
An Embedded MPC for High-Speed Trajectory Tracking of
Piezoelectric Actuators with Implementation on an ARM

Microprocessor

Fei Dong, Wenguang Zuo, Hongyang Xie, Xinyu Wang, Qinglei Hu*

Abstract— This work studies the problem of high-speed
trajectory tracking for a piezoelectric actuator (PEA) subject to
constraints on both the displacement output and control input
via a resource-limited embedded processor. To ensure tracking
performance, an extremely high control frequency of 10kHz
is recommended. In response, we propose an embedded model
predictive control (MPC) algorithm and deploy it on a low-
cost STM32F407 ARM microprocessor operating at 168MHz.
Specifically, a fast coordinate ascent algorithm is designed to
online solve the constrained quadratic programming (QP) prob-
lem derived from the MPC, and a delayed Kalman filter (KF) is
introduced to compensate for the computation latency. Through
hardware-in-the-loop (HIL) simulations, we demonstrate the
feasibility and effectiveness of our embedded MPC algorithm.

I. INTRODUCTION

Piezoelectric actuators (PEAs) possess high precision,
ultra-fine resolution, and an immediate response [1], making
them ideal for use in various high-precision systems such
as nano positioning stages [2] and beam steering mirrors
[3]. In these applications, PEAs serve the critical function of
precisely tracking trajectories. However, due to the extremely
short control period, it remains a significant challenge to
track a high-speed reference trajectory using a resource-
limited embedded platform such as an advanced RISC ma-
chine (ARM).

By its simplicity of deployment, the PID control is widely
used in embedded applications. In [4], a PI control is
implemented onto a digital signal processor (DSP) to reduce
the tracking error. The Physik Instrumente also employs the
PID control in its E-727 digital piezo controller, as indicated
in the user manual [5]. However, the PID control is only suit-
able for low-order systems, which severely limits its closed-

This work was supported in apart by the National Natural Science
Foundation of China (62203027 and 62227812); in part by the China
Postdoctoral Science Foundation (BX20220369 and 2022M710310); in part
by the Tianmushan Laboratory Research Project (TK-2023-B-010 and TK-
2023-C-020); and in part by a grant from the National Key Laboratory of
Aerospace Flight Dynamics (AFDL), Northwestern Polytechnical Univer-
sity. (Corresponding author: Qinglei Hu)

F. Dong is with the School of Automation Science and Electrical
Engineering, Beihang University, Beijing 100191, China, and also with the
Tianmushan Laboratory, Hangzhou, 310023, China.

W. Zuo and H. Xie are with the School of Cyber Science and Technology,
Beihang University, Beijing 100191, China.

X. Wang is with the School of Automation Science and Electrical
Engineering and the Shen Yuan Honors College, Beihang University, Beijing
100191, China.

Q. Hu is with the Tianmushan Laboratory, Hangzhou, 310023,
China, and also with the School of Automation Science and
Electrical Engineering, Beihang University, Beijing 100191, China.
huql buaa@buaa.edu.cn.

loop bandwidth. To cope with the high-order dynamics of
PEA, Kong et al. present a backstepping control with an
adaptive neural network [6], Chowdhury et al. propose a
feedback linearization method with an extended high-gain
observer [7], and Habibullah et al. design a linear quadratic
regulator (LQR) with a Kalman filter (KF) [8]. However,
none of these methods addresses the constraints on state and
input during the control design process.

Model predictive control (MPC) is an effective approach
for handling physical constraints and exploiting future ref-
erence trajectories. However, it requires solving a complex
numerical optimization problem in each sampling period and
thus results in a huge computational burden. As a result,
most of the literature can only solve the MPC optimization
problem by SIMULINK on the high-performance platform.
For example, Ref. [9] adopts the Hildreth’s quadratic pro-
gramming (QP) method on a host computer, while Ref. [10]
applies the gradient descent method on a workstation but
dose not consider the constraints.

The implementation of MPC on resource-limited embed-
ded processors is an area of significant interest, not only in
the field of PEA control. Numerous commercial or open-
source solvers have been developed, such as OSQP [11],
HPIPM [12], and acados [13]. Notably, acados includes
the first two solvers and offers user-friendly interfaces for
MATLAB and Python. Ref. [13] also demonstrates the
effectiveness on a dSPACE platform, leveraging the high-
performance linear algebra package BLASFEO.

In this work, we consider the constraints on both PEA’s
states and inputs to prevent damage and propose an STM32-
based MPC method to regulate it to track a high-speed
reference trajectory. To ensure reliable tracking performance,
a high control frequency of 10kHz is required. Thus, the con-
strained MPC optimization problem must be solved within
the sampling time of 0.1ms on the resource-limited embed-
ded processor. To this end, we design a coordinate ascent
algorithm that can efficiently solve the optimization problem
without relying on third-party libraries. Furthermore, we
introduce a delayed KF to compensate for the computation
latency and deploy the proposed method on a low-cost
STM32F407 ARM microprocessor and carry out hardware-
in-the-loop (HIL) simulations for performance validation.

The remainder of this work is given as follows. In Section
II, we formulate the trajectory tracking problem by introduc-
ing the PEA’s dynamics and constraints. In Section III, we
pose an MPC problem and convert it into a constrained QP

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5723

problem. Then, we propose an embedded coordinate ascent
solution algorithm in Section IV. Moreover, we use HIL
simulations to validate its performance and draw conclusions
in Sections V and VI, respectively.

II. PROBLEM FORMULATION

In this work, we require a PEA to track a high-speed
reference trajectory while satisfying the constraints on both
the displacement output and control input.

A. The SISO transfer model of PEA
As [2], [8], [14], the PEA’s dynamics is usually modeled as

the following single-input and single-output (SISO) system

Y (z)

U(z)
=

bn−1z
n−1 + · · ·+ b1z + b0

zn + an−1zn−1 . . .+ a1z + a0
, (1)

where z denotes the time delay operator, e.g., z−k represents
a shift of k sampling periods ahead.

To better capture the dynamical characteristics of the PEA,
a 5-th order continuous-time model is identified in [2], which
has a resonant frequency greater than 1kHz.

B. The objective of trajectory tracking control
Given a feasible reference trajectory {r(k)}∞k=0, the objec-

tive of this work is to regulate the displacement output y(k)
of (1) to track it asymptotically, i.e., the deviation between
y(k) and r(k) is expected to be zero as time goes to infinity.

lim
k→∞

|y(k)− r(k)| = 0. (2)

To avoid damaging the PEA, the limits on both the displace-
ment output and control input are taken into account, i.e.,

y(k) ∈ [ymin, ymax] and u(k) ∈ [umin, umax] (3)

where ymin, ymax, umin, and umax are constants. Moreover,
the control frequency is required to be 10kHz on a resource-
limited embedded ARM microprocessor.

III. MODEL PREDICTIVE CONTROL

To achieve the objective (2) under the constraints (3),
the MPC is a natural alternative, which generates control
inputs by fully exploiting the PEA dynamics and reference
trajectories.

A. The MPC optimization problem
For reducing the computational burden, we first convert

the SISO model in (1) into the following state space form
as [15]

x(k + 1) = Ax(k) +B(u(k) + w(k)),

y(k) = Cx(k) + v(k),
(4)

where the state matrix A ∈ Rn×n, input matrix B ∈ Rn×1,
and output matrix C ∈ R1×n are given by

A =

−an−1 1

...
. . .

−a1 1
−a0 0 · · · 0

 , B =

bn−1

...
b1
b0

 ,
C =

[
1 0 · · · 0

]
.

The Gaussian white noises w(k) ∼ N (0, Rw) and v(k) ∼
N (0, Rv) are introduced to model the uncertainties of (4).

Then, we define the following value function

J(u(·|k)) =
1

2

Np∑
i=0

(y(i|k)− r(i|k))
2

+
ρ

2

Np−1∑
i=0

(∆u(i|k))
2
,

where u(·|k) = {u(0|k), . . . , u(Np − 1|k)} is the input
sequence to optimize with the prediction horizon length
Np. Note that we penalize the input increment ∆u(i|k) ,
u(i|k) − u(i − 1|k) instead of the input u(i|k) to reduce
the tracking error. Thus, the goal is to realize that |y(i|k)−
r(i|k)| = |∆u(i|k)| = 0.

Based on (4), the constrained optimization problem is
formulated as follows

u∗(·|k) = argmin
u(·|k)

J(u(·|k)) (5a)

s.t. x(0|k) = x(k) (5b)
u(−1|k) = u(k − 1), (5c)
x(i+ 1|k) = Ax(i|k) +Bu(i|k), (5d)
y(i|k) = Cx(i|k), (5e)
u(i|k) = u(i− 1|k) + ∆u(i|k), ∀i < Nc, (5f)
u(i|k) = u(i− 1|k), ∀i ≥ Nc − 1, (5g)
y(i|k) ∈ [ymin, ymax], (5h)
u(i|k) ∈ [umin, umax], (5i)

where (5b) is the state initialization, and (5c) is the input
initialization since the cost is on the increment ∆u(i|k) with
the relation in (5f). Moreover, a control horizon with 1 ≤
Nc ≤ Np is introduced to reduce the dimension of decision
variable u(·|k) by (5g).

By solving (5), we obtain the optimal input sequence
u∗(·|k). However, only its first component is applied to the
PEA to regulate the displacement y(k) to track the reference
command r(k) and satisfy the constraints on both the state
and input, i.e., u(k) = u∗(0|k). Then, the above process
is repeated in the moving horizon manner to improve the
tracking performance of reference {r(i)}∞i=k.

B. The quadratic programming for solving (5)

To solve (5), we first define the vector variables as follows

y =
[
y(1|k) · · · y(Np|k)

]T ∈ RNp×1,

u =
[
u(1|k) · · · u(Np|k)

]T ∈ RNc×1,

r =
[
r(1|k) · · · r(Np|k)

]T ∈ RNp×1,

∆u =
[
∆u(0|k) · · · ∆u(Nc − 1|k)

]T ∈ RNc×1.

Their time indexes are omitted for brevity. Then, the future
Np-step prediction of y(k) is directly given by

y = Fx(k)− Φu (6)

where the transition matrices F and Φ are obtained from (7).
Moreover, the control input increment ∆u can be obtained

5724

F =

CA
CA2

...
CANp

 ∈ RNp×n, Φ =

CB
CAB CB

...
...

. . .
CANc−1B CANc−2B · · · CB
CANcB CANc−1B · · · CAB + CB

...
...

. . .
...

CANp−1B CANp−2B · · · CANp−NcB + · · ·+ CAB + CB

∈ RNp×Nc .

(7)

by the decision vector u and the previous input u(k− 1) as

∆u = Ψu− Γu(k − 1) (8)

where

Ψ =

1
−1 1

. . .
. . .
−1 1

 ∈ RNc×Nc , Γ =

1
0
...
0

 ∈ RNc×1.

Based on (6) and (8), we rewrite J(u(·|k)) in (5a) into
that

J(u) =
1

2
‖y − r‖22 +

ρ

2
‖∆u‖22

=
1

2
uTHu+ hTu+ h (9)

where

H = ΦTΦ+ ρΨTΨ ∈ RNc×Nc ,

h = ΦT (Fx(k)− r)− ρΨTu(k − 1) ∈ RNc×1,

h =
1

2
‖Fx(k)− r‖22 +

ρ

2
u2(k − 1) ∈ R.

(10)

Thus, the MPC problem (5) is converted into a quadratic
programming (QP) problem as follows

u∗ = argmin
u

1

2
uTHu+ hTu, s.t. Wu ≤ b, (11)

where the matrix W ∈ R2(Np+Nc)×Nc and vector b ∈
R2(Np+Nc)×1 are given by

W =

Φ
−Φ
I
−I

 and b =

Ymax − Fxk

−Ymin + Fxk

Umax
−Umin

with Ymax = ymax ·1Np

, Ymin = ymin ·1Np
, Umax = umax ·1Nc

,
and Umin = umin · 1Nc

. Note that the scalar term h in (9) is
omitted since it has no effect on the optimal solution u∗.

IV. STM32-BASED MPC AND ITS IMPLEMENTATION

Although there are many optimization solvers, e.g. the
quadprog in MATLAB, it is still hard to solve (11)
on a resource-limited STM32 ARM microprocessor in the
sampling time of 0.1ms. Thus, an embedded model pre-
dictive control approach is proposed as shown in Fig. 1,
which includes a coordinate ascent method for fast solving

min
1
2𝝁𝝁

T𝑃𝑃𝝁𝝁 + 𝒑𝒑T𝝁𝝁
s.t. 𝝁𝝁 ≥ 0

min
1
2𝒖𝒖

T𝐻𝐻𝒖𝒖 + 𝒉𝒉T𝒖𝒖
s.t. 𝑊𝑊𝒖𝒖 ≤ 𝒃𝒃

Dual problem Primal problem

𝝁𝝁∗ 𝑢𝑢 𝑘𝑘 = 𝒖𝒖∗(1)
PEA

Delayed Kalman filter

STM32F407 ARM microprocessor @168MHz

{𝑟𝑟 𝑖𝑖 }𝑖𝑖=𝑘𝑘
𝑁𝑁𝑝𝑝

�𝒙𝒙𝑘𝑘+1|𝑘𝑘

𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

�𝒙𝒙𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴 𝐼𝐼 − 𝐾𝐾𝐾𝐾 �𝒙𝒙𝑘𝑘|𝑘𝑘−1 + 𝐴𝐴𝐾𝐾𝐴𝐴 𝑘𝑘 + 𝐵𝐵𝑢𝑢(𝑘𝑘 − 1)
𝐴𝐴 𝑘𝑘

Fig. 1. Embedded MPC approach for PEA.

the constrained optimization problem and a delayed KF to
compensate for the computation latency.

A. The coordinate ascent algorithm

Instead of using the open source solvers, e.g., acados
in [13] which relies on the high-performance linear algebra
package BLASFEO, a coordinate ascent solution algorithm
is designed by the following Lagrangian function.

L(u,µ) =
1

2
uTHu+ hTu+ µT(Wu− b) (12)

where µ ∈ R2(Np+Nc)×1 is a Lagrange multiplier vector to
penalize the inequality constraint of (11).

It follows from ∇uL(u,µ) = Hu+ h+W Tµ = 0 that

u = −H−1
(
h+W Tµ

)
. (13)

By inserting (13) into (12), we obtain the dual problem of
(11) as follows

µ∗ , argmin
µ

1

2
µTPµ+ pTµ, (14a)

s.t. µ ≥ 0, (14b)

where the weighting matrix P ∈ R2(Np+Nc)×2(Np+Nc) and
vector p ∈ R2(Np+Nc) × 1 are given by

P = WH−1W T and p = b+WH−1h. (15)

Compared with solving the primal problem in (11) di-
rectly, it is more efficient to obtain the optimal solution
µ∗ to the dual problem in (14) first, since the constraint
µ ≥ 0 is simple. Moreover, both H and P are symmetric
and positive definite by (10) and (15), which implies that the
unconstrained function in (14a) is strictly convex along the
element of µ. Thus, the coordinate ascent method is adopted
to iteratively solve (14) with an explicit form [16, Proposition

5725

Algorithm 1 Coordinate ascent algorithm for solving (11).
1) Input: the reference trajectory r, current state x(k),

and last control input u(k − 1).
2) Output: the optimal solution u.

• Let µ = 02(Np+Nc)×1.
• Compute h and b of the QP problem in (11).
• For m = 1, . . . ,M :

– For i = 1, . . . , 2(Np +Nc):
∗ µi = max

(
0,µi − P−1ii (pi + Pi:µ)

)
.

– End for.
• End for.
• Return u = −H−1

(
h+W Tµ

)
.

3.7.1].
Denote the i-th coordinate of the vector µ by µi. Then,

the partial derivative of (14a) with respect to µi is directly
obtained as follows

pi + Piiµi +
∑
j 6=i

Pijµj , (16)

where pi is the i-th element of the vector p, and Pij

represents the element in row i and column j of the matrix
P . Thus, the minimum of (14a) along µi is attained at µ̂i

when the partial derivative in (16) is zero. That is

µ̂i =− 1

Pii

pi +
∑
i6=j

Pijµj

= µi − P−1ii (pi + Pi:µ) , (17)

where Pi: is the i-th row of the matrix P .
Considering the constraint µi ≥ 0, the coordinate ascent

updating for µi is performed as follows

µi = max {0, µ̂i} . (18)

Thus, the optimal solution µ∗ can be obtained by recurrently
executing the coordinate ascent operation in (18). By the
expression in (13), the optimal solution u∗ to the primal
problem in (11) satisfies that

u∗ = −H−1
(
h+W Tµ∗) . (19)

The solving process is summarized in Algorithm (1) with
a maximum number M of iterations. The matrices F , Φ, Ψ ,
Γ , W , H and P are time-invariant for given parameters Np,
Nc, and ρ. Thus, they are computed before the iteration loop
in Algorithm (1) to reduce the computation latency.

B. Numerical example in MATLAB

For an illustration, we directly discrete the model in [2]
with a sampling time of τ = 0.0001s, and obtain the
parameters for the SISO model in (1) as: b0 = 0.2536,
b1 = 0.3351, b2 = 0.2654, b3 = 0.8734, b4 = 0.9523,
a0 = −0.09212, a1 = 0.1754, a2 = 0.5851, a3 = 0.3625,
a4 = 0.6599.

As shown in Fig. 2, we select a reference trajectory as

0 0.02 0.04 0.06 0.08 0.1

-2

0

2

Reference
Actual output

0 0.02 0.04 0.06 0.08 0.1

-2

0

2

In
pu

t (
V

)

0 0.02 0.04 0.06 0.08 0.1
Time (s)

0

0.5

1

1.5

D
is
pl
ac
em

en
t(μ

m
)

||μ
||

Fig. 2. Tracking result of the coordinate ascent solution algorithm.

r(k) = 3.5 · sin(100 · 2π · kτ), set ymin = umin = −3 and
ymax = umax = 3 for the PEA in (1), and determine Np =
Nc = 10 and ρ = 0.1 for the MPC in (5). The tracking results
in Fig. 2 show the effectiveness of the above Algorithm 1
with M = 10 in MATLAB R2021b. Both the displacement
output and control input satisfy their constraints. Although
the computation latency is as low as 0.14ms on our computer
with an Intel Core i7-1270KF @3.61GHz, it still exceeds the
sampling time of τ = 0.1ms. For a low-cost STM32F407
@168MHz, the computation latency is expected to be up to
3.0ms by [17, Equation (9)]. Thus, it requires more efforts
to tailor the Algorithm (1) for embedded implementation.

By Fig. 2, we observe that the Euclid norm ‖µ‖ of the
Lagrange multiplier vector changes continuously over time,
i.e., µ also changes continuously in this case. Thus, it is of
significant potential to apply the warm-starting strategy to
facilitate the convergence of the solution algorithm and thus
reduce the computation latency.

C. The Implementation on an STM32 microprocessor

Although the iterations in Algorithm 1 have explicit forms,
the dual solution µ has a dimension of 2(Np +Nc) which is
much greater than the dimension Nc of the primal solution
u. Thus, the dimension of matrix P may be very large when
the long horizon lengths are selected. To solve it, an auxiliary
vector and auxiliary matrix [16, Section 7.2] are introduced
as follows

v , −W Tµ and S ,WH−1. (20)

By the definition in (20), the updating in (17) is rewritten as

µ̂i = µi − P−1ii

(
pi − ST

i v
)
, (21)

where ST
i denotes the i-th row of the matrix S and Wi stands

for the i-th column of matrix W T.
Based on (21), the coordinate ascent operation in (18) is

5726

converted into that

µi ← µi − δi (22)

where δi = min
{
µi, P

−1
ii

(
pi − ST

i v
)}
. Moreover, the

updating for v is obtained from (20) as follows

v ← v + δiWi.

Compared with the dual variable µ with a dimension of
2(Np + Nc), the auxiliary vector v has a much lower
dimension of Nc, which is the same as that of the primal
variable u. By Fig. 2, the optimal dual solution µ∗ changes
continuously over time. So, the solution µ(k − 1) from the
previous time instant k − 1 is used to speed up the solution
algorithm.

Due to the sampling period is as low as 0.1ms, the
computation time of Algorithm 2 is not negligible on the
embedded platform. Thus, a delayed KF [18] is introduced
as shown in Fig. 1 to compensate for the computation time
spent on online solving the QP problem (11) as follows

x̂(k + 1|k)

= A(I −KC)x̂(k|k − 1) +AKy(k) +Bu(k − 1)
(23)

where x̂(k+ 1|k) is the one time step delayed estimation of
the current state x(k), which is used to initialize (5b) in em-
bedded implementation. To further reduce the computation
time, we adopt the steady-state filter gain [19]

K = ΣCT (Rv + CΣCT)−1
by solving the following discrete-time algebraic Riccati
equation (DARE) of Σ offline

Σ = A
(

Σ− ΣCT (Rv + CΣCT)−1 CΣ
)
AT +BRwB

T.

The covariance matrices Rw and Rv are given in (4).
To sum up, the embedded version of Algorithm 1 is

described in Algorithm 2. Note that the Algorithm 2 needs to
be coded in C language. The required constant matrices F , Φ,
Ψ , Γ , W , H , H−1, P , and S are pre-computed in MATLAB
and then written into a header file for the C program. To
further reduce the computational complexity, the sparsity of
the matrices A, F , W , and Φ is fully exploited, and only the
first element of u is computed by using the first row H−11

of the matrix H−1.

V. HARDWARE-IN-THE-LOOP SIMULATIONS

By implementing the Algorithm 2 onto a low-cost
STM32F407 microprocessor, we carry out the HIL simu-
lations to demonstrate its performance in this section.

A. The settings of HIL simulation

As shown in Fig. 3, the PEA’s dynamics in (1) is run on
the computer while the proposed algorithms are executed on
the STM32F407 @168MHz. They communicate with each
other through the COM port. To ensure that the feasible
solution can be obtained within the sampling period of
0.1ms, we select Np = 6 and Nc = 4 for the MPC and

Algorithm 2 Embedded coordinate ascent algorithm.
1) Input: the reference r, current output y(k), last control

input u(k − 1), and last dual solution µ(k − 1).
2) Output: the control input u(k) and dual solution µ(k).

• Compute x̂(k + 1|k) by (23).
• Let µ̃ = µ(k − 1).
• Compute h and b of the primal problem in (11).
• Compute v = −W Tµ̃ in (20).
• Compute p = b+Sh of the dual problem in (14).
• For i = 1, . . . , 2(Np +Nc):

– δi = min
(
µ̃i, P

−1
ii (pi + Siv)

)
.

– µ̃i = µ̃i − δi.
– v = v − δiWi.

• End for.
• Return u(k) = −H−11

(
h+W Tµ̃

)
and µ(k) =

µ̃.

PEA

𝑦𝑦(𝑘𝑘)

𝑢𝑢(𝑘𝑘)

STM32-based MPC

COM

Fig. 3. STM32F407-in-the-loop simulations.

EndStart

66.4μs

Fig. 4. The total computation latency of the Algorithm 2 on the
STM32F407 @168MHz with Np = 6 and Nc = 4.

reduce the total computation latency of the Algorithm 2
including the embedded MPC and delayed KF to 0.0664ms
(< τ , 0.1ms), which is measured by a scope. As shown in
Fig. 4, we pull the voltage of one pin up at the beginning of
Algorithm 2 and then pull it down at the end.

Thus, it is feasible to deploy the proposed Algorithm 2 to
achieve the control frequency of 10kHz on such a resource-
limited ARM microprocessor.

B. The high-speed trajectory tracking

As Fig. 5, we select a high-speed reference trajectory for
the PEA as follows

r(k) = 2 · sin(150 · 2π · kτ) + 0.9 · sin(250 · 2π · kτ)

+ 0.5 · sin(350 · 2π · kτ) + 0.6 · sin(400 · 2π · kτ)

which is consisted of multiple sine signals with the frequen-
cies of 150Hz, 250Hz, 350Hz, and 400Hz. In addition to the
settings in IV-B, we set Rw = 0.012 and Rv = 0.0012 for

5727

0 0.005 0.01 0.015 0.02
Time (s)

-3

-2

-1

0

1

2

3
D

is
pl

ac
em

en
t (

μm
)

Reference
STM32F407
Intel Core i7

5 10

10-4

2

2.5

3

Fig. 5. Tracking trajectories of the MPCs on different platforms.

0 0.005 0.01 0.015 0.02
Time (s)

-3

-2

-1

0

1

2

3

In
pu

t (
V

)

STM32F407
Intel Core i7

5 10

10-4

2

2.5

3

Fig. 6. Control inputs of the MPCs on different platforms.

the Gaussian white noises in (4).
The HIL simulations last 0.02s as shown in Figs. 5 and 6.

The STM32-based MPC has the same performance with the
Algorithm 2 run in MATLAB on the computer with an Intel
Core i7. The both achieve the objective (2) of high-speed
trajectory tracking and satisfy the constraints (3) of avoiding
damage. Moreover, the root-mean-square-error (RMSE) is
0.0193µm between 0.005s and 0.015s.

VI. CONCLUSION

In this work, we proposed an STM32-based model pre-
dictive control (MPC) approach for achieving high-speed
trajectory tracking of a piezoelectric actuator (PEA) while
satisfying constraints on both the displacement output and
control input. Specifically, we first convert the tracking
problem into a constrained quadratic programming problem
and then designed an embedded coordinate ascent algorithm
to addresses the challenges of online computation. Moreover,
we introduced a delayed Kalman filter with a steady-state
gain to compensate for the computation latency. To evaluate
the performance of our approach, we conduct hardware-
in-the-loop simulations on a resource-limited STM32F407
ARM processor. The results demonstrate that our algorithm

achieves a control frequency of 10kHz and successfully
accomplishes the tracking task. In future work, we plan to
extend the proposed algorithm to account for the hysteresis
nonlinearity of the PEA.

REFERENCES

[1] H. Jin, X. Gao, K. Ren, J. Liu, L. Qiao, M. Liu, W. Chen, Y. He,
S. Dong, Z. Xu et al., “Review on piezoelectric actuators based
on high performance piezoelectric materials,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 2022.

[2] C. Yang, F. Xia, Y. Wang, and K. Youcef-Toumi, “Comprehensive
study of charge-based motion control for piezoelectric nanopositioners:
Modeling, instrumentation and controller design,” Mechanical Systems
and Signal Processing, vol. 166, pp. 1–14, 2022.

[3] J. Zhong, L. Li, R. Nishida, and T. Shinshi, “Design and evaluation
of a PEA-driven fast steering mirror with a permanent magnet preload
force mechanism,” Precision Engineering, vol. 62, pp. 95–105, 2020.

[4] J.-J. Tzen, S.-L. Jeng, and W.-H. Chieng, “Modeling of piezoelectric
actuator for compensation and controller design,” Precision Engineer-
ing, vol. 27, no. 1, pp. 70–86, 2003.

[5] Physik Instrumente, “User manual of E-727.” [Online]. Available:
https://www.physikinstrumente.com/en/

[6] L. Kong, D. Li, J. Zou, and W. He, “Neural networks based learn-
ing control for a piezoelectric nanopositioning system,” IEEE/ASME
Transactions on Mechatronics, vol. 25, no. 6, pp. 2904–2914, 2020.

[7] D. Chowdhury, Y. K. Al-Nadawi, and X. Tan, “Dynamic inversion-
based hysteresis compensation using extended high-gain observer,”
Automatica, vol. 135, pp. 1–9, 2022.

[8] H. Habibullah, H. R. Pota, and I. R. Petersen, “A novel control ap-
proach for high-precision positioning of a piezoelectric tube scanner,”
IEEE Transactions on Automation Science and Engineering, vol. 14,
no. 1, pp. 325–336, 2017.

[9] Y. Cao, L. Cheng, X. Chen, and J. Peng, “An inversion-based model
predictive control with an integral-of-error state variable for piezoelec-
tric actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18,
no. 3, pp. 895–904, 2013.

[10] S. Xie and J. Ren, “Recurrent-neural-network-based predictive control
of piezo actuators for trajectory tracking,” IEEE/ASME Transactions
on Mechatronics, vol. 24, no. 6, pp. 2885–2896, 2019.

[11] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[12] G. Frison and M. Diehl, “HPIPM: A high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.

[13] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “Aca-
dos—a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, vol. 14, no. 1, pp.
147–183, 2022.

[14] W. Han, S. Shao, S. Zhang, Z. Tian, and M. Xu, “Design and modeling
of decoupled miniature fast steering mirror with ultrahigh precision,”
Mechanical Systems and Signal Processing, vol. 167, p. 108521, 2022.

[15] J. K. Huusom, N. K. Poulsen, S. B. Jørgensen, and J. B. Jørgensen,
“Tuning SISO offset-free model predictive control based on ARX
models,” Journal of Process Control, vol. 22, no. 10, pp. 1997–2007,
2012.

[16] D. Bertsekas, Nonlinear programming, 3rd ed. Athena Scientific,
2016.

[17] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 1006–1017, 2013.

[18] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded
model predictive control with certified real-time optimization for syn-
chronous motors,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 2, pp. 893–900, 2020.

[19] J. Yan, X. Yang, Y. Mo, and K. You, “A distributed implementation of
steady-state Kalman filter,” IEEE Transactions on Automatic Control,
pp. 1–8, 2022.

5728

