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Abstract— This paper presents the maneuvering adaptive line-
of-sight (MALOS) algorithm, which guarantees global asymp-
totic path following and crab angle estimation for a class of
underactuated vehicles in the presence of an unknown crab angle.
Notably, MALOS is the first line-of-sight (LOS) guidance scheme
with integral action for curved paths with truly global stability
results, and not just global under the assumption that the path
parameter can be selected such that the along-track error is
identically zero. A case study of an autonomous underwater
vehicle demonstrates the effectiveness of the MALOS algorithm.

I. INTRODUCTION

Line-of-sight (LOS) guidance laws constitute a prominent
class of methods used to generate heading reference signals
for the autopilots of underactuated marine vehicles, with the
ultimate goal of permitting these vehicles to follow a given
path. There are two main types of LOS guidance laws, static
state feedback and dynamic feedback LOS algorithms. Static
state feedback LOS algorithms are known as proportional LOS
guidance laws, while dynamic feedback algorithms include
integral LOS (ILOS) and adaptive LOS (ALOS).

The first ILOS guidance law was introduced in [1], which
assumes that the path is a straight line and places restrictions
on the integral gain relative to the forward velocity. This
ILOS guidance law has been experimentally verified for an
uncrewed semi-submersible vehicle and an autonomous un-
derwater vehicle (AUV) in [2], and for an underwater snake
robot in [3]. The work in [4] presents the adaptive ILOS
(AILOS) guidance law, which is an ILOS algorithm for which
the integral state differential equation is structurally different
than the classical ILOS algorithm in [1].

The extended-state-observer LOS (ELOS) guidance law
was proposed in [5]. By assuming that the crab angle is small,
the authors prove input-to-state stability (ISS) for the closed-
loop system with respect to the crab angle estimation error.
However, when the crab angle is constant, global asymptotic
path following is not proven. Furthermore, the desired heading
produced by the guidance law is defined implicitly, because it
depends on quantities that themselves depend on the desired
heading. It is not shown that this implicit relation involving
the desired heading always has a well-defined and unique
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solution. For implementation, an explicit relation for the
desired heading is constructed by replacing some instances
of the current value of the desired heading in the implicit
relation with the one from the previous time step.

The adaptive LOS (ALOS) guidance law was introduced
in [6], where the integral state now represents an estimate of
the crab angle directly. However, the approach can exhibit
unwinding due to the integral state being unbounded. This
problem is addressed in [7], where a locally Lipschitz pro-
jection operator is employed to ensure boundedness of the
crab angle estimate. Semi-global stabilization is proven; how-
ever, no relationship between the region of attraction and the
control gains or system parameters are given. More recently,
ISS with respect to a function of the vehicle velocities was
shown in [8]. This work does not assume that the crab angle
is small, and includes a global asymptotic path following
result when the crab angle is constant.

The maneuvering problem was introduced in [9] and gen-
eralized in [10] and [11]. The maneuvering problem is com-
prised of a geometric task, which is to ensure that the position
of the vehicle converges to a desired path; and a dynamic task,
which is to ensure that the path speed converges to a desired
speed assignment. Proportional LOS guidance was solved as
a maneuvering problem in [11] and [12], which we refer to as
maneuvering LOS (MLOS). To the authors’ best knowledge,
there are no works in the literature where LOS algorithms with
integral action are utilized to solve the maneuvering problem.

All of the non-maneuvering approaches to static and dy-
namic feedback LOS guidance assume that the path parameter
can be chosen such that the along-track error is zero for all
time. While this is a reasonable assumption for straight lines,
it is not as straightforward for curved paths. In particular, a
regular evolution of the path parameter can only be guaran-
teed for curved paths if the vehicle remains sufficiently close
to the path. In other words, these approaches result in local
guidance laws for curved paths.

The main contribution of this paper is the maneuvering
adaptive line-of-sight (MALOS) guidance scheme. The MA-
LOS algorithm generalizes the MLOS algorithm to the case of
nonzero crab angles by including integral action in the form
of crab angle parameter estimation and is the first LOS guid-
ance scheme with integral action that solves the maneuvering
problem. In particular, we modify the crab angle adaptation
from the ALOS guidance law presented in [6] and synthesize
a novel update law for the path parameter utilizing Lyapunov
techniques. Then, we prove that the MALOS guidance law
guarantees global asymptotic path following and crab angle
estimation under the assumptions that the crab angle is con-
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stant and that the path has bounded curvature. Importantly,
we do not assume that the crab angle is small. We remark that
MALOS is truly global, and not just global provided that the
path parameter can be selected such that the along-track error
vanishes at all times, as is typically assumed in the analysis
of LOS guidance laws. As in [8], the crab angle adaptation
involves a projection operator which ensures that the crab
angle estimate is bounded. However, the MALOS algorithm
is structurally different from the ILOS approach in [8] in the
sense that we estimate the crab angle directly. The crab angle
estimate is then employed to rotate the LOS vector, while an
ILOS approach such as [8] includes integral action directly
into the LOS vector, instead of estimating the crab angle.

This paper is organized as follows. Section II introduces
the kinematic model and some notions related to paths before
Section III introduces the MLOS algorithm for curved paths
defined in [11]. The main results of the paper are presented
in Section IV, where the MALOS guidance law is defined
and UGAS of the origin of the resulting closed-loop system
is proven. Section V presents a case study where the MALOS
algorithm is applied for horizontal position control of an AUV.
Finally, Section VI concludes the paper.

Notation
The Euclidean norm is denoted |x| = (xTx)1/2, and

|x|A = infy∈A|x − y| is the distance from x to a set A ⊂
Rn. The standard basis vectors in Rn are denoted e1, . . . , en.
The unit circle is defined by S := {x ∈ R2 : |x| = 1}, and
the group of planar rotations by SO(2) := {R ∈ R2×2 :
RTR = I, detR = 1}. A unit vector z ∈ S maps to a
rotation matrix through the map R : S → SO(2) defined by
R(z) :=

(
z Sz

)
, where S :=

(
0 −1
1 0

)
. Furthermore, a func-

tion V : X → R, where X ⊂ Rn, is proper if the preimage
of any compact set K ⊂ R under V is compact. A mapping
f : X → Rm is said to be Cr if it is r-times continuously
differentiable. Lastly, atan2 : R2 \ {0} → (−π, π] denotes
the four-quadrant inverse of tan.

II. MODELING

Let p ∈ R2 denote the north and east positions of a marine
vehicle. The kinematic differential equation is given by

ṗ = UR(β)z, (1)

where z ∈ S is considered a control input and represents the
orientation (or heading) of the marine vehicle. Moreover, U ∈
R denotes the speed over ground and β = (β1, β2) ∈ S is the
crab vector, respectively. These quantities can be defined in
terms of the surge and sway velocities u = (u1, u2) ∈ R2 by

U := |u|, (2)

β :=
1

|u|
u. (3)

The crab angle βc ∈ (−π, π] and the crab vector β ∈ S are
related by

βc := atan2(β2, β1), (4)

β =

(
cosβc

sinβc

)
. (5)

We remark that (1) reduces to a unicycle model if the crab
angle is zero, i.e. R(β) = I . A unicycle model is often used
to model a marine vehicle in transit, see e.g. [12], [13].

Assumption 1. The speed over ground U is constant and
satisfies U > 0. Moreover, the crab angle βc is constant and
satisfies |βc| ≤ βc, where βc <

π
4 .

Assumption 1 implies that the crab vector is contained
within the set

Z := {z ∈ S : z1 ≥ 0, |z2| ≤ sin(βc)}. (6)

Remark 1. Assumption 1 should not be confused with the
small crab angle assumption, which assumes that the crab an-
gle βc is small enough such that the approximations cosβc ≈
1 and sinβc ≈ βc are valid. In other words, the small crab
angle assumption amounts to a control design for a model
linearized around βc = 0.

By a path, we mean a continuous mapping γ : R → R2.
Note that this object is often referred to as a curve, while
a path is a curve whose domain is a compact interval. The
following definition, also utilized in [8], entails the necessary
regularity of the paths that we require to derive the results
presented in this paper.

Definition 1. Let r ≥ 1. A path γ : R → R2 is Cr regular if
• it is Cr;
• it holds that γ′(s) ̸= 0 for all s ∈ R;
• the arc length ℓ : R → R, defined by

ℓ(s) :=

∫ s

0

|γ′(η)|dη, (7)

satisfies ℓ(R) = R.

A Cr regular path γ is a Cr path with the additional property
that its arc length ℓ is a Cr diffeomorphism from R to R.
Hence, the arc length reparametrization of γ, that is s 7→
γ(ℓ−1(s)), is also a Cr regular path. If a path is C1, then ℓ
exists and the last condition in Definition 1 is equivalent to

lim
s→−∞

ℓ(s) = −∞, lim
s→∞

ℓ(s) = ∞. (8)

Sufficient conditions for γ to be Cr regular are that γ is Cr

and that there exists ϵ > 0 such that |γ′(s)| ≥ ϵ for all s ∈ R.
If a path is C1 regular, then we can always define a con-

tinuous tangent vector field with unit length, τ : R → S, by

τ(s) :=
γ′(s)

|γ′(s)|
. (9)

Moreover, if γ is C2 regular, then τ is C1, and we can define
a continuous signed curvature function κ : R → R by

κ(s) :=
⟨τ ′(s), Sτ(s)⟩

|γ′(s)|
. (10)

If γ is parametrized by arc length, that is if ℓ(s) = s or
equivalently |γ′(s)| = 1, then the tangent and signed curva-
ture have the simpler expressions τ(s) = γ′(s) and κ(s) =
⟨γ′′(s), Sγ′(s)⟩, respectively.
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III. MANEUVERING LINE-OF-SIGHT GUIDANCE

In this section we will present the required background
material before introducing the MALOS guidance law in
Section IV. Specifically, we will present the maneuvering
problem and the maneuvering LOS (MLOS) algorithm, which
is a proportional LOS guidance law first introduced in [11].
The MLOS algorithm does not include integral action and
is designed for a unicycle model by assuming that the crab
angle is zero.

We consider the control problem as a maneuvering problem
[10], which consists of a geometric and a dynamic task.

Maneuvering problem:
1) Geometric task: Force the position of the vehicle to

converge to the desired path,

lim
t→∞

|p(t)− γ(s(t))| = 0. (11)

2) Dynamic task: Force the path speed to converge to
the desired speed assignment:

lim
t→∞

|ṡ(t)− vr(s(t))| = 0. (12)

We can solve the maneuvering problem for the underactuated
system (1) by employing a line-of-sight guidance law together
with an appropriate update law for the path parameter s. To
this end, we define the along-track and cross-track errors
according to the first and second components of the vector

ε(p, s) := R(τ(s))T(p− γ(s)), (13)

respectively. The LOS guidance law will ensure that the cross-
track error ε2 tends to zero, while the update law for s will
ensure that the along-track error ε1 tends to zero. The LOS
guidance law is defined by [12]

ζ̄(p, s) := R(z∆(p, s))τ(s), (14)

where

z∆(p, s) =
1√

∆2 + ε2(p, s)2

(
∆

−ε2(p, s)

)
, (15)

denotes the line-of-sight vector and ∆ > 0 is the lookahead-
distance [14]. As in [15] and [8], we note that the angle
representing ζ̄ on the interval (−π, π] is equivalent to the
sum of the angles corresponding to the unit vectors ζ̄ and τ ,
mapped to the interval (−π, π]. Finally, the speed assignment

vr(s) :=
U

|γ′(s)|
, (16)

ensures that |γ̇(s(t))| → U if ṡ(t) → vr(s(t)).
When the effects of environmental disturbances such as

wind and ocean currents are neglected, the crab angle will
be zero and consequently R(β) = I . In this case, consider
the update law for s given by

ṡ = eT1 z∆(p, s)vr(s) +
µ

|γ′(s)|
ε1(p, s), (17)

where µ > 0. The first term represents the along-track velocity,
while the latter term is a so-called “gradient feedback” term
[11], ensuring that the along-track error ε1 tends to zero. The
following theorem can be found in [11].

Theorem 1. Let γ be C1 regular and assume that β = e1.
The maneuvering LOS (MLOS) control law given by (14) and
(17) renders the set

B := {(p, s) ∈ R3 : p = γ(s)}, (18)

UGAS for the closed-loop system

ṗ = uR(z∆(p, s))τ(s)

ṡ = eT1 z∆(p, s)vr(s) +
µ

|γ′(s)|
ε1(p, s).

(19)

IV. MANEUVERING ADAPTIVE LINE-OF-SIGHT GUIDANCE

This section presents the main results of the paper. Specif-
ically, we introduce the MALOS guidance law and prove
UGAS of the origin of the resulting closed-loop system. The
MALOS algorithm is a generalization of the MLOS algorithm
for the case of a nonzero crab angle and includes integral
action in the form of crab angle parameter estimation.

In the case of a nonzero crab angle, we propose to rotate
the LOS guidance law (14) by an estimate β̂ ∈ Z of the crab
vector, i.e.

ζ(p, s, β̂) = R(β̂)TR(z∆(p, s))τ(s). (20)

The update laws for β̂ and s are synthesized from a Lyapunov
function and are given by

˙̂
β ∈ Sβ̂Proj

(
kε2(p, s) (∆ + ε1(p, s))√

∆2 + ε2(p, s)2
, β̂2, sin(βc)

)
(21)

ṡ = eT1 z∆(p, s)ṽr(s, β̂, u) +
µ

|γ′(s)|
ε1(p, s) (22)

where k > 0 denotes the adaptation gain and ṽr : R× Z ×
R2 → R is a modified speed assignment defined by

ṽr(s, β̂, u) :=
uTβ̂

|γ′(s)|
. (23)

The first term in (22) represents the along-track velocity when
β ̸= 0 and reduces to the first term in (17) if β̂ = β, in other
words ṽr(s, β, u) = vr(s). It follows that the dynamic task
is achieved if the geometric task is achieved and β̂ → β.
The set-valued Proj operator utilized in (21) ensures that
the estimate β̂ remains within the set Z defined in (6). The
operator is defined as in [16] and [8] by

Proj(σ, φ, a) :=

{
ςσ :

ς = 1 if σ ∈ T[−a,a](φ)

ς ∈ [0, 1] if σ /∈ T[−a,a](φ)

}
(24)

where the tangent cone T[−a,a] : [−a, a] ⇒ R is defined by

T[−a,a](φ) :=


[0,∞), if φ = −a

(−∞,∞), if φ ∈ (−a, a)

(−∞, 0], if φ = a

(25)

The following theorem generalizes the result in Theorem 1
to the case of a nonzero crab angle.

Theorem 2. Let γ be C2 regular. If there exists κ > 0 such
that |κ(s)| ≤ κ for all s ∈ R, then the control law given by
(20), (21) and (22) renders the set

A :=
{
(p, s, β̂) ∈ R3 × Z : p = γ(s), β̂ = β

}
(26)
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UGAS for the closed-loop system

ṗ = UR(β)R(β̂)TR(τ(s))z∆(p, s) (27a)

ṡ = eT1 z∆(p, s)ṽr(s, β̂, u) +
µ

|γ′(s)|
ε1(p, s) (27b)

˙̂
β ∈ Sβ̂Proj

(
kε2(p, s)(∆ + ε1(p, s))√

∆2 + ε2(p, s)2
, β̂2, sin(βc)

)
. (27c)

Proof. We perform the change of variables (p, β̂) 7→ (ε, β̂),
where ε is defined by (13), and view t 7→ s(t) as a time-
varying signal. The closed-loop system in the new coordinates
is given by

ε̇ = −κ(s(t))λ(ε, β̂)Sε+ UR(β)R(β̂)Tz∆(ε)

− e1λ(ε, β̂)
(28a)

˙̂
β ∈ Sβ̂Proj

(
kε2 (∆ + ε1)√

∆2 + ε22
, β̂2, sin(βc)

)
, (28b)

and evolves in the state space R2 × Z. The function λ :
R2 × Z → R is defined by

λ(ε, β̂) :=
∆(u1β̂1 + u2β̂2)√

∆2 + ε22
+ µε1. (29)

Our aim is to render the compact set

A1 := {(ε, β̂) ∈ R2 × Z : ε = 0, β̂ = β)} (30)

UGAS for (28). To this end, we define the continuously
differentiable function V1 : R2 × Z → R by

V1(ε, β̂) :=
1

2
|ε|2 + U

k
(1− βTβ̂), (31)

which is positive definite relative to A1 and proper since
ε 7→ 1

2 |ε|
2 is radially unbounded, Z is compact and β̂ 7→

U
k (1− βTβ̂) is continuous. It can be shown that

V̇1(ε, β̂, ξ) = − U βTβ̂√
∆2 + ε22

ε22 − µ ε21

+ βTSβ̂

(
ε2(∆ + ε1)√

∆2 + ε22
− ξ

k

)
,

(32)

where ξ is a placeholder for the crab estimate update law,

ξ ∈ Proj

(
kε2 (∆ + ε1)√

∆2 + ε22
, β̂2, sin(βc)

)
. (33)

It is clear that the last term in (32) vanishes identically if
the integrator is not saturated. If the integrator is saturated,
for instance when β̂2 = sinβc and ε2(∆ + ε1) > 0, then
βTSβ̂ = − sin(βc)β1 + cos(βc)β2, which is nonpositive for
all β ∈ Z. Since the term in parentheses in (32) is nonnegative
in this case, the entire last term in (32) is nonpositive. A
similar argument holds in the other case where the integrator
saturates, that is when β̂2 = − sinβc and ε2(∆ + ε1) < 0.
Hence, defining the continuous function Y1 : R2×Z → R by

Y1(ε, β̂) := −U cos(2βc)√
∆2 + ε22

ε22 − µ ε21, (34)

it holds that V̇1(ε, β̂, ξ) ≤ Y1(ε, β̂) for all (ε, β̂) ∈ R2×Z and
all ξ selected according to (33). It follows that A1 is UGS for
(28). Now, we consider a second continuously differentiable
function V2 : R2 × Z → R defined by

V2(ε, β̂) := −εTR(β̂)Tβ. (35)

From (28), we find that

V̇2(ε, β̂, ξ, t) = −κ(s(t))λ(ε, β̂)εTSR(β̂)Tβ

− Uz∆(ε)
Te1 + λ(ε, β̂)eT1R(β̂)Tβ

+ ξεTSR(β̂)Tβ.

(36)

We now define the continuous function Y2 : R2 ×Z → R by

Y2(ε, β̂) := κ|λ(ε, β̂)||ε| − Uz∆(ε)
Te1

+ λ(ε, β̂)βTβ̂ +
k|ε||ε2||∆+ ε1|√

∆2 + ε22
.

(37)

It is then straightforward to show that V̇2(ε, β̂, ξ, t) ≤ Y2(ε, β̂)
for all (ε, β̂) ∈ R2 ×Z, all t, and all ξ selected according to
(33). Since Y −1

1 (0) = {(ε, β̂) ∈ R2 × Z : ε = 0},

Y2(0, β̂) = −U + λ(0, β̂)βTβ̂

= −U(1− (βTβ̂)2) ≤ 0,
(38)

and Y −1
1 (0) ∩ Y −1

2 (0) = A1, we have that A1 is UGAS for
(28) by [17, Theorem 4.1]. UGAS of the compact set A1

for (28) can be identified with UGAS of the noncompact set
A for (27). Indeed, UGAS of A1 implies that there exists
α ∈ KL such that every solution t 7→ ϕ1(t) to (28) satisfies
|ϕ1(t)|A1

≤ α(|ϕ1(0)|A1
, t) for all t ∈ domϕ1. Therefore,

since

|(ε, β̂)|A1 =

√
|ε|2 + |β̂ − β|2

=

√
|p− γ(s)|2 + |β̂ − β|2

= |(p, s, β̂)|A,

(39)

it follows that every solution t 7→ ϕ(t) to (27) satisfies
|ϕ(t)|A ≤ α(|ϕ(0)|A, t) for all t ∈ domϕ. Hence, A is
UGAS for (27).

In a non-maneuvering setting such as [8], an alternative
update law to (27b) is utilized which ensures that the along-
track error ε1 is equal to zero at all times. If ε1 could be
maintained at zero, our crab vector update law (27c) would
be equivalent to the one adopted in the ALOS guidance law
[7], except for the fact that we use the set-valued projection
operator instead of the locally Lipschitz projection operator
[18, Appendix E]. However, maintaining the along-track error
ε1 at zero through selection of the path parameter can in
general only be achieved locally, if we demand that t 7→ s(t)
is continuous. To illustrate this fact, imagine that a marine
vehicle is initialized at the center of a circular path. At
this particular position, every choice of s ∈ R ensures that
ε1 is zero. If the position of the vehicle now is perturbed
slightly in any direction, there is only one valid choice of
path parameter (up to the periodicity of the path). Thus, for
almost all initial choices s(t0) of the path parameter, t 7→ s(t)

7396



must be discontinuous at t = t0 when the vehicle position is
perturbed if the along-track error is to be maintained at zero.
A discontinuity in s at t0 implies that the unit tangent vector
t 7→ τ(s(t)) is discontinuous at t0 and hence that the LOS
guidance law control signal is discontinuous at t0. On the
other hand, the MALOS algorithm ensures that t 7→ s(t) is
continuously differentiable and guarantees global asymptotic
path following without requiring that the along-track error ε1
is identically equal to zero.

Remark 2. The crab vector estimate update law (21) can
be cast in terms of an equivalent crab angle estimate update
law as

˙̂
βc ∈ Proj

(
kε2(p, s) (∆ + ε1(p, s))√

∆2 + ε2(p, s)2
, β̂c, βc

)
,

β̂ = (cos β̂c, sin β̂c).

(40)

The alternative update law (40) can be implemented as a
standard saturated scalar integrator. In particular, if an ex-
plicit Euler discretization is utilized,

β̂+
c = sat

(
β̂c +

kTε2(p, s) (∆ + ε1(p, s))√
∆2 + ε2(p, s)2

)
(41)

where satx := min(βc,max(−βc, x)) and T > 0 is the
discretization step size. Hence, despite seeming more compli-
cated at first glance, utilization of the set-valued projection
operator in fact simplifies the implementation compared to
the locally Lipschitz projection operator.

V. CASE STUDY

In this section, we present a simulation case study that
demonstrates the efficacy of the MALOS guidance law for
two extreme but realistic scenarios. We utilize a 6-degree-of-
freedom dynamic model of a Kongsberg Remus 100 AUV
with model parameters acquired from [19]. The output of the
MALOS algorithm (20) serves as the setpoint to a lower-level
proportional-integral-derivative (PID) heading autopilot. The
forward speed is controlled indirectly by setting the propeller
revolution to 550 revolutions per minute, corresponding to a
forward velocity of approximately 0.9m/s in calm waters. In
all of the simulations we consider an ocean current coming
from the south with a speed of 0.2m/s. Moreover, we set
the parameters in the control law given by (20)–(22) as k =
0.015, ∆ = 10, µ = 5 and βc = 13◦.

The first scenario considers west-east straight-line path
following, and is meant to test two important aspects of the
MALOS guidance law:

• The transient performance, and in particular the degree
of overshoot, when the vehicle is initialized far away
from the path.

• The estimation of the crab angle when conditions ap-
proach a steady state.

The second scenario investigates path following for a lemnis-
cate, a C∞ regular path defined by

γ(s) :=

(
R1

√
2 sin(2s)

1+sin(s)2

R2
cos s

1+sin(s)2

)
, (42)

where R1 = 20 and R2 = 40. This scenario is meant to test
the following important aspects of the MALOS guidance law:

• The overall performance of the guidance law in a highly
dynamic path following scenario.

• The estimation of the crab angle when steady state con-
ditions never arise.

For each scenario, we compare the north-east trajectories
obtained by employing MALOS and MLOS, that is, with and
without integral action. Furthermore, we compare the crab
angle estimates from MALOS with the true crab angle, and
the desired heading from MALOS with the yaw angle from
the 6-degree-of-freedom simulation model.

Fig. 1. The reference path γ and the north-east trajectories p and p̃ obtained
by employing the MALOS (blue) and MLOS (red) control laws given by
(20)–(22) and (14) and (17), respectively.

Fig. 2. The crab angle βc and the estimated crab angle β̂c = atan2(β̂2, β̂1),
and the heading ψ and the desired heading ψd = atan2(ζ2, ζ1).

Simulation results for the first scenario are presented in
Fig. 1 and Fig. 2. Since the north position is initialized 50
meters away from the path, the integral state β̂ saturates
quickly at t ≈ 2 s, as seen in Fig. 2. This helps minimize
the resulting overshoot when we approach the path. Indeed,
Fig. 1 shows that the overshoot is only marginally larger than
the steady state error of the MLOS algorithm. Furthermore,
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we note that the crab angle estimate β̂c approaches the actual
crab angle β when we approach steady state conditions.

Fig. 3. The reference path γ and the north-east trajectories p and p̃ obtained
by employing the MALOS (blue) and MLOS (red) control laws given by
(20)–(22) and (14) and (17), respectively.

Fig. 4. The crab angle βc and the estimated crab angle β̂c = atan2(β̂2, β̂1),
and the heading ψ and the desired heading ψd = atan2(ζ2, ζ1).

Simulation results for the second scenario are presented in
Fig. 3 and Fig. 4. This is a demanding scenario in which the
crab angle βc is never constant, and hence the conditions of
Assumption 1 are never satisfied. Nevertheless, by comparing
the north-east trajectories obtained by employing the MALOS
and MLOS algorithms in Fig. 3, it is clear that the integral
action in the MALOS algorithm results in a trajectory that is
closer to the desired path.

VI. CONCLUSIONS

This paper has introduced the maneuvering adaptive line-
of-sight (MALOS) guidance law. MALOS ensures global
asymptotic curved path following and crab angle estimation
for a class of underactuated vehicles in the presence of an
unknown crab angle. The stability results are truly global
since the path parameter dynamics are unconstrained and
included in the stability proof. This is in contrast to state of
the art ILOS and ALOS guidance algorithms which abstract

the path parameter dynamics away by assuming that the path
parameter can be selected such that the along-track error is
identically zero.
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