(us(t)) = γ(s) for
0 ⩽ s ⩽ ε, and s 7→ ∂

∂sus is integrable on [0, ε], and thus
locally integrable on [0, 1).

Denote by λs,δmin the minimal eigenvalue of the Gramian
at us,δ . Since λs,δmin = ∥G−1

us,δ
∥ is continuous with respect to

Gus,δ
and Gus,δ

is continuous with respect to us,δ , it follows
that λs,δmin is continuous with respect to s.

By Theorem 3.4, there exists a constant µ0 > 0, such
that us,δ /∈ S̃, λs,δmin > 0, ∀s ∈ [0, 1), ∀δ ∈ [0, µ0]. Therefore

δ

λs,δ
min+δ

⩽ 1 uniformly with respect to (s, δ) ∈ [0, ε]×[0, µ0].
By the dominated convergence theorem, we get

lim
δ→0

∥γ(1)− xδ1∥

= lim
δ→0

lim
ε→1

∥
∫ ε

0

γ̇(s)− ∂

∂s
E(us,δ)ds∥

⩽ lim
δ→0

lim
ε→1

∫ ε

0

∥In − dE(us,δ)Pδ(us,δ)∥∥γ̇(s)∥ds

⩽ lim
ε→1

∫ ε

0

lim
δ→0

nδ

λs,δmin + δ
∥γ̇(s)∥ds = 0

which proves the theorem.
Remark 3.6: Theorem 3.5 shows that if we plan to find

a control driving the system from x to x1 while x1 ∈ S
lies in the critical values corresponding to singular controls,
then as long as the solution of the PLE (4) is well posed
before the curve γ reaches x1, the endpoint correspond-
ing to regularized solutions will reach x1 as we take the
regularization parameter δ to zero. This confirms that the
regularization improves the applicability of the HCM, since
the un-regularized PLE (4) is not well defined when γ(s)
intersects with the set S, which forbids the lifting of paths.

IV. NUMERICAL IMPLEMENTATION

We adopt the model of rolling surfaces in [2] to illustrate
the applicability of the regularized continuation method.

The system of a two-dimensional strictly convex mani-
fold embedded in R3 rolling against the two-dimensional
Euclidean surface R2 is described by the following control-
affine system

v̇1 = u1 cosψ − u2 sinψ; v̇2 = u1;
ẇ1 = − 1

Bu1 sinψ − 1
Bu2 cosψ; ẇ2 = u2;

ψ̇ = −Bv1

B u1 sinψ − Bv2

B u2 cosψ

(17)

where the state space, a 5-dimensional manifold M ,
is locally characterized in the geodesic coordinates as

((v1, w1), (v2, w2), ψ) ∈ S2 × R2 × SO(2), where B is a
function on M , and Bv1 , Bv2 are its partial derivative with
respect to the components v1, v2 respectively.

The singular controls corresponding to the rolling system
(17) is the set

S := {(v(·) cos θ, v(·) sin θ)|v ∈ L2([0, T ],R), θ ∈ [0, 2π]},

and the corresponding critical values are all the geodesics
starting from x ∈M .

We first show that the regularized solution converges to the
original one when the latter is well posed. The regularized
continuation method is stated as Algorithm 1.

Algorithm 1 Regularized continuation method

(i) Discretize the control space by piecewise linear func-
tions; calculate the endpoint map and its differential
by the basis functions;

(ii) Choose a nonsingular initial control u0 and calculate
the endpoint E(u0);

(iii) Draw a smooth curve γ on M such that γ(0) = E(u0),
γ(1) = x1;

(iv) Choose a regularisation parameter δ, solve the RPLE
(15) along γ with boundary condition u0;

(v) Set u1,δ as the terminal value of control.

To be precise, suppose that the planning aims at
steering the system (17) from (v1, w1, v2, w2, ψ) to
(ṽ1, w̃1, ṽ2, w̃2, ψ̃). Algorithm 1 is executed as follows:

In step (i), we first partition the interval [0, T ] into N
pieces [ i

N T,
i+1
N T ], i = 0, · · · , N − 1, and discretize the

control space with piecewise linear functions, which is a 2N -
dimensional linear space. Then we use the 4th-order Runge-
Kutta method to integrate the system dynamics and compute
the endpoint map as well as its differential.

In steps (ii) and (iii), we set the initial control u0 as
a nonlinear function on R2, so that it does not belong
to the singular set S̃; suppose the coordinate of E(u0) is
v̄1, w̄1, v̄2, w̄2, ψ̄, then we draw an arbitrary smooth curve
γ0(s) on R2 starting from (v̄1, w̄1) and ending at (ṽ1, w̃1),
and project γ0(s) to S2 to derive the curve γ(s) on M to be
lifted by continuation (for details of projecting a curve from
R2 to S2, one may refer to [2]).

In steps (iv) and (v), we use again the 4th-order Runge-
Kutta method to solve the RPLE (15) along γ in the dis-
cretized control space, as well as the endpoint corresponding
to the solution of the RPLE at s = 1, and compare it with
the desired terminal state (ṽ1, w̃1, ṽ2, w̃2, ψ̃).

In our experiments, the convex manifold is S2, the initial
position and the desired terminal of rolling are chosen as
(0, 0,−1, 0, 0)⊤ and (0, 0,−1, 2, 0)⊤ respectively, and the
initial control is u0(t) = (−π sin( πT t), π cos(

π
T t))

⊤.
For any δ > 0, denote by d(δ) := ∥E(u1) − E(u1,δ)∥,

e(δ) := ∥us − us,δ∥ the discrepancies of the controls and
of the endpoints respectively. Table I shows their values
calculated following Algorithm 1, corresponding to the PLE
and the RPLE, with respect to different choices of the
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δ 0.04 0.02 0.006 0.002
d(δ) 0.8582 0.1379 0.0007 0.0001
e(δ) 19.2728 6.6486 2.0186 0.6409

TABLE I: Discrepancies between the controls and endpoints
corresponding to the PLE and RPLE.
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Fig. 2: log-log plot of discrepancies between the controls
and endpoints corresponding to the PLE and RPLE.

parameter δ. From Table I we see that as the regularization
parameter approaches zero, both the regularized control
and the endpoint converge to the ones corresponding to
the un-regularized PLE. Figure 2 is a log-log plot of the
discrepancies, showing the convergence of the solution when
δ is close to zero.

V. CONCLUSION

In this paper, we presented the regularized continuation
method by deriving theoretical results on its effectiveness in
motion planning, and showed how it overcomes the difficulty
caused by singular controls, We illustrated our findings with
some numerical experiments.

Note that Theorem 3.5 can be applied to motion planning
when the whole trajectory to be lifted lies in the critical value
set of the endpoint map. As long as ũs := lim

δ→0
us,δ exists

and the curve γ satisfies γ̇(s) ∈ Im(dE(ũs)), the endpoint
derived from the solution of the RPLE converges to the
desired target as δ tends to zero. For future investigations,
we will focus on finding conditions ensuring well-posedness
of the PLE.

REFERENCES

[1] A. Agrachev, D. Barilari, and U. Boscain, A Comprehensive Introduc-
tion to Sub-Riemannian Geometry, Cambridge Studies in Advanced
Mathematics, vol. 181, Cambridge University Press, Cambridge, 2020.

[2] F. Alouges, Y. Chitour, and R. Long, A motion-planning algorithm for
the rolling-body problem, IEEE Trans. Robotics 26 (2010), no. 5, 827-
836.

[3] J. C. Alves Barata, and M. Saleh Hussein, The Moore-Penrose pseu-
doinverse: a tutorial review of the theory, Brazilian J. Physics, 42
(2012), no. 1-2, 146-165.

[4] A. Chelouah, Y. Chitour, On the motion planning of rolling surfaces,
Forum Math. 15 (2003), no. 5, 727–758.

[5] D. Cheng, X. Hu, and T. Shen, Analysis and Design of Nonlinear
Control Systems, Springer, 2010.

[6] Y. Chitour, Path planning on compact Lie groups using a homotopy
method, Syst. Control Lett., 47 (2002), no. 5, 383-391.

[7] Y. Chitour, A continuation method for motion-planning problems,
ESAIM: Control Optim. Calc. Var. 12 (2006), 139-168.

[8] Y. Chitour, F. Jean, and R. Long, A global steering method for
nonholonomic systems, J. Diff. Eq. 254 (2013), 1903-1956.

[9] Y. Chitour, H. J. Sussmann, Line-integral estimates and motion plan-
ning using the continuation method, Essays on mathematical robotics
Springer (1998), 91-125.

[10] A. W. Divelbiss, J. T. Wen, A path space approach to nonholonomic
motion planning in the presence of obstacles, IEEE Trans. Robot.
Automat. 13 (1997), no. 3, 443–451.

[11] M. Guay, D. Dochain, A time-varying extremum-seeking control
approach, Automatica, 51 (2015), 356-363.
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