
Preconditioning Matrix Synthesis for a Projected Gradient Method for
Solving Constrained Linear-Quadratic Optimal Control Problems

Y.J.J. Heuts and M.C.F. Donkers

Abstract— This paper presents a method for synthesizing
preconditioning matrices for a heavy-ball accelerated projected
primal-dual method. The main focus lies on linear quadratic op-
timal control problems, as they have a specific structure that can
be exploited for fast computational times. This gradient method
is rewritten into a Lur’e-type system, such that convergence of
the algorithm can be enforced through finding an appropriate
Lyapunov function for the Lur’e system. It has been shown that
for a small problem, it is possible to synthesize preconditioning
matrices and that the method is 104 times faster than solving
the projection using a dedicated solver.

I. INTRODUCTION

Optimal control problem arise in many fields, where a
priori knowledge of the system can be used to predict
future states, which can be used to choose the control input
such that the system stays within predefined constraints. In
order to solve these optimal control problems, online fast
optimization algorithms are required, as the effectivity of
the solution is increased when a new solution is generated
at each sample. It is common to use commercial solvers,
such as cplex, [1], or mosek [2], but drawbacks are that
these methods cannot be compiled onto an embedded system,
like open source solvers, such as osqp [3]. On the other
hand, there is rich theory available which enables anyone
to code and compile a custom algorithm. One popular
approach is to use gradient methods, which are widely used
to solve convex optimization problems. Most often, optimal
control problems have a quadratic cost function and linear
constraints, hence the name linear quadratic (LQ) optimal
control. Non-linearities or integer decisions problems can
also be solved indirectly by gradient methods by employing
sequential quadratic programming, e.g., [4] in the former
case, while branch-and-bound methods, e.g., [5] can be
applied in the latter case. In both cases, LQ sub-problems
have to be solved repeatedly. For many of these problems,
it is beneficial to have fast computational times, as they
are intended to run in a limited time window. This calls
for methods that have a low computational effort and scale
well when the number of decision variables increases, i.e.,
due to larger or more complex models, or longer prediction
horizons.

Gradient methods for optimization can often be written as
a static linear time-invariant system with a non-linear input

This work has received financial support from the Horizon 2020 pro-
gramme of the European Union under the grants ‘Efficient and environ-
mental friendly LONG distance poweRtrain for heavy dUty trucks aNd
coaches’ (LONGRUN-874972). The authors are with the Dept. of Elec-
trical Eng. of Eindhoven University of Technology, Netherlands. E-mail:
{y.j.j.heuts, m.c.f.donkers}@tue.nl

function, often referred to as Lur’e-type systems [6]. This
implicit connection to system and control theory makes it
very attractive to analyse and design algorithms as if they
were dynamical systems, e.g., using robust control theory.
In recent years, this view on first-order methods has been
explored more. Most recent publications focus on analysing
achievable worst-case convergence rates, i.e., [7], [8]. On
the other hand, algorithms can be synthesized using robust
control techniques to find optimal hyperparameters, such
as step-sizes for acceleration schemes, such as heavy-ball,
Nesterov’s acceleration or the triple momentum method.
This improves stability or performance characteristics of
optimization algorithms, i.e., [9] which in turn improve
convergence rates. In general, these methods rely on the fact
that the problem is properly conditioned. Preconditioning of
the problem can significantly improve stability and perform-
ance characteristics of optimization algorithms, as seen in
[10], [11]. Many of these previously mentioned articles use
heuristics or rules to choose these preconditioning matrices,
while the synthesizing of optimal preconditioning matrices
has not yet been explored to our knowledge. Therefore,
tuning rules have to be devised on a per-method basis, which
leads to unnecessary amounts of tuning.

In this paper, we propose an automated method of synthes-
izing a structured preconditioning matrix for the projected
primal-dual method of [12] by means of solving a matrix
inequality (MI). Unlike the work in [12], which focuses on
LQ problems with diagonal weighting matrices in the cost
function, this paper aims at applicability to non-diagonal
weighting matrices in the cost function. The preconditioning
matrices will be synthesized such that the projection operator
simplifies into a clipping action, resulting in a computa-
tionally efficient algorithm. A matrix inequality will be
formulated by writing the projected primal dual method as a
Lur’e-type dynamic system and by making use of Lyapunov
functions to enforce stability. This is possible due to the
projections being a sector bounded condition. This matrix
inequality will be solved by using a linearization scheme,
such that each sub-problem becomes a linear matrix inequal-
ity (LMI) for which efficient solvers exist. Finally, the paper
presents a simulation example that shows the computational
efforts of computing the preconditioning matrices, as well
as the computational advantages of synthesizing problem-
specific preconditioning matrices to solving the projection
using a dedicated solver using the previously found precon-
ditioning matrix in [12].

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7247

II. PROBLEM FORMULATION

In this section, we will introduce the finite-horizon
discrete-time linear-quadratic (LQ) optimal control problem
(OCP) with state and input constraints that is considered
in this paper. We will then rewrite this OCP in a highly
structured static optimization problem and present the pre-
conditioned projected primal-dual method proposed in [12]
to solve this optimization problem. We will also indicate why
the preconditioning matrix proposed in [12] does not work
in case the weighting matrices in the OCP are non-diagonal,
thereby motivating the need for the method for synthesizing
the preconditioning matrices that we will propose in this
paper.

A. Constrained Linear Quadratic Optimal Control Problem

Let us consider a discrete-time horizon K={0,. . . ,K−1},
where K ∈ N is the horizon length and a discrete-time
dynamical system with states xk ∈ Rnx and inputs uk ∈
Rnu , k ∈ K. For this system, we define the discrete-time
LQ OCP as follows:

min
xk,uk

∑
k∈K

1

2

[
xk − rk

uk

]⊤ [
Q S
S⊤ R

] [
xk − rk

uk

]
+ 1

2 (xK − rK)⊤P (xK − rK) (1a)
s.t. xk+1 = Axk +Buk (1b)

x ⩽ xk ⩽ x̄ (1c)
u ⩽ uk ⩽ ū, (1d)

for a given initial condition x0 = xinit and given reference
trajectory rk for all k ∈ K, and where A and B describe the
dynamics of a controllable system. The weighing matrix P

is positive definite, as well as
[

Q S

S⊤ R

]
≻ 0. Finally, x and

x are the state upper and lower bounds, respectively, and u
and u are the input upper and lower bounds, respectively.
We assume that OCP (1) is feasible for the given state and
input constraints.

B. A Sparse QP Formulation

As argued in [13] and shown in [12], a sparse formulation
of the OCP has computational benefits in terms of compu-
tational complexity and memory requirements. We therefore
write OCP (1) as a sparse static optimization problem, in
which considerable amounts of zero entries are ensured in
the matrices. This static optimization problem is given by

min
ω

1
2ω

⊤Gω + F⊤ω + ıΩ(ω) (2a)

s.t. Aω − b = 0, (2b)

where ω = [x⊤ u⊤]⊤, in which x = [x⊤
0 . . . x⊤

K]⊤, and
u = [u⊤

0 . . . u⊤
K−1]

⊤, ıΩ(ω) denotes the indicator function
satisfying ıΩ(ω) = 0 if ω ∈ Ω and ıΩ(ω) = ∞ if ω /∈ Ω,
where Ω is the box-constrained feasible set

Ω := {ω ∈ R(K+1)nx+Knu | ω ⩽ ω ⩽ ω}, (3)

in which ω and ω are defined similar to ω. The matrices in
the cost function (1a) are fitted into sparse matrices

G=

 I ⊗Q 0 I ⊗ S
0 P 0

I ⊗ S⊤ 0 I ⊗R

, (4a)

F=[9r⊤0 Q,. . ., 9r⊤K91Q,9r⊤KP, 9r⊤0 S,. . ., 9r
⊤
K91S]

⊤, (4b)

where ⊗ denotes the Kronecker product and (1b) is captured
in the equality constraint (2b), where A = [Γx Γu], b =
[x⊤

init 0 . . . 0]⊤ and

Γx =


I 0 . . . 0

A −I
. . .

...

0
. 0

0 0 A −I

 , Γu =


0 . . . 0

B 0
...

0
. . . 0

0 . . . B

 . (5)

The sparsity present in the above matrices allows for the
development of computationally efficient algorithms to solve
(2) when the underlying problem is OCP (1).

C. A Preconditioned Projected Primal-Dual Method

The optimal solution of the static optimization problem is
obtained using the following non-smooth Lagrangian func-
tion

L(ω, λ) = 1
2ω

⊤Gω + F⊤ω + λ⊤(Aω − b) + ıΩ(ω), (6)

which allows the optimal solution to be characterized using
the KKT conditions, which are given by

0 ∈
[
G A⊤

−A 0

] [
ω
λ

]
+

[
F+NΩ(ω)

b

]
. (7)

In this expression, NΩ is the normal cone operator satisfying
NΩ(ω) = {v ∈ Rn | supz∈Ω v⊤(z − ω) ⩽ 0} if ω ∈ Ω and
NΩ(ω) = ∅ if ω /∈ Ω. To find a solution to (7), we will use
the method from [12], which is given by{

ωi+1= projΦω

Ω {ωi − Φω(Gωi + F+A⊤λi)}
λi+1 = λi +Φλ(Aωi+1 − b) + β(λi − λi−1),

(8)

for some positive-definite preconditioning matrix Φω and
some non-singular preconditioning matrix Φλ. In this expres-
sion, projΦω

Ω (v) = argminx∈Ω(x−v)⊤Φ−1
ω (x−v) denotes a

(weighted) Euclidean projection. In case the preconditioning
matrix Φω is diagonal, the Euclidean projection simplifies
and (8) becomes{

ωi+1=max{ω,min{ω, ωi−Φω(Gωi+F+A⊤λi)}}
λi+1 =λi +Φλ(Aωi+1 − b) + β(λi − λi−1),

(9)

For the case that G is diagonal, it has been shown in [12]
that this algorithm has competitive computational perform-
ance by choosing Φω = G−1 and Φλ = (A⊤G−1A)−1. For
non-diagonal matrices Φω , (9) is no longer equivalent to (8),
while the latter cannot be solved efficiently. The objective
of this paper is therefore to synthesize a diagonal matrix
Φω and a matrix Φλ for the case that G is non-diagonal
so that (9) can be used instead of (8), while still warranting
that (9) converges and that the computational performance is
competitive.

7248

v

ω

ω

zzmin
zmax

v = σz

Fig. 1. The sector-bounded non-linearity (10c) indicated with a blue line.
For σ > 0 the output v can be in the blue area.

III. SYNTHESIS

In this section, we will develop a method to synthesize
a positive-definite diagonal precondition matrix Φω and a
highly-structured preconditioning matrix Φλ. We will first
formulate the convergence analysis problem for β = 0 using
linear matrix inequalities, and we then propose an iterative
method to solve the synthesis problem. We will propose a
way to allow for β ̸= 0 in the next section.

The analysis result that we will develop is based in the
existence of a Lyapunov function. To do so, we will first
rewrite (9) as a Lur’e system, i.e., an interconnection of
a linear-time invariant dynamic system with a static non-
linearity, leading to

χi+1 = Aχi + Bvi + E (10a)

zi = Cχi + F (10b)

vi = max{ω,min{ω, zi}}, (10c)

with χ = [ω⊤ λ⊤]⊤ and

A =

[
0 0
0 I

]
, B =

[
I

ΦλA

]
, E =

[
0

−Φλb

]
(11a)

C =
[
(I − ΦωG) −ΦωA

⊤] , F = −ΦωF. (11b)

It can be observed in Fig. 1 that the nonlinearity in (10c)
satisfies a so-called sector-condition, as was also observed in
[12]. In this paper, we modify the analysis procedure of the
aforementioned paper to a local analysis. In particular, we
assume that the solutions of (9), and equivalently (10) always
remain bounded, i.e., they remain ω/σ ⩽ ω = z < ω/σ,
where σ ∈ (0, 1]. Under this assumption, we have that (10c)
satisfies the following sector condition

(vℓ − σzℓ)(vℓ − zℓ) ⩽ 0, (12)

where ℓ denotes the ℓ-th element of v and z. This allows
for exponential stability without the need for a LaSalle’s
argument, yet the results are only valid locally.

A. Convergence Analysis

To show that (9) converges to the optimal solution if (1) is
feasible, we will study exponential stability of an equilibrium
point χ⋆ of (10). By exponential stability, we mean that its
solutions ∥χi − χ⋆∥ ⩽ ce−τi

∥∥χ0 − χ⋆
∥∥ for all i ∈ N and

for some c > 0 and for some convergence rate τ ∈ [0, 1).
The theorem below will state the conditions for which this
can be guaranteed and uses slack variables as introduced in
[14] and the S-procedure as used in [15].

Theorem 1 Assume (1) is feasible, that a positive-definite
diagonal matrix Φω and nonsingular matrix Φλ are given
and that β = 0. If there exist a positive definite matrix X ,
a diagonal matrix S, a matrix Γ, and scalars σ ∈ (0, 1],
τ ∈ [0, 1), satisfying τX ⋆ ⋆

σ−1
2 SC S ⋆

Γ(A+ σBC) ΓB Γ + Γ⊤ −X

⪰0, (13)

then (10) with (11) has an exponentially stable equilibrium
point ξ⋆ with convergence rate less than or equal to τ ,
as long as solutions ω/σ ⩽ zi ⩽ ω/σ for all i ⩾ 0.
Consequently, (9) with β = 0 finds the solution to (1).

Proof: Since, we assume that problem (1) is feasible,
there exists a fixed point (ω⋆, λ⋆, z⋆, v⋆) of (9) satisfying the
KKT conditions (7). This fixed point allows rewriting (10)
as

χi+1 − χ⋆ = A(χi − χ⋆) + B(vi − v⋆) (14a)

zi − z⋆ = C(χi − χ⋆) (14b)

vi − v⋆ = max{ω,min{ω, zi}} − z⋆, (14c)

with v⋆ = ω⋆ = z⋆ as the problem is feasible, i.e., ω ⩽ v⋆ ⩽
ω. To prove exponential stability of this system, we define a
candidate Lyapunov function

V (χi − χ⋆) = (χi − χ⋆)⊤X(χi − χ⋆) (15)

for some matrix X ⪰ 0 that satisfies

V (χi+1 − χ⋆)− τV (χi − χ⋆)

⩽(ωi − ω⋆ − σ(zi − z⋆))S(ωi − ω⋆ − zi + z⋆)⩽ 0 (16)

for some positive-definite diagonal matrix S , as sector con-
dition (12) holds element-wise, and some τ ∈ [0, 1).

The proof of this theorem proceeds by showing that (16)
is implied by satisfaction of (13). First, let us substitute (14)
and (15) into (16), leading to[
χ−χ⋆

v−v⋆
]⊤[A⊤XA−τX−σC⊤SC ⋆

B⊤XA+ 1+σ
2 SC B⊤XB−S

][
χ−χ⋆

v−v⋆
]
⩽0.

(17)
This is, after applying a Schur complement, equivalent to
requiring thatτX + σC⊤SC − 1+σ

2 C
⊤S A⊤

− 1+σ
2 SC S B⊤
A B X−1

⪰0 (18)

7249


τX ⋆ ⋆

σ−1
2

[
(I − ΦωG) −ΦωA

⊤] Φω ⋆

Γ̂

[
σ(I − ΦωG) −σΦωA

⊤

σA(I − ΦωG) (1−σ)AΦωA
⊤

]
Γ̂

[
Φω

AΦω

]
Γ̂

[
I 0
0 AΦωA

⊤

]
+

[
I 0
0 AΦωA

⊤

]
Γ̂⊤ −X

⪰0, (23)

Now by permuting the second and the third rows and
columns and applying a Schur complement again, we equi-
valently have that[

τX + (σ − (1+σ)2

4)C⊤SC ⋆
A+ 1+σ

2 BC X−1 − BS−1B⊤

]
⪰0 (19)

and because σ − (1+σ)2

4 = 4σ−1−2σ−σ2

4 = 2σ−1−σ2

4 =

− (1−σ)2

4 , and likewise 1+σ
2 = σ + 1−σ

2 , we can write[
τX − (1−σ)2

4 C⊤SC ⋆
A+ (σ + 1−σ

2)BC X−1 − BS−1B⊤

]
⪰0. (20)

Finally, we apply another Schur complement, permute the
second and the third row and columns, and pre- and post-
multiply the last rows and columns, respectively, with the
slack-variable Γ. This leads to τX ⋆ ⋆

σ−1
2 SC S ⋆

Γ(A+ σBC) ΓB ΓX−1Γ⊤

⪰0 (21)

which is implied by (13), because ΓX−1Γ⊤ ⪰ Γ+Γ⊤−X .
Hence, satisfaction of (13) warrants the existence of an ex-
ponentially decreasing Lyapunov function exists for system
(10). To conclude the proof, observe that (10) is an equivalent
representation of (13) for β = 0.

The above result generalizes the analysis result of [12],
where the case in which G is diagonal was studied and the
preconditioning matrices were selected to be Φω = G−1,
Φλ = α(AG−1A⊤)−1, for α ∈ (0, 2].

B. Synthesis Procedure

Using (13) directly for the design of preconditioning
matrices Φω and Φλ is not possible due to the nonlinear
appearance of these matrices in the matrix inequality (13).
Furthermore, not all preconditioning matrices would lead to
a computationally efficient algorithm. We therefore impose
the following addition structure, even though this might
introduce conservatism. In particular, we choose

• Φω as a diagonal matrix as this allows us to use (9),
instead of (8)

• S = Φ−1
ω , which has been shown to be a good choice in

[12], and reduces the number of nonlinear terms in (13)
• Φλ = (AΦωA

⊤)−1, as this matrix is an inverse of
a block-banded matrix, which can be solved in an
extremely efficient manner, as was shown in [12].

Besides making these assumptions, we also substitute the
matrices in (11), in which

A+ σBC =
[

σ(I−ΦωG) −σΦωA
⊤

σΦλA(I−ΦωG) I−σΦλAΦωA
⊤

]
, (22)

and define Γ̂ = Γ
[
I 0
0 Φ−1

λ

]
, leading to (23), as shown on top

of this page.
It can be observed that (23) is still not a linear matrix

inequality, due to the product of Φω and Γ̂. We therefore
propose to use an iterative scheme, similar to the one
proposed in [16], [17], and is based on the observation that
(23) becomes a linear matrix inequality when Γ̂ is given. We
therefore propose to iteratively minimize τ while taking Γ
equal to X of the previous iterate. The algorithm is initialized
by minimizing τ subject to (23) for Φω equal to the inverse
of the diagonal elements of G, thereby approximating the
results of [16]. The complete algorithm is given below.

Algorithm 1 Iterative algorithm for synthesizing precondi-
tioning matrices

1: Let σ ∈ (0, 1] be given and let Φω = diag(diag(G))−1

2: min τ subject to (23) for the given Φω .
3: while τ > 1 do
4: Γ̂← X

[
I 0
0 AΦωA⊤

]
5: min τ subject to (23) for given Γ̂.
6: end while
7: return Φω and Φλ = (AΦωA

⊤)−1

IV. IMPLEMENTATION DETAILS

To complete the projected primal-dual method (9) with
preconditioning matrices obtained using the procedure pro-
posed in the previous section, we introduce the adaptive
restart of the parameter β, the termination criterion used for
the algorithm and an overview on the implementation of the
algorithm.

A. Adaptive Restart
In order to remove the complexity of tuning both α and

β, we choose β such that it sweeps from 0 to 1. One such
variable step-size is given in [18], where βi is chosen to be

βi =
i

i+ b
, (24)

for i ∈ N and b > 0 is used to tune the speed at which β
reaches the upper limit.

A disadvantage of accelerating gradient schemes is that
it can lead to side effects such as high momentum. This
causes the algorithm to miss crucial points, as seen in [19].
In order to avoid this phenomenon, the gradient scheme from
the same paper is implemented, such that βi is reset to zero
when the Lagrangian of the preconditioned system starts to
decrease (as we aim at maximizing this Lagrangian over λ),
which equals to

∇λL(λ
i−1)⊤Φλ(λ

i − λi−1) ⩽ 0, (25)

7250

where L is the Lagrangian given in (6). For the actual
implementation, the scheme is rewritten by introducing λ̂i =
λi + β(λi − λi−1), as was proposed in [19] and using the
update rule for λ as in (9), allowing us to rewrite (25) as

(λi − λ̂i−1)⊤(λi − λi−1) ⩽ 0. (26)

The advantage of this notation is that the vectors in this nota-
tion are available already, whereas calculation the value of
the gradient of the Lagrangian would add extra unnecessary
computational complexity.

B. Termination Criteria

The problem is solved as soon as ω⋆ and λ⋆ satisfy (7).
We consider the solution to be of sufficient accuracy as soon
as

∥Aωi+1 − b∥2 ⩽ εd, (27)

and
∥ωi+1 − ωi∥2 ⩽ εp, (28)

where εd and εp are the primal and dual tolerances of the
algorithm.

C. Algorithm

The complete gradient method that will be used to com-
pute the solution to the optimization problem is shown in
Algorithm 2. It should be noted that the algorithm can be
coded in Matlab in less than 30 lines of code, making
implementation rather simple. The inverse of Φλ should
not be computed explicitly, as it is much faster to solve
the systems of equations due to the sparse structure in the
preconditioner.

Algorithm 2 Heavy-Ball Projected Primal-Dual Method with
synthesized preconditioner

1: Initialize:
Select α and b and a desired accuracy ε.
Determine Φω using algorithm 1.
Compute Ψ1 = I − ΦωG, Ψ2 = ΦωA

⊤,
Ψ3 = ΦωF, Φ−1

λ = AΦωA
⊤,

Set λ = −Φλ(b+AG−1F), λ− = 0, i = 1
2: loop
3: ω ← max{ω,min{ω,Ψ1ω −Ψ2λ−Ψ3}}
4: if ∥Aω − b∥2 ⩽ ε then
5: return λ, ω
6: end if
7: λ̂← λ+ i

i+b (λ− λ−)
8: λ− ← λ
9: λ← λ̂+Φλ(Aω − b)

10: if (λ− λ̂)⊤(λ− λ−) ⩽ 0 then
11: i← 0
12: else
13: i← i+ 1
14: end if
15: end loop

V. NUMERICAL EXAMPLE

In this section, we evaluate the computational performance
of solving the OCP using (9), and compare the synthesized
preconditioning matrices of Algorithm 1 with precondition-
ing matrices proposed in [12]. These predefined matrices are
Φω = G−1, which is diagonal, and Φλ = α(AΦωA

⊤)−1

for some α ∈ (0, 2].
Example 1 The inverted pendulum is given in continuous
time by ẋ = Acx+Bcu with

Ac=


0 1 0 0
0 −0.048 1.58 0
0 0 0 1
0 −0.080 18.97 0

, Bc=


0 0

0.96 1.61
0 0

1.61 0.96

, (29)

and is discretized with zero-order hold with a sampling time
of 0.1s. We take Q = P = I and R = 0.1I in (1a).
Furthermore, the constraints are uk = −uk = [4, 4]⊤,
xk = [10, x̂, 5, 10]⊤, xk = [−10,−5,−10,−5]⊤, x̂k =
3 sin(2πk9 + 0.5π) + 1 and rk = 0.

Example 2 As a second case, a non-diagonal term is added
by computing the final cost, P , by solving the algebraic Ric-
atti equation AdPA⊤

d −AdPBd(B
⊤
d PBd+R)−1B⊤

d PA⊤
d −

Q = 0.

Example 3 As a third case within the inverted pendulum
example, additional to the extension in Example 2, a more
non-diagonal dominant cost function is considered, such that

Q =


3 0 0 −2
0 1 0 0
0 0 1 0
−2 0 0 3

 . (30)

The convergence results from the problem with diagonal
cost matrix, i.e., Example 1, can be seen in Fig. 2, where GM
indicates gradient method without heavy ball, i.e., β = 0.
GM+HB is the gradient method with heavy ball, i.e., β is
given by (24). SYN indicates the synthesized preconditioner
using Algorithm 1, while KNOWN indicates the precondi-
tioning from [12]. It can be seen that the synthesis procedure
generates a stabilizing preconditioner for the given hyper-
parameters, τ = 0.47 and σ = 0.3. It can be seen in Figure 2
that GM+SYN and GM+KNOWN+HB perform equally well,
while being 11.3 times faster than the gradient method
without heavy-ball (GM+KNOWN). The addition of heavy-
ball to the synthesized preconditioning only improves upon
the convergence rate by 3 iterations in this example. Being
able to achieve comparable convergence speeds without the
need of any heavy-ball, its associated tuning and additional
mechanisms, such as resetting as explained in Section IV is a
real advantage, as it removes the requirement of hand-tuning
the algorithm by the user. Now the user solves the matrix
inequality (23) for the given plant model and the tuning will
be done automatically.

Besides the diagonal case, a study on non-diagonal cost
matrices was also performed, see Example 2 and 3. The
results are given in Fig. 3 and 4. Note that the figures do

7251

0 100 200 300 400
10 -6

100
GM+SYN
GM+SYN+HB
GM+KNOWN
GM+KNOWN+HB

||A
ω
−

b||

-410

-210

Iteration

Fig. 2. Convergence rate of example 1 with horizon length N = 5. The
results were achieved using variable step-size constant b = 2500 for the
orange line and b = 25 for the cyan line.

0 20 40 60 80 100

GM+SYN
GM+SYN+HB

||A
ω
−

b||

100

-410

-210

Iteration

Fig. 3. Convergence rate of Example 2 with horizon length N = 5. The
results were achieved variable step-size, b = 104.

0 20 40 60 80 100 120

GM+SYN
GM+SYN+HB

||A
ω
−

b||

100

-410

-210

Iteration

Fig. 4. Convergence rate of Example 3 with horizon length N = 5. The
results were achieved using variable step-size, b = 104.

not show monotonic convergence, as our Lyapunov function
(15) guarantees monotonic convergence against χ − χ⋆,
while ∥Aω − b∥ is shown on the y-axis. The computational
times for these two examples are compared to solving the
projection, or (8), using mosek, see [2], as a dedicated solver.
These computational times are reported in Table I, where it
can be seen that using a synthesized method, solving the
QP is significantly faster than solving the projection using a
dedicated solver.

It should be noted that using Algorithm 1 is not guaranteed
to be numerical stable and could lead to long computational
times for longer horizons, as the elements in X increase
quadratically with the horizon length. For model-predictive-
control-type applications, this would not be a huge problem,
as the preconditioning could be computed once and stored
in memory for use. Yet, for longer-scale problems with
long time horizons, it would be interesting to see if the
computational times could be reduced, so that the approach
is also applicable to larger scale problems.

VI. CONCLUSION

In this paper, we have proposed a novel way of synthesiz-
ing preconditioning matrices for which we have shown that

stability is guaranteed. By means of a Lyapunov function,
a diagonal preconditioner can be generated, such that the
projection in the gradient method simplifies to a clipping
operation, which leads to considerable performance benefits.
Though the synthesis of the preconditioning matrices may be
intractable for larger problems, it has been shown that syn-
thesizing preconditioning matrices using this method leads
to very fast convergence rates for shorter time horizons.

REFERENCES

[1] “V12. 1: User’s manual for cplex,” International Business Machines
Corporation, 2009.

[2] The MOSEK optimization toolbox for MATLAB manual. Version 9.0.,
2019.

[3] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, 2020.

[4] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, 1995.

[5] S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for
EE364b, Stanford University, 2007.

[6] O. Komarnitskaia, “Stability of nonlinear automatic control systems,”
Journal of Applied Mathematics and Mechanics, 1959.

[7] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optim-
ization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, 2016.

[8] M. Li, K. Laib, and I. Lestas, “Convergence rate bounds for the mirror
descent method: Iqcs and the bregman divergence,” in IEEE Conf on
Decision & Control, IEEE, 2022.

[9] C. Scherer and C. Ebenbauer, “Convex synthesis of accelerated gradi-
ent algorithms,” SIAM Journal on Control and Optimization, 2021.

[10] P. Giselsson and S. Boyd, “Preconditioning in fast dual gradient
methods,” in IEEE Conf on Decision & Control, 2014.

[11] Y. Liu, Y. Xu, and W. Yin, “Acceleration of primal–dual methods
by preconditioning and simple subproblem procedures,” Journal of
Scientific Computing, 2021.

[12] Y. Heuts, G. Padilla, and M. Donkers, “An adaptive restart heavy-ball
projected primal-dual method for solving constrained linear quadratic
optimal control problems,” in IEEE Conf on Decision & Control, 2021.

[13] J. L. Jerez, E. C. Kerrigan, and G. A. Constantinides, “A condensed
and sparse QP formulation for predictive control,” in Proc IEEE Conf
on Decision & Control, 2011.

[14] J. Daafouz and J. Bernussou, “Parameter dependent Lyapunov func-
tions for discrete time systems with time varying parametric uncer-
tainties,” Systems & Control Letters, 2001.

[15] C. Scherer, Robust mixed control and LPV control with full block
scalings. Advances in Design & Control, Springer-Verlag, 1999.

[16] M. Donkers, “Decentralised robust controller synthesis for discrete-
time polytopic systems with additive uncertainty using an iterative-lmi
approach,” in Proc American Control Conf, 2017.

[17] J. Han and R. Skelton, “An LMI optimization approach for structured
linear controllers,” in IEEE Conf on Decision & Control, 2003.

[18] G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the infinite-
horizon constrained LQR problem using splitting techniques,” IFAC
Proc., 2014.

[19] B. O’Donoghue and E. Candès, “Adaptive restart for accelerated
gradient schemes,” Found. of Comput. Math., 2013.

TABLE I
COMPARISON BETWEEN SOLVING THE PROJECTION USING A DEDICATED

SOLVER AND USING THE CLIPPING OPERATOR WHILE REACHING

ϵp = 10−5 AND ϵd = 10−5 .

Example 2 GM+SYN GM+SYN+HB GM+HB (proj)
CPU Time 4.82 · 10−4 s 4.80 · 10−4 s 4.7141 s
Iterations 61 97 382
Example 3
CPU Time 2.93 · 10−4 s 3.83 · 10−4 s 6.7632 s
Iterations 101 104 376

7252

