
Spline Trajectory Tracking and Obstacle Avoidance for Mobile Agents
via Convex Optimization

Akua Dickson, Christos G. Cassandras and Roberto Tron

Abstract— We propose a motion planning technique based
on output feedback that enable agents to converge to a
specified polynomial trajectory while avoiding collisions within
a polygonal environment. To achieve this, we 1) decompose the
polygonal environment into overlapping cells, 2) express the
polynomial trajectories as the output of a reference dynamical
system with given initial conditions, 3) formulate convergence
and safety (collision avoidance) constraints as Linear Matrix
Inequalities (LMIs) on our controller using Control Lyapunov
Functions (CLFs) and Control Barrier Functions (CBFs),
and 4) synthesize a controller for each convex cell via a
semi-definite programming (SDP) problem that includes the
derived constraints. We test our method with simulations. We
find that the synthesized controller is robust to changes in initial
conditions, and maintains safety relative to the boundaries of
the polygonal environment even in the presence of significant
amounts of noise.

I. INTRODUCTION

The primary goal of path planning is to generate a trajectory
for a mobile agent between an initial state and a goal state
while ensuring collision avoidance at all times; it is a critical
cornerstone of modern autonomous systems.

Several path-planning algorithms have been proposed in the
robotics literature and have been applied to various problems
[8]. We briefly review here the most representative approaches
and their characteristics. Potential field algorithms are a
traditional method that produces relatively smooth trajectories
by attracting the agent toward the goal and repelling it from
obstacles; they are computationally cheap but myopic and
incur the risk of becoming trapped in local minima [26].
Alternative algorithms that are complete (i.e., that find a
solution if one exists) are A∗ and RRT∗ (optimized Rapidly
Exploring Random Trees); the former requires a discretization
of the environment, and does not scale well with the problem
dimension; the latter is at the basis of many state-of-the-art in
high-dimensional planning spaces, and shows good practical
performance [17], [26]. While complete, these algorithms
typically do not produce smooth trajectories. One way to
obtain smooth solutions is via post-processing with trajectory
optimization methods such as direct collocation methods [25].
These methods parameterize the trajectory using a discrete
number of control points, and then solve the planning problem
as a constrained nonlinear optimization problem. This class of
algorithms is well-suited for problems with complex system
dynamics and complex constraints, but offers only local

1Akua Dickson, Christos Cassandras and Roberto Tron are with the
Division of Systems Engineering, Boston University, 730 Commonwealth
Ave, MA 02215, United States {akuad, cgc, tron}@bu.edu
This work was supported in part by NSF under grants ECCS-1931600,
DMS-1664644, CNS-1645681, and by ARPA-E under grant DEAR0001282.

convergence guarantees, and it typically needs to be initialized
from a complete planner such as A∗ or RRT∗.

Cell decomposition is another traditional method where a
specified convex polygonal environment is decomposed into
a set of cells [19]; A∗ is used to find a feasible sequence of
cells, and other techniques are then used to produce paths
in each cell. RRT∗ algorithms may also be used to build the
decomposition of the polygonal environment as seen in [5].

In this context, and in the context of collocation methods,
it is advantageous to parameterize smooth trajectories using a
polynomial basis, such as in spline curves [12], [16], [22]. In
recent years, splines have been applied to applications with
both ground [14], [21], and aerial [15], [18], [20] vehicles.
A particular type of splines is given by Bézier curves [9],
[11], [28], which are divided into segments defined by sets
of control points. The main advantage of these curves is their
strong convex hull property: by using a Bernstein polynomial
basis, every trajectory will be contained in the convex hull of
its control points. Therefore, by choosing the control points
that lie completely within a convex collision-free set, the
entire polynomial trajectory is guaranteed to be collision-free.
This useful parametrization needs to be combined with a path
planning algorithm (as those above) for a complete solution.

In general, the majority of exiting planning methods
produce individual paths that need to be tracked using
a separate low-level controller. For the latter, a modern
solution for nonlinear input-affine systems is given by Control
Lyapunov Functions (CLFs). CLFs are the natural extension
of Lyapunov functions to systems with control inputs, but
use point-wise optimization to compute a control input u that
can asymptotically stabilize the system as desired. Similar
concepts are used in Control Barrier Functions (CBFs) [1]–[3],
which extend barrier functions to ensure safety (in the form
of forward-invariance of safe sets) of control-affine systems.

In the case of unexpected events or disturbances, changes
in the goal of the planning problem or infeasible initial
conditions, most of the methods reviewed so far would require
replanning (i.e., solving the problem almost from scratch). We
build instead upon our previous work [4], [5], which combines
cell-decomposition-based approaches with control synthesis.
Instead of directly parametrizing a single solution, this line
of work designs a series of output feedback controllers that
take as input the relative displacement of the agent with
respect to a set of landmarks, steering the agent through
the environment toward a goal location. This approach is
robust to discrepancies and reduces the need for re-planning;
however it does not offer an easy way to manipulate directly
the final path taken by the agent.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

U.S. Government work not protected by
U.S. copyright

6572

Paper contributions. In this paper we combine elements of
many of the techniques above, namely, control-based cell-
decomposition methods, polynomial splines for representing
trajectories, and CBFs and CLFs to guarantee convergence
and safety over all for all points in the environment. These
concepts are combined to generate constraints for Semi-
Definite Program (SDP) optimization problems [7], which are
solved to synthesize a sequence of controllers that the agent
can use to converge toward a path while avoiding collisions
with the boundaries of the environment.

Our proposed method has advantages with respect to all
the existing works reviewed above. With respect to potential-
based methods, we offer completeness (and thus avoid local
minima) while still, intuitively, pulling the agent toward
a desired path. With respect to A∗, RRT∗-based solutions,
direct collocation methods, and basic spline parametrizations,
we synthesize low-level, output-feedback controllers directly
instead of single reference paths that need separate controllers.
With respect to cell decomposition methods, we synthesize
an output-feedback controller for each cell in the convex
polygonal environment that consequently ensures convergence
and safety for the entire polygonal environment. With respect
to CLF-CBF methods, we ensure that the problem is always
feasible, and our approach is computationally more efficient
since we do not need to solve any optimization problems
online. Moreover, with respect to our own work, we offer
convergence to a reference trajectory that can be pre-optimized
to improve performance1.

Our work consists of two main parts. Firstly, we gener-
ate the reference polynomial trajectories by writing these
trajectories as the output of a reference dynamical system
with given initial conditions. The second part involves the
design of an output feedback controller in order to track the
reference path from an initial state toward a goal state while
avoiding collisions and remaining within the given polygonal
environment. We use off-the-shelf SDP packages to solve
a sequence of robust convex optimization problems, where
CLFs [3] and CBFs [27] constraints for the given system
over all valid states. The CLF and CBF constraints lead to,
respectively, LMIs and linear inequalities (the latter after
using duality theory) on the control coefficients [7], [24].
Note that, while we limit our discussion to linear systems,
the results can be extended to nonlinear systems that admit
linearization via local controllers.

In summary, our work provides a novel way to express
a reference trajectory from given control points as a linear
system, and provides a convex optimization approach to
synthesize tracking controllers that remaining safe relative
to the boundaries of the environment, leading to robust and
efficient implementations.

II. PRELIMINARIES

In this section, we review the key elements that set the
foundation of our approach. We define the dynamics of the

1The approach of this paper does not preclude the joint optimization of
the trajectory and controllers, although this is left as future work

agent and the decomposition of the polygonal environment,
and we discuss how the reference polynomial trajectories are
generated from given Bézier control points. We then provide
a formal problem statement.

A. Dynamical system

We model the agent as a Linear Time Invariant system:

ẋ = Ax+Bu, y = Cx, (1)

where x ∈ Rd is the state of the system, y ∈ Rdy is the
output, u ∈ Rdu is the vector of control inputs, and A,B,C
are matrices of appropriate dimensions.
Special multidimensional case. We will prove additional
results for the common case where y can be decomposed
as a collection of dy independent system, each one with
output dimension dy = 1. In this case we have that
A,B,C are block diagonal (A = blkdiag({Ak}

dy

k=1), B =

blkdiag({Bk}
dy

k=1), C = blkdiag({Ck}
dy

k=1)), and x, y can
be partitioned as x = stack({xk}

dy

k=1), y = stack({yk}
dy

k=1).
Each yk ∈ R is one-dimensional.

B. Polynomial trajectories

We assume trajectories in polynomial form p(t) : [0, 1] →
Rd where

p(t) =

np∑
i=0

ait
i =

np∑
i=0

Pibi,np(t), (2)

for t ∈ [0, 1], where P =
[
P0 P1 P2 Pn−1

]
∈

Rd×(np+1) is a set of n control points, and bi,n represent the
Bernstein basis polynomials bi,n(t) =

(
n
i

)
ti(1− t)n−i ∈ R ,

i ∈ {0, 1, 2, . . . , n}, and Acoeff =
[
a0 a1 . . . an−1

]
is a

matrix of polynomial coefficients. (More complex trajectories
can be constructed by joining multiple polynomial segments
linked by continuity constraints, see Sec. III-F.) Equation
(2) gives two equivalent representations for the reference
polynomial trajectories adopted in this paper. This equivalence
is established by the following lemma.

Lemma 1 ([13]): Given the standard polynomial basis co-
efficients Acoeff, there exist a unique invertible transformation
matrix D such that the Bernstein polynomial basis coefficient
P can be computed as Acoeff = PD. Moreover, the matrix D
is defined by the relation stack({bi,n(t)}) = D stack({ti})
for arbitrary t.

For instance, a cubic spline can be written as

p(t) = a3t
3 + a2t

2 + a1t+ a0 =

P3t
3+3P2(t

2−t3)+3P1(t−2t2+t3)+P0(1−3t+3t2−t3)
(3)

where

a3 = P3 − 3P2 + 3P1 − P0, a2 = 3P2 − 6P1 + 3P0,

a1 = 3P1 − 3P0, a0 = P0.
(4)

The polynomial coefficient representation Acoeff is vital for
the definition of the reference trajectory controller (Sec. III-
E), while the Bernstein coefficient representation P is key
for the convex hull property (Sec. II-C).

6573

C. Bounding Bernstein polynomials and their derivatives

We include two lemmata that allow us to set polytopic
bounds on polynomials and their derivatives given their
Bernstein coefficients.

Lemma 2 (Matrix representation of derivatives): Let
bn ∈ Rn+1(t) be the vector of all Bernstein polynomials
of order n. Let the matrix Hn ∈ R(n+1)×n be defined

as Hn = n

([
−I
0T

]
+

[
0T

I

])
, where 0T denotes a row of

zeros; define also Hn,q =
∏n−q+1

m=n Hm. Then, we have
ḃn(t) = Hnbn−1(t) and, for higher-order derivatives of order
q, we have b

(q)
n (t) = Hn,qbn−q(t).

Proof: From the definition of Bernstein poly-
nomial and expanding, one can verify ḃν,n(x) =
n (bν−1,n−1(x)− bν,n−1(x)). The claim follows by writing
the relation in matrix form, and applying the same multiple
times for higher-order derivatives.
We define the n-dimensional probability simplex as: ∆n =
{ρ ∈ Rn+1 : 0 ≤ ρ ≤ 1,1Tρ = 1}.

Lemma 3 (Convex hull property and derivative bounds):
The polynomial p(t) can be bounded as p(t) ∈ {Pρ : ρ ∈
∆np} = co({Pi}) for all t ∈ [0, 1] (where co(·) denotes
the convex hull operation). The derivatives of p(t) can
be bounded as p(q)(t) ∈ {PHnp,qρ : ρ ∈ ∆np−q} for all
t ∈ [0, 1].

Proof: The first part of the proof is well known, and is
a consequence of the partition of unity property of Bernstein
polynomials [23]. The second part follows from the first,
p = Pbn and Lemma 2.
Lemma 3 allows us to synthesize controllers for each polytope
while ensuring that the both the polynomial trajectories and
the controlled trajectories remain within the polytope and
avoid collisions with the walls of the environment at all times;
this result requires the representation of p with Bernstein
coefficient.

D. Polygonal Environment Decomposition

We assume a polygonal environment as our free config-
uration space for both trajectory generation and controller
synthesis. The convex polygonal environment E ∈ Rd is
decomposed into a finite number of convex cells each given
as X . These convex cells may overlap, but must collectively
cover the entire environment E , i.e.,

⋃
e Xe = E . Each cell

X is a polytope represented as Ahx ≤ bh, where x is the
state of the agent. We assume that the control points of each
segment of the overall reference trajectory are contained in a
single cell (see Lemma 3), and that each segment starts and
ends at the intersection of two cells (this will be used for
switching controllers in Section III-F).

E. Problem statement

The goal of our work is to design an output feedback
controller for each convex cell, and ensure that within each
cell the agent converges to the specified reference polynomial
trajectory while remaining safe with respect to the walls of

the polygonal configuration environment. Specifically, we
want to design an output feedback control of the form

u = K

[
y
p

]
, K =

[
Ky Kp

]
(5)

where Ky is the component of the matrix K that corresponds
to the system output y and Kp is the component of K that
corresponds to the reference trajectory p. The tracking control
objective is limt→∞

(
p(t)− x(t)

)
= 0

III. PROPOSED SOLUTION

Our proposed solution comprises five parts. We begin by
writing the reference polynomial trajectories as the output of
a reference dynamical system with given initial conditions.
We then consider both the agent system dynamics and
the reference dynamical system as joint system. We derive
stability constraints in order to ensure that the synthesized
controllers steer the agent onto the reference polynomial
trajectories. We then derive safety constraints that guarantee
collision avoidance with the boundaries of the environment.
We conclude by combining both safety and stability con-
straints in a controller synthesis problem which produces a
controller that tracks the given reference polynomial trajectory
without collisions with walls.

A. Polynomial trajectories

In this section, we show that any polynomial trajectory of
the form (2) can be written as the output of an autonomous
linear dynamical system where the system matrices are fixed
by the order of the polynomial, and the initial conditions
determine the overall shape. We formally define the reference
system as

ẋp = Apxp, yp = Cpxp, (6)

where Ap, Cp are given below. All proofs are omitted for
space reasons, but can be found in [10].

Lemma 4: Assume dy = 1. Given a polynomial p(t) of
the form (2), let

Ap =

[
0np Inp

0 0nT
p

]
, (7a)

Cp =
[
Id 0d×npd

]
. (7b)

Then yp(t) = p(t) = [xp]0(t) (the first entry of the state
vector) for all t if the initial conditions of the system satisfy

[xp(0)]i = i!ai ∀i, (8)

where i! denotes the factorial of the index.
Corollary 1: For arbitrary dy , we have

Ap = blkdiag({Ap,k}
dy

k=1), Cp = blkdiag({Cp,k}) (9)

where each Ap,k, Cp,k is given by Lemma 1.

6574

B. Combined Dynamics

Define the aggregate state z =

[
x
xp

]
∈ Rdn , as the stack of

the states x of the agent and the states xp of the polynomial
trajectory, ordered by dimension and then derivative order:

z = stack
(
x, {xpk

, ẋpk
, . . . , x(np−1)

pk
}np

k=1

)
. (10)

Combining (1), (5), and (6), the closed-loop dynamics can
be written as:

ż = Az + Buz, y = Cz (11)

where K =
[
Ky Kp

]
, A = blkdiag(A,Ap), B =

stack(B, 0npd×d), and C = blkdiag(C, Inp
), and uz =[

Ky Kp

] [C 0
0 I

]
z.

C. Convergence Conditions via Linear Matrix Inequalities

Considering the system dynamics of the form (11), we
define a Lyapunov function as follows:

V (z) = V

([
x
xp

])
= ∥x− Cpxp∥2. (12)

Using the combined state z, the function V can then be
rewritten in the form V = zTMz, where M is given by

M =

[
I −Cp

−CT
p CT

p Cp

]
. (13)

The derivative of the Lyapunov function V is

V̇ = ∇V T ż = zT
(
(M +MT)TA+ BKC

)
z. (14)

Definition 1: A function V has relative degree one with
respect to the dynamics (1) if LBV

.
= ∇V TB ̸= 0 (where

LB denotes the vector of Lie derivatives with respect to the
fields given by the columns of B).

Assumption 1: The Lyapunov function V has relative
degree equal to one, i.e., MB ̸= 0.
Intuitively, Assumption 1 implies that V̇ explicitly depends
on the control u (and hence on the choice of K).

Proposition 1: A sufficient and necessary condition that
ensures V̇ ≤ 0 for all z is that there exists µ ≥ 0 such that

S ⪯ −µI, (15)

S = sym
(
(M +MT)T (A+ BKC)

)
. (16)

In practice, µ is a bound on the convergence rate of the
Lyapunov function V toward zero. For systems that can
decompose along different dimensions (i.e., multi-dimensional
systems), the lemma below shows that separating the problem
across each dimension (but with a common convergence rate),
still ensures convergence constraints for the whole system.

Lemma 5: Let Kyi, Kpi be matrices that satisfy the
constraints (15) considering only the i-th system (i.e., using
only Api, Cpi, Ai, Bi, Ci) with a common µ. Let K be the
matrix formed as: K = [blkdiag

(
{Kyi}

)
,blkdiag

(
{Kpi)}

)
]

Then, K satisfies the constraints for the joint system (i.e.,
using Ap, Cp, A,B,C).
See [10] for an example.

D. Safety Constraints by Control Barrier Functions

Let Ah,i ∈ R1×dn , bh,i ∈ R be the i-th row of Ah, bh
which define the polytope of a convex cell under consideration
(see Section II-D). We define the following candidate Control
Barrier Function:

hi(x) = Ah,ix+ bh,i (17)

where i ∈ {1, · · · , sh} such that sh is the number of walls
of the convex cell.

1) Safety Constraints on K: Considering the agent’s
dynamics (1) and a continuously differentiable function h(x)
defining a forward invariant safe set X , the function h(x) is
a Control Barrier Function (CBF) if there exists α ∈ R and
control input u such that:

LAxh(x)+LBh(x)u(x, xp)+αTh(x) ≥ 0,∀x ∈ X , xp ∈ P,
(18)

P is the polytope bounding the Bernstein polynomial and its
derivatives derived in II-C. Rewriting the CBF constraint to
change the inequality direction,2 we have:

−(LAxh(x) + LBh(x)u(x, xp) + αTh(x)) ≤ 0,

∀x ∈ X , xp ∈ P
(19)

Note that the constraint (19) must be satisfied for all x in the
cell X . In other words, the control input should satisfy the
CBF and CLF constraints at every single point in the cell.
For the implementation, we rewrite the constraint for all x
as a maximization problem:[

max
x

− (LAxhi(x) + LBhi(x)KCx+ αThi(x))

s.t. x ∈ X , xp ∈ P.

]
≤ 0

(20)
In practice, we aim to find a controller that satisfies this CBF
constraint with some margin δ (which can be interpreted as
a distance from walls). Using a CBF hi(x) of the form in
(17), we can write:[
max
x,xp,δ

−Ah,i[(A+BKyC + α)x+BKpxp]

s.t. Ahx ≤ bh, xp ∈ P

]
≤ δ + αbh,i

(21)
where the matrix Az and the vector bz describe each polygonal
convex cell as stated in Section II-D. The above constraint
is convex in K (because the point-wise maximum over x
ensures that the left-hand side of the inequality is a convex
function [7]. However, this form of the constraint cannot be
implemented in an off-the-shelf solver because the controller
K (which we would like to design) appears bi-linearly
with the variable x. Instead, we can take the dual of the
maximization problem, thereby obtaining:

min
{λb,i},{γb,i},δ

λT
b,ibz + γT

b,iP

s.t. AT
z λb,i = [−Ah,iW]T

γb,i = [−Ah,i(BKp)]
T

λb,i ≥ 0,

 ≤ δ + αbh,i (22)

2This change becomes advantageous for the formulation of the overall
control synthesis problem in Section III-C.

6575

where W = A+BKyC + α and for every i = {1, · · · , sh}.
Note that K appears linearly in the constraint and sh denotes
the number of faces of X .

Remark 1: By strong duality, once a linear programming
problem has an optimal solution, its dual is also guaranteed
to have an optimal solution such that both their respective
optimal costs are equal [6]. Therefore the constraint problems
(21) and (22) are equivalent.

E. Control Synthesis

In this section, we synthesize the controller by solving a
convex optimization problem subject to both stability and
safety constraints that were formulated in Sections III-C and
III-D. Specifically, we combine the safety (22) and stability
(15) constraints in a single optimization problem (note that
the min operator can be dropped from (22) without changing
the meaning of the constraint).

min
µ,S,K,δ,{λb,i},{γb,i}

µ

s.t. : µ ≤ 0, S ⪯ µI

S = sym
(
(M +MT)T (A+ BKC)

)
λT
b,ibz + γT

b,iP ≤ δ + αbh,i

AT
z λb,i = [−Ah,i(A+BKyC + α)]T

γb,i = [−Ah,i(BKp)]
T

λb,i ≥ 0, δ ≥ 0, i = {1, · · · , sh}
(23)

where K =
[
Ky Kp

]
. The objective function and all the

constraints in this optimization problem are linear, and X is
a convex set.

Remark 2: Equation (23) is an SDP problem that can be
handled with off-the-shelf solvers

F. Trajectory segments and switching controllers

As mentioned in the introduction, the overall reference
trajectory is split in polynomial segments, and the environment
is partitioned in overlapping convex cells, where each cell
contains a segment of the trajectory. Using the method
illustrated above, we can use (23) to synthesize a controller for
each cell. There are two problems that remain to be addressed.
First, the state of the reference system xp needs to be
initialized. Lemma 4 suggests an initialization corresponding
to the initial point of the segment; however, this might make
the agent travel back during the transitory convergence phase;
instead we found that it is possible to initialize the system
with the closest point on the trajectory (and the corresponding
derivatives). We will prove this fact in a future version of
the paper. Second, At the last control point for each segment,
which we refer to as the switching point, one segment ends
while another begins, and it is therefore necessary to switch
between the output feedback controllers as well; while this
might, in general, create discontinuities in the control signal,
we believe that the convergence conditions of Section III-
C and the continuity between segments of the reference
trajectory imply smooth tracking, at least in a neighborhood
of the reference; again, this will be investigated in future
work.

IV. SIMULATIONS

A. Simulation Setup and Results

In order to assess the effectiveness of the proposed path
planning algorithm, we run a set of MATLAB simulations.
In our simulations, we generate a two-dimensional polygonal
environment composed of ten different convex overlapping
cells, as shown by the polygonal cells of different colors
in Figure 1. All the reference polynomial trajectories have
four control points (i.e., they are are cubic splines). The
polygonal environment is 8-shaped with one self-intersection.
There is one polynomial segment within each cell that is
generated using the given control points and the agents have
two-dimensional single-integrator dynamics (A = B = C =
I ∈ R2×2). Given the control points corresponding to each
reference trajectory, we synthesize a controller for each cell
by solving the optimization problem we formulated in (23).
We present the result of multiple, randomly-generated initial
conditions (marked as ∗). As mentioned in Section III-F, the
state xp is initialized to the closest point on the reference
trajectory. We observe from Figure 1 that the multiple random
initializations of the agent within each convex cell all converge
(relatively quickly) to the reference polynomial trajectory
while avoiding the walls of the cell. We also observe that the
switch between the various controllers takes place within the
overlapping region as intended. Therefore, each simulated
trajectory successfully completes its maneuver within the
polygonal environment.

-20 0 20 40
-20

-10

0

10

Fig. 1: Simulation results without noise. This figure presents
multiple initializations of an agent that tracks the predefined
polynomial trajectory. Convex cells may overlap, as in the
middle portion of the environment. The reference polynomial
trajectory is shown as a gray colored line. The control
points defining each segment have the same colors as the
corresponding cell (except for the final point, which has
the color of the following cell). The agent trajectory colors
correspond to the colored walls of the region in which they
are initialized.

6576

-20 0 20 40
-20

-10

0

10

Fig. 2: Simulation results with noise. We present results
for one random initialization of an agent in the presence of
Gaussian noise.

B. Simulation Setup With Noise

In this section, we test the robustness of our path planning
algorithm to noise. We introduce Gaussian noise into the
dynamics of our agent as seen in Fig. 2. In particular, at every
time step of the simulation, we add a random value to the
control input with variance 0.25. The controllers implemented
in this simulation are exactly the same as before. We observe
that our controllers are robust to the presence of Gaussian
noise, and the agent converges without collisions with the
walls of the environment.

V. CONCLUSION

We proposed a novel technique for synthesizing linear
output feedback controllers that successfully steer agents
onto predefined polynomial trajectories while ensuring safety
relative to the walls of the polygonal environment. The
resulting controllers are robust to changes in agent initial
conditions and noise. In the future, we will consider the joint
optimization problem of finding optimal reference trajectories
(control points) and synthesizing controllers to track said
reference trajectories.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada. Control barrier functions: Theory and applications.
In 2019 18th European Control Conference (ECC), pages 3420–3431,
2019.

[2] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function
based quadratic programs with application to adaptive cruise control.
In 53rd IEEE Conference on Decision and Control, pages 6271–6278,
2014.

[3] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control
barrier function based quadratic programs for safety critical systems.
62(8):3861–3876, 2017.

[4] M. Bahreinian, E. Aasi, and R. Tron. Robust path planning and control
for polygonal environments via linear programming. pages 5035–5042,
05 2021.

[5] M. Bahreinian, M. Mitjans, and R. Tron. Robust sample-based output-
feedback path planning. pages 5780–5787, 09 2021.

[6] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. 01
1998.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system and control theory. SIAM, 1994.

[8] S. Campbell, N. O’Mahony, A. Carvalho, L. Krpalkova, D. Riordan,
and J. Walsh. Path planning techniques for mobile robots a review.
In 2020 6th International Conference on Mechatronics and Robotics
Engineering (ICMRE), pages 12–16, 2020.

[9] J.-w. Choi, R. Curry, and G. Elkaim. Path planning based on bézier
curve for autonomous ground vehicles. In Advances in Electrical
and Electronics Engineering - IAENG Special Edition of the World
Congress on Engineering and Computer Science 2008, pages 158–166,
2008.

[10] A. Dickson, C. G. Cassandras, and R. Tron. Spline Trajectory Tracking
and Obstacle Avoidance for Mobile Agents via Convex Optimization.
arXiv e-prints, page arXiv:2403.16900, Mar. 2024.

[11] Z. Duraklı and V. Nabiyev. A new approach based on bezier curves
to solve path planning problems for mobile robots. Journal of
Computational Science, 58:101540, 2022.

[12] M. Egerstedt and C. Martin. Control theoretic splines. optimal control,
statistics, and path planning. Control Theoretic Splines: Optimal
Control, Statistics, and Path Planning, 12 2009.

[13] N. Ezhov, F. Neitzel, and S. Petrovic. Spline approximation, part 2:
From polynomials in the monomial basis to b-splines—a derivation.
Mathematics, 9(18), 2021.

[14] C. Götte, M. Keller, T. Nattermann, C. Haß, K.-H. Glander, and
T. Bertram. Spline-based motion planning for automated driving. IFAC-
PapersOnLine, 50(1):9114–9119, 2017. 20th IFAC World Congress.

[15] K. Judd and T. McLain. Spline based path planning for unmanned air
vehicles. 08 2001.

[16] H. Kano and H. Fujioka. Spline trajectory planning for path with
piecewise linear boundaries. pages 439–445, 12 2018.

[17] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime
motion planning using the RRT*. pages 1478–1483, 2011.

[18] S. Lai, M. Lan, and B. Chen. Optimal constrained trajectory generation
for quadrotors through smoothing splines. pages 4743–4750, 10 2018.

[19] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar. Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments. IEEE Robotics
and Automation Letters, 2(3):1688–1695, 2017.

[20] D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on
Robotics and Automation, pages 2520–2525, 2011.

[21] T. Mercy, R. Van Parys, and G. Pipeleers. Spline-based motion planning
for autonomous guided vehicles in a dynamic environment. IEEE
Transactions on Control Systems Technology, 26(6):2182–2189, 2018.

[22] N. T. Nguyen, L. Schilling, M. S. Angern, H. Hamann, F. Ernst, and
G. Schildbach. B-spline path planner for safe navigation of mobile
robots. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 339–345, 2021.

[23] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, Berlin,
Heidelberg, 1995.

[24] F. Rahmani, R. Rahmani, S. Mobayen, and A. Fekih. Lmi-based state
feedback design for quadcopter optimal path control and tracking. In
2021 American Control Conference (ACC), pages 4655–4659, 2021.

[25] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel. Motion planning with sequential
convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9), 2014.

[26] P. Victerpaul, D. Saravanan, S. Janakiraman, and J. Pradeep. Path
planning of autonomous mobile robots: A survey and comparison.
Journal of Advanced Research in Dynamical and Control Systems,
9(12):1535–1565, 2017.

[27] W. Xiao, C. G. Cassandras, and C. Belta. Control Barrier Functions,
pages 7–18. Springer International Publishing, Cham, 2023.

[28] L. Zheng, P. Zeng, W. Yang, Y. Li, and Z. Zhan. Bézier curve-based
trajectory planning for autonomous vehicles with collision avoidance.
IET Intelligent Transport Systems, 14(13):1882–1891, 2020.

6577

