
Impulse Elimination and Synchronization in Descriptor Multi-Agent Systems

Meera Patel, Student Member, IEEE and Subashish Datta, Member, IEEE

Abstract— In this work, a control methodology is proposed
to address the problems of impulse elimination and leader-
follower state synchronization in a descriptor multi-agent sys-
tem (DMAS), where each agent in the network is a descriptor
system. A distributed static state feedback control protocol is
proposed to achieve the control objectives. By making the closed
loop DMAS impulse-free through a feedback gain matrix, it is
transformed into a set of decoupled descriptor systems using
the property of network graph Laplacian matrix, and then,
the synchronization problem is transformed into stabilization
problem of a set of ordinary state space systems. Since we have
used only orthogonal matrices for system transformations, the
proposed algorithm is numerically efficient. The effectiveness
of the proposed methodology is demonstrated with an example.

Index Terms— Multi-agent system, Descriptor system, Dis-
tributed control.

I. INTRODUCTION

Research in the field of multi-agent system (MAS) has
become popular due to its applications in a wide variety of
areas, such as multi-vehicle robotic systems [1], smart power
networks [2], defense and space sectors [3]. A multi-agent
system (MAS) consists of multiple subsystems, referred to
as agents, where agents communicate with their neighbors
through a communication network to achieve some global
control objectives, such as consensus, leader-follower syn-
chronization, formation, stabilization and rendezvous (see
[1], [4]–[11] and the references therein). In a descriptor
multi-agent system (DMAS), the dynamics of an agent is
represented by a descriptor model, which consists of a set
of differential and algebraic equations. Some of the physical
systems, which are represented by descriptor model, are:
power network [12], robotic manipulators [13], biological
systems [14], and cyber-physical systems [15]. Such systems,
with descriptor model, are often referred to as descriptor
systems. The state or output response of a descriptor system
makes it different from an ordinary state-space system. For
instance, a class of descriptor systems, having (nilpotent)
index greater or equal to two, show impulsive behavior in its
response due to the presence of inconsistent initial conditions
and/or non-smoothness of (control) input [13], [16]–[18].
One can see this behaviour in the following circuit example.

Example 1: The dynamic behavior of an electric circuit,
shown in Figure 1-A, can be described by the following
equations: dvc

dt = 1
C ic, vc = v, which can be represented
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in the following descriptor model (considering ic as output):

[ 0 1
0 0 ]

[
i̇c
v̇c

]
=

[
1
C 0
0 1

] [
ic
vc

]
+
[

0
−1

]
v, y = [1 0]

[
ic
vc

]
. (1)

Since the output y(t) = ic(t) = Cv̇(t), one may expect
impulse in the response if the input v(t) in Figure 1-A, is
piece-wise continuous. Now, assume that v(t), in Figure 1-A,
is a constant voltage source, that is, v(t) = V for t ≥ 0, and
v(t) = 0 for t < 0. Let the switch S be moved from position
X to Y at t = T > 0, as in Figure 1-B. Then, following set
of equations: vc = 0 and ic = Cv̇c, are obtained from (1)
(by setting v = 0). Solving them: y(t) = ic(t) = −Cvcoδ(t),
where δ(t) is an impulse function and vco is the voltage in the
capacitor just before the switching action (t = T−). Hence,
y(t) contains impulse, which is due to the inconsistent initial
condition, that is, vc(T−) = vco > 0, whereas vc(T+) = 0
(since vc = 0) for t ≥ T . For a consistent initial condition,
that is, vc(T−) = vc(T

+) = 0, there will be no impulse in
the output response, and y(t) = ic(t) = 0.

Fig. 1. In this circuit, v(t) denotes the voltage source, vc and ic are the
capacitor (C) voltage and current, respectively. S is the switch.

In a DMAS, since the agents are descriptor systems, one
may expect impulse in the state response. The impulsive
behaviour is undesirable in the applications, since it can
destroy or saturate the physical components (such as sensors,
in the feedback control action). Hence, it is important to
eliminate impulse from the response of a DMAS. With the
above observations, in this work, we propose a methodology
to achieve the following objectives in a closed loop DMAS:
i) the state response is impulse-free, and ii) the states of
the follower agents synchronize with the states of a leader
agent. To achieve these objectives, we propose a distributed
static state feedback control for the DMAS, and develop al-
gorithms to compute the underlying feedback gain matrices.
The closed loop DMAS is first made impulse-free using a
feedback gain matrix, and then, it is transformed into a set of
decoupled descriptor systems using spectral decomposition
of a network associated matrix. By performing appropriate
decompositions of the transformed descriptor systems, the
synchronization objective is achieved by stabilizing a set
of ordinary state space systems via solving an Algebraic
Riccati Equation (ARE). Since we have used only orthogonal
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matrices for system transformations and design of feedback
gain matrices, the proposed algorithm is numerically stable.

In the existing literature on DMAS, broadly, the following
objectives are considered: i) consensus [19]–[22], ii) bipartite
consensus [23] and bipartite containment problem [24]. The
bipartite consensus problem is addressed in [23] by consid-
ering the cooperative and antagonistic interaction among the
agents. In [24], observer-based bipartite containment problem
is addressed where follower agents converge to the convex
hull spanned by multiple leaders. In [21], the consensus
protocol is designed in the presence of disturbances to the
agents. In [22], a combination of event-triggered control and
impulsive control is proposed to achieve consensus.

Notations: ⊗: Kronecker product, det(•): determinant of
a matrix, diag{•}: a diagonal matrix, blkdiag{•}: a block
diagonal matrix, Ir: an identity matrix of size (r × r).

II. MATHEMATICAL PRELIMINARIES

A. Preliminaries on Descriptor Systems
Consider a descriptor system of the following form:

Eẋ(t) = Ax(t) +Bu(t) (2)

with initial condition x(0) = x0 ∈ Rn, where E ∈ Rn×n

is a singular matrix, x(t) ∈ Rn and u(t) ∈ Rp are the state
and input vectors, respectively. The system (2) is said to
be regular if there exists a complex number s ∈ C such
that det(sE − A) ̸= 0. For a regular descriptor system, the
roots of the polynomial det(sE−A) are referred to as finite
poles of (2) or the pair (E,A). The set of finite poles of
(2) is denoted as σ(E,A). For a regular descriptor system
(2), there exist two non-singular matrices U ∈ Rn×n and
V ∈ Rn×n such that UEV =

[
In1

0

0 N

]
, UAV =

[
J 0
0 In2

]
,

UB =
[
B1

B2

]
, where n1 + n2 = n, and N ∈ Rn2×n2 is a

Nilpotent matrix with index α (Nα = 0 and Nα−1 ̸= 0)
[17]. By introducing a new state variable x̄ = V −1x (x̄ =[
x̄T1 x̄T2

]T
), and using the above decomposition, following

two subsystems are obtained from (2): ˙̄x1(t) = Jx̄1(t) +
B1u(t) and N ˙̄x2(t) = x̄2(t) + B2u(t). The solution of the
first subsystem, for initial condition x̄10 := [In1

0]V −1x0,
is: x̄1(t) = eJtx̄10 +

∫ t

0
eJ(t−τ)B1u(τ)dτ . The solution of

second subsystem, for initial condition x̄20 := [0 In2
]V −1x0,

is: x̄2(t) = −
∑α−1

i=1 δ
(i−1)(t)N ix̄20 −

∑α−1
i=0 N

iB2u
(i)(t),

where δ(t) is the Dirac delta function, u(i)(t) is the ith

derivative of u(t) and N0 = In2
. Then, the state response

(distributional solution) of system (2) is [17, Chapter 1]:

x(t) = V
[
In1
0

]
x̄1(t) + V

[ 0
In2

]
x̄2(t). (3)

If N ̸= 0, the solution x̄2(t) contains impulse terms (with its
distribution derivatives [17, Appendix A]), which arise due to
the presence of initial condition (x̄20) and/or non-smoothness
of input u(t). For a set of consistent initial condition xco of
(2), which is defined as follows [17]:

Xco :=
{
xco ∈ Rn | xco = V

[
In1
0

]
x̄10

− V
[ 0
In2

] α−1∑
i=0

N iB2u
(i)(0), ∀ x0 ∈ Rn

}
, (4)

the distributional solution (3) becomes the classical solution
of (2), where the first term of x̄2(t) will not appear in (3),
and the other terms will remain same.

B. Preliminaries on Graph theory

An undirected graph Gc(V, E) consists of a set of vertices:
V := {v0, v1, · · · , vr} and a set of undirected edges E
between the vertices. The graph Gc(V, E) is said to be con-
nected, if there exists a path between each pair of vertices in
V . A sub-graph G(Ṽ, Ẽ) of Gc(V, E) is obtained by removing
the vertex v0 and the associated edges from Gc(V, E). For
instance, a graph Gc(V, E) and its corresponding subgraph
G(Ṽ, Ẽ) are shown in Fig. 2(a) and Fig. 2(b), respectively.
Two vertices vi and vj in G(Ṽ, Ẽ) are said to be adjacent
if an edge exists between them. For a graph G(Ṽ, Ẽ),
we associate an adjacency matrix A(G) ∈ Rr×r, whose
(i, j)th = (j, i)th element is 1, if vi and vj are adjacent;
otherwise it is zero. The diagonal elements of A(G) are
0 by assuming that there are no self-loops in G(Ṽ, Ẽ).
The neighborhood set of vertex vi is defined as follows:
N (i) := {j ̸= i | vi and vj are adjacent in Gc(V, E)}. The
degree di of vertex vi is the cardinality of N (i). The degree
matrix and Laplacian matrix of G(Ṽ, Ẽ) are defined as:
D(G) = diag{d1, d2, · · · , dr} and L(G) = D(G) − A(G),
respectively.

For a given matrix H ∈ Rr×r, we associate a directed
graph Gm(H) on the set of r vertices: {v1, v2, · · · , vr},
where vi represents a column or row of H , whereas an edge,
having direction from vertex vj to vertex vi, represents a
non-zero entry hij of H . A directed path, from vertex vk to
vl, in Gm(H) is a sequence of vertices, where the following
conditions hold: i) no edge enters at vk, ii) no edge leaves
from vl and iii) only one edge enters and one edge leaves
from the intermediate vertices. For instance, a digraph for
matrix H =

[
2 −1 0
−1 2 −1
0 −1 1

]
is represented in Fig. 2 (c). The

digraph Gm(H) is said to be strongly connected, if there is
a directed path between every two vertices in Gm(H). A
matrix H has the property of strongly connected if and only
if the associated digraph Gm(H) is strongly connected [25].

v2

v0 v1

v3

(a)

v2

v1

v3

(b)

v1

v3v2

(c)

Fig. 2. (a) Graph Gc(V, E) on four vertices, (b) a subgraph of Gc(V, E),
(c) the digraph Gm(H) corresponding to matrix H .

III. MAIN RESULTS

Consider a DMAS system, which consists of a group of
r+1 identical descriptor systems with dynamics as follows:

Eẋi(t) = Axi(t) +Bui(t), i ∈ {0, 1, · · · , r}, (5)

with initial condition xi(0) = x0 ∈ Rn, where xi(t) ∈ Rn

and ui(t) ∈ Rp are the state and input vectors of the ith
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agent. Out of the r+1 number of agents in (5), let us consider
one of the agents as leader, which is represented as

Eẋ0(t) = Ax0(t) +Bu0(t), (6)

and remaining r agents as follower, represented as:

Eẋi(t) = Axi(t) +Bui(t), for i ∈ {1, 2, · · · , r}. (7)

For all i ∈ {0, 1, · · · , r}, we consider the following assump-
tions on (5): i) E is singular and rank(E) = n0 < n, ii) the
pair (E,A) is regular, and iii) (E,A,B) is C-controllable
(I-controllable and R-controllable) [13, Chapter 4].

By defining vectors: x := [xT0 xT1 · · · xTr ]T and u =
[uT0 uT1 · · · uTr ]T , the dynamics (5) can be represented as:

(Ir+1 ⊗ E) ẋ = (Ir+1 ⊗A)x+ (Ir+1 ⊗B)u. (8)

We assume that the information exchange between agents
is bidirectional. Then, the considered DMAS is represented
by an undirected graph Gc(V, E), where the agents and the
communication links between the agents are represented by
the vertices and edges of Gc(V, E), respectively. Two agents
i and j in the network are said to be neighbor, if vi and vj are
adjacent in Gc(V, E). By denoting the set of neighborhood
agents of ith agent as N (i), define a signal ζi(t) as follows:

ζi(t) =
∑

j∈N (i)

[xi(t)− xj(t)] , ∀ i ∈ {1, 2, · · · , r}. (9)

Then, we propose the following control protocol for each
agent i ∈ {0, 1, · · · , r}:

ui(t) = ūi(t) + ũi(t), (10)

where the control signals ūi(t) and ũi(t) are:

ūi(t) = Kxi(t), ∀ i ∈ {0, 1, · · · , r}, (11a)

ũ0(t) = 0, ũi(t) = ηK̃ζi(t), ∀ i ∈ {1, 2, · · · , r}, (11b)

where K ∈ Rp×n and K̃ ∈ Rp×n are the feedback gain
matrices, and η ∈ R is a scalar gain that need to be designed.
According to the control law proposed in (11a), each agent
utilizes only the local state information of the agents in the
network, and control law in (11b) uses relative neighborhood
state information. Then, we are interested in addressing the
following problem.

Problem 1: Design the feedback gain matrices K, K̃, and
scalar gain η such that the closed-loop DMAS is impulse-
free, and the states of all the follower agents asymptoti-
cally synchronize with the states of leader agent, that is,
limt→∞(xi − x0) = 0 for all i ∈ {1, 2, · · · , r}.

We first design K to make the closed-loop system impulse-
free, and then K̃ for synchronization. Defining vectors: ū =
[ūT0 ūT1 · · · ūTr ]T and ũ = [ũT0 ũT1 · · · ũTr ]T , we have the
following relation, which follows from (10) and (11a):

u = ū+ ũ = (Ir+1 ⊗K)x+ ũ. (12)

Then, by defining the matrix Ac := Ir+1 ⊗ (A+BK), and
using (12) in (8), the closed loop DMAS is:

(Ir+1 ⊗ E) ẋ = Acx+ (Ir+1 ⊗B)ũ. (13)

Since the matrix E is singular, there exists two orthogonal
matrices W1 and W2 such that E has the following singular
value decomposition (SVD):

Ē :=W1EW2 =

[
Σ 0
0 0

]
, (14)

where Σ is a diagonal matrix with diagonal entries are the
non-zero singular values of E. Using W1 and W2, let:

Ā :=W1AW2 =

[
A11 A12

A21 A22

]
, B̄ :=W1B =

[
B1

B2

]
,

K̄ := KW2 =
[
K1 K2

]
, (15)

where Aij , Bi, and Ki are the block matrices, and their sizes
are conformal with [Σ 0

0 0 ]. Note that the agents dynamics (5)
could be impulsive. Then, it follows from [13, Theorem 7.3]
that the matrix A22 in (15) is a singular matrix (it is non-
singular, when (5) are impulse-free). Consider another two
orthogonal matrices T1 and T2 such that the SVD of A22 is:

T1A22T2 =

[
Σa 0
0 0

]
, (16)

where Σa is a diagonal matrix, and its entries are the non-
zero singular values of A22. Using T1 and T2, let the matrices
B2 and K2 in (15) are decomposed as:

T1B2 =

[
B12

B22

]
, K2T2 =

[
K21 K22

]
. (17)

Then, we have the following result.
Theorem 1: For a given DMAS with agent dynamics (5)

and feedback control (10), let the associated system matrices
be decomposed as in (14), (15), (16) and (17). Let K21 in
(17) be chosen as: K21 = 0. Then, the closed-loop system
(13) is impulse free if and only if: det (B22K22) ̸= 0.

Proof: Consider the orthogonal matrices W1 and W2,
used in (14), and define the following matrices: W1 =[
Ir⊗W1 0

0 Ir⊗W1

]
and W2 =

[
Ir⊗W2 0

0 Ir⊗W2

]
. Then, the

following relation holds:

rank
[
Ir+1 ⊗ E 0

Ac Ir+1 ⊗ E

]
= rank W1

[
Ir+1 ⊗ E 0

Ir+1 ⊗ (A+BK) Ir+1 ⊗ E

]
W2

= rank
[

Ir+1 ⊗ Ē 0
Ir+1 ⊗ (Ā+ B̄K̄) Ir+1 ⊗ Ē

]
. (18)

Denote Ēc = Ir+1 ⊗ Ē, Āc = Ir+1 ⊗ (Ā+ B̄K̄), and:

Σ̄ =

[
Σ 0
0 0

]
, Ācr =

[
A11 +B1K1 A12 +B1K2

A21 +B2K1 A22 +B2K2

]
.

Then, using the relations (14) and (15), we can write the
following matrices: Ēc = blkdiag{Σ̄, Σ̄, · · · , Σ̄} and Āc =
blkdiag{Ācr , Ācr , · · · , Ācr}. Recall that Σ is a diagonal
matrix with n0 positive diagonal entries. Hence, it follows
from (18) that:

rank
[
Ir+1 ⊗ E 0

Ac Ir+1 ⊗ E

]
= (r + 1) (rank(Σ) + rank(Σ) + rank(A22 +B2K2))

= (r + 1)(n0 + n0 + rank(A22 +B2K2)).
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Since A22+B2K2 is a matrix of size (n−n0)× (n−n0), it
then follows that rank

[
Ir+1⊗E 0

Ac Ir+1⊗E

]
= (r+1)(n+n0) if

and only if rank(A22+B2K2) = n−n0. Hence, according to
[13, Theorem 7.2], the closed-loop system (13) is impulse-
free if and only if A22 +B2K2 is non-singular. Now, using
the decompositions in (16) and (17), and since K21 = 0,

we have: T1 (A22 +B2K2)T2 =

[
Σa B12K22

0 B22K22

]
. Further,

since Σa is invertible, A22+B2K2 is non-singular if and only
if B22K22 is non-singular, hence, the result holds. Since it is
assumed that the agent dynamics (5) is impulse controllable,
one can always find K22 such that B22K22 is non-singular,
which follows from [13, Theorem 7.6] and its proof.

Note that Theorem 1 gives a condition to design the gain
matrix K such that the closed loop system (13) become
impulse-free. We will now design ũ for (13) such that the
state synchronization objective can be achieved. Define a ma-
trix Lg := L(G) +M, where M = diag{m1,m2, · · · ,mr},
and mi = 1 if the vertex v0 is connected to vi, for
i ∈ {1, 2, · · · , r}, otherwise it is zero. Further, define the
vectors: ζ := [ζT1 ζT2 · · · ζTr ]T , xf = [xT1 xT2 · · ·xTr ]T ,
x0 = [xT0 xT0 · · ·xT0 ]T , and ũf = [ũT1 ũT2 · · · ũTr ]T . Then,
we obtain the following relation from (9):

ζ = (Lg ⊗ In) (xf − x0), (19)

and the following relation from (11b) and (19):

ũf = η(Ir ⊗ K̃)ζ = η(Lg ⊗ K̃)(xf − x0). (20)

Since we have assumed ũ0(t) = 0 in (11b), following dy-
namics are obtained from (13), by denoting AR = A+BK:

(Ir ⊗ E)ẋ0 = (Ir ⊗AR)x0, (21)
(Ir ⊗ E)ẋf = (Ir ⊗AR)xf + (Ir ⊗B)ũf . (22)

Define an error vector: ξ := xf − x0. Then, by using (20)
in (22), we have:

(Ir ⊗ E)ẋf = (Ir ⊗AR)xf + η(Ir ⊗B)(Lg ⊗ K̃)ξ

= (Ir ⊗AR)xf + η(Lg ⊗BK̃)ξ. (23)

Pre-multiplying (Ir ⊗ E) to the both sides of ξ = xf − x0,
and then, taking the derivative, following relation is obtained:

(Ir ⊗ E)ξ̇ = (Ir ⊗ E)ẋf − (Ir ⊗ E)ẋ0. (24)

Then, using (21) and (23) in (24), we have the following
synchronization error dynamics:

(Ir ⊗ E)ξ̇ =
[
(Ir ⊗AR) + η(Lg ⊗BK̃)

]
ξ. (25)

Define Eξ := (Ir ⊗ E), Aξ := (Ir ⊗ AR) + η(Lg ⊗ BK̃).
Then we have the following result.

Proposition 1: Let λ̃i be an eigenvalue of Lg . Then, the
set of finite poles of pair (Eξ, Aξ) is equal to the union of
finite poles of pairs (E,AR + ηλ̃iBK̃), for i = 1, 2, · · · , r.

Proof: Since Lg is symmetric, there exists an orthog-
onal matrix S (STS = Ir) such that STLgS = LΛ, where
LΛ = diag{λ̃1, λ̃2, · · · , λ̃r} [25]. By defining: ψ(t) := (ST⊗
In)ξ(t), the error dynamics in (25) can be transformed to:

(Ir ⊗ E)ψ̇(t) =
[
(Ir ⊗AR) + η(LΛ ⊗BK̃)

]
ψ(t), which

produces following set of descriptor systems:

Eψ̇i(t) = (AR+ηλ̃iBK̃)ψi(t), for i ∈ {1, 2, · · · , r}. (26)

Since the error dynamics (25) and the transformed error
dynamics are equivalent, they have the same set of finite
poles, and hence, the proposition holds.

Proposition 2: The matrix Lg = L(G) + M is non-
singular, and hence, λ̃i ̸= 0, for all i ∈ {1, 2, · · · r}.

Proof: Let Gm(Lg) be the digraph, associated with ma-
trix Lg (refer to Section II for construction of such digraph).
Notice that the digraph Gm(Lg) and the undirected network
graph G(Ṽ, Ẽ) have an equal number of vertices. Moreover,
one can obtain Gm(Lg) from G(Ṽ, Ẽ) by replacing an
undirected edge of G(Ṽ, Ẽ) with two directed edges, having
opposite directions, in Gm(Lg). For instance, if there is an
undirected edge between vertices vi and vj in G(Ṽ, Ẽ), then
there are two directed edges between vi and vj in Gm(Lg):
i) one is from vertex vi to vj and ii) another is from vertex
vj to vi. It is then easy to notice that the directed graph
Gm(Lg) is strongly connected if and only if the undirected
graph G(Ṽ, Ẽ) is connected. Since it is assumed that G(Ṽ, Ẽ)
is connected, the digraph Gm(Lg) is strongly connected, and
hence, the matrix Lg has strongly connected property [25].
Further, Lg is a diagonally dominant matrix, that is, for all
j ∈ {1, 2, · · · r}, |l̄jj |≥

∑r
k=1|l̄jk| (k ̸= j), where l̄jk is

an element of Lg . Further, for ith element of Lg , following
relation holds: |l̄ii|>

∑r
k=1|l̄ik| (k ̸= i), which is due to the

presence of mi ̸= 0 in the ith row of Lg . Hence, it directly
follows from [25, Corollary 6.2.9] that Lg is non-singular.

Note that the gain matrix K, designed according to The-
orem 1, also ensures that the pair (E,AR) is impulse-free.
Hence, there exists an orthogonal matrix W1 (consider the
decomposition in (14)) such that: W1E =

[
E1
0

]
, W1AR =[

AR1

AR2

]
, W1B =

[
B1

B2

]
, where E1 ∈ Rn0×n, AR1 ∈ Rn0×n,

AR2
∈ R(n−n0)×n, B1 ∈ Rn0×p and B2 ∈ R(n−n0)×p.

Since the pair (E,AR) is impulse-free, the matrices E1 and
AR1 are full rank matrices [26]. Further, consider another
two orthogonal matrices P and Q such that the matrix

[
E1
0

]
has the following SVD:

[
E1
0

]
= Q

[
Σn0

0
0 0

]
PT . Let the

orthogonal matrices Q and P be partitioned as follows:
Q =

[
Q11 Q12

Q21 Q22

]
and P = [ P1 P2 ], respectively. Then, by

defining the following matrices:

Az11 := Σ−1
n0
QT

11

(
AR1

P1 −AR1
P2(AR2

P2)
−1AR2

P1

)
,

Bz1 := Σ−1
n0
QT

11

(
B1 −AR1

P2(AR2
P2)

−1B2

)
, (27)

K̃ :=
[
K̃1 0

]
PT ,

where Az11 ∈ Rn0×n0 , Bz1 ∈ Rn0×p and K̃1 ∈ Rp×n0 , we
have the following results.

Lemma 1: For a set of descriptor systems as in (26), we

have:
r⋃

i=1

σ(E,AR + ηλ̃iBK̃) =
r⋃

i=1

Λ(Az11 + ηλ̃iBz1K̃1),

where Λ(.) refers to the set of eigenvalues.
Proof: Similar to the proof of [26, Theorem 3].
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It can be observed from Proposition 1 that the finite pole
assignment problem of (25) is transformed into the finite
pole assignment problem of a set of descriptor systems (26),
which is then transformed to the eigenvalues assignment
problem of a set of ordinary state space systems through
Lemma 1. We will now give a procedure to design gain ma-
trix K̃1 and scalar gain η, through the following result, such
that eigenvalues of the set of matrices: Az11 + ηλ̃iBz1K̃1,
for i ∈ {1, 2, · · · , r}, belong to the open left half of complex
plane. Furthermore, we will show that the impulse-freeness
property of the closed loop system will not get affected by
the implementation of K̃1 and η in the network.

Theorem 2: Let Az11 , Bz1 and K̃ be defined as in (27).
Let K̃1 = −R−1

z BT
z1Pz , where Pz is the solution of ARE:

AT
z11Pz + PzAz11 − PzBz1R

−1
z BT

z1Pz + Qz = 0, for some
given symmetric positive definite matrices Rz and Qz . Fur-
ther, let the gain η be chosen as: η ≥ 1

2λ̃1
, where λ̃1 is the

smallest eigenvalue of Lg . Then, the following statements
hold: i) limt→∞(xi − x0) = 0 for all i ∈ {1, 2, · · · , r}, and
ii) the closed loop DMAS is impulse-free.

Proof: According to the choice of: K̃1 = −R−1
z BT

z1Pz

and η ≥ 1
2λ̃1

, it directly follows from [27, Theorem 1] that:

Λ(Az11 + ηλ̃iBz1K̃1), for i ∈ {1, 2, · · · , r}, belong to the
open left half of complex plane. Hence, according to Lemma
1 and Proposition 1, all the finite poles of synchronization
error dynamics (25) also belong to the open left half of
complex plane. Hence, it follows that limt→∞(xf−x0) = 0,
since ξ = xf − x0. This implies: limt→∞(xi − x0) = 0, for
all i ∈ {1, 2, · · · , r}. Since we have assumed that each agent
is C-controllable, the pair (Az11 , Bz1) is controllable [26],
and hence, one can always obtain K̃1.

Let us define a vector χ =
[
xT
0 xT

f

]T
. Then, using (21)

and (23), the overall dynamics of closed-loop system is:

Eclχ̇ = Aclχ, (28)

where the matrix: Ecl =
[
Ir⊗E 0

0 Ir⊗E

]
and the matrix Acl =[

Ir⊗AR 0

−η(Lg⊗BK̃) (Ir⊗AR)+η(Lg⊗BK̃)

]
. Consider the orthogonal

matrix S such that STLgS = LΛ, and define a new matrix:
S̄ = blkdiag{S ⊗ In, S ⊗ In, S ⊗ In, S ⊗ In}. Then, using
the definitions of Ecl and Acl, and pre-multiplication of S̄T

and post-multiplication of S̄ to the matrix
[
Ecl 0
Acl Ecl

]
yield

following relation:

rank
[
Ecl 0
Acl Ecl

]
= rank

[
Ir⊗E 0 0 0

0 Ir⊗E 0 0
Ir⊗AR 0 Ir⊗E 0

−η(LΛ⊗BK̃) (Ir⊗AR)+η(LΛ⊗BK̃) 0 Ir⊗E

]

= r rank

[
E 0 0 0
0 E 0 0

AR 0 E 0

−ηλ̃iBK̃ AR+ηλ̃iBK̃ 0 E

]
. (29)

Now, consider the orthogonal matrices W1 and W2 as in (14),
and define new matrices: W̄1 = blkdiag{W1,W1,W1,W1},
W̄2 = blkdiag{W2,W2,W2,W2}. Then, by pre-multiplying
W̄1 and post-multiplying W̄2 to the matrix that appears in

the right hand side of (29) produce the following relation:

rank
[
Ecl 0
Acl Ecl

]

= r rank


Σ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Σ 0 0 0 0 0
0 0 0 0 0 0 0 0

A11+B1K1 A12+B1K2 0 0 Σ 0 0 0
A21+B2K1 A22+B2K2 0 0 0 0 0 0

−ηλ̃iBK11
−ηλ̃iBK12

AK11
AK12

0 0 Σ 0

−ηλ̃iBK21
−ηλ̃iBK22

AK21
AK22

0 0 0 0



= r rank


Σ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Σ 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 Σ 0 0 0
0 A22+B2K2 0 0 0 0 0 0
0 0 0 0 0 0 Σ 0
0 0 0 AK22

0 0 0 0


= r(4n0 + rank(A22 +B2K2) + rank(AK22). (30)

By using the definition of K̃ as in (27), and writing PTW2 =[
Z11 Z12

Z21 Z22

]
, following matrix definitions are used in (30):

BK11 = B1K̃1Z11, AK11 = A11 +B1K1 + ηλ̃iB1K̃1Z11,

BK12 = B1K̃1Z12, AK12 = A12 +B1K2 + ηλ̃iB1K̃1Z12,

BK21 = B2K̃1Z11, AK21 = A21 +B2K1 + ηλ̃iB2K̃1Z11,

BK22 = B2K̃1Z12, AK22 = A22 +B2K2 + ηλ̃iB2K̃1Z12.

Since the pair (E,AR) is impulse-free (refer to Theorem
1), we have: rank(A22 +B2K2) = n−n0. Further, the gain
matrix K̃ and scalar gain η are designed to assign n0 number
of finite poles of the descriptor systems (26), and hence, they
are impulse-free. This implies: rank(AK22

) = n−n0. Hence,
it follows from (30) that rank

[
Ecl 0
Acl Ecl

]
= r(4n0+(n−n0)+

(n − n0)) = 2r(n + n0), and hence, the second statement
also holds according to [13, Theorem 7.2]. This completes
the proof.

In the next section, we present a numerical example to
show the applicability of the proposed control algorithm.

IV. NUMERICAL EXAMPLE

Example 2: In this example, we consider a DMAS, con-
sisting of four agents, where the dynamics of each agent is
of the form (5) with system matrices as follows:

E =

[
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
, A =

[
1 −1 0 0
1 −5 0 0
0 3 1 3
0 1 5 1

]
, B =

[
0 0
1 0
0 1
0 0

]
.

The communication topology among the agents is as per the
undirected graph Gc(V, E), shown in Fig. 2(a). In the consid-
ered system matrices, we have: n = 4 and n0 = 2. Further,
the number of follower agents is r = 3. Then, considering
the open loop DMAS (8), we have: rank

[
I4⊗E 0
I4⊗A I4⊗E

]
= 20,

which is strictly less than (r + 1)(n + n0) = 24. Hence, it
follows from [13, Theorem 7.2] that the response of open-
loop DMAS is impulsive. To make the closed-loop DMAS
(13) impulse-free, we have designed the following gain
matrix, according to Theorem 1: K =

[−2 0 0 0
−4 0 0 0

]
. We now

proceed to design the feedback gain matrix K̃ and scalar gain
η to achieve synchronization among the leader and follower
agents in the network. According to Theorem 2 and using
the relations in (27), we computed the following gain matrix:
K̃ =

[
0 0.1333 0 −0.4328
0 −0.8055 0 0.1415

]
. For the considered communica-

tion topology, the eigenvalue of Lg are: λ̃1 = 0.1981, λ̃2 =
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1.555 and λ̃3 = 3.247. Hence, the scalar gain η ≥ 1
2λ̃1

is
chosen as 6. To verify the synchronization of leader-follower
network, the closed loop DMAS (21) and (23) is simulated
in MATLAB (Version R2022a) using ode15s solver for a
set of consistent initial condition. Since the pair (E,AR) is
impulse free, the set of consistent initial conditions for leader
agent is chosen from the following set, which is obtained
from (4): Xco :=

{
x0(0) | x0(0) = V

[
In1
0

]
κ, ∀ κ ∈ Rn1

}
.

Further, since the pair (E,AR + ηλ̃iBK̃) is also impulse-
free in (26), we obtained ψi(0), for all i ∈ M1, similar to
x0(0). By constructing x0(0) = [x0(0)

T · · ·x0(0)T ]T and
ψ(0) = [ψ1(0)

T · · ·ψr(0)
T ]T , we obtained the consistent

initial conditions for the follower agents as follows: xf (0) =
ξ(0) + x0(0), where ξ(0) = (S ⊗ In)ψ(0). The simulation
results are presented in Figure 3, which shows that the states
of all the follower agents synchronize with the states of
leader agent.
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Fig. 3. Synchronization of follower states xij (solid lines) with leader
state x0j (dotted lines).

V. CONCLUSION

A distributed static state feedback control strategy has
been proposed for eliminating the impulse response and
achieving the synchronization of the leader-follower network
of a DMAS. The underlying communication network among
the agents is considered of fixed topology where the local
controllers for the agents need state information of their
neighbors and self-state information of agents in the network.
We have obtained satisfactory results from the proposed
algorithm while verifying with a numerical example.
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