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Abstract— The paper explores an extension of the classical
internal model principle of Francis and Wonham to cases
where the exogeneous signals (references or disturbances) are
generated by an open, rather than closed (i.e., autonomous),
exosystem. We study this extension both in the linear and
nonlinear case, showing that the internal model principle is
necessary for robust regulation of a contractive closed-loop
system. While preliminary, our results motivate a generalization
of nonlinear regulation theory to open exosystems.

I. INTRODUCTION

The internal model principle is an important result of
classical control theory and a pillar of regulation theory.
Originally introduced by Francis and Wonham in the context
of linear time-invariant systems [1], it states that every con-
troller solving the problem of output regulation robustly with
respect to uncertainties in the plant’s dynamics necessarily
embeds a suitable copy of the exosystem’s model.

In its original formulation, the exosystem is a linear
time-invariant autonomous system ẋE = AExE . If AE is
marginally stable, such autonomous system can generate
arbitrary linear combinations of sinusoids to model steady-
state exogeneous references and disturbances. The internal
model principle states that, to have the capacity of internally
generating those sinusoids that span the exogenous signals,
the controller state-space model must include a copy of the
exosystem.

Regulation theory has received considerable attention over
the last decades, with extensions of the LTI theory to non-
linear systems [2]–[11], time-varying systems [12], infinite-
dimensional systems [13], and hybrid systems [14]. Remark-
ably, all those works have retained the assumption of an
autonomous exosystem. Such assumption has been instru-
mental to ground regulation theory in (differential) geometric
tools [2]–[6], [9], limit set characterizations of the steady-
state behavior [7], [8], [10], and algebraic characterizations
of the regulator [12], [13].

The present paper explores the possibility to include open
exosystems in regulation theory. To the best of the authors’
knowledge, this question has received little attention to date.
Our motivation stems from the fact that open exosystems
are natural in nonlinear control and that the assumption
of an autonomous exosystem is restrictive even in quite
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simple physical examples of nonlinear regulation. One of
such elementary examples is described in Section II. More
generally, we expect that allowing for open exosystems
might facilitate the connection to internal model principles in
related questions such as network synchronization [15] and
observer design [16].

The main result of this paper is to provide an extension
of the original internal model principle of Francis and Won-
ham to open exosystems. For this preliminary version, we
concentrate on the simple single-input single-output (SISO)
framework. Our starting point is a reinterpretation of Francis
and Wonham’s internal model principle in the behavioral
framework of Willems [17] and its reformulation in terms of
a robust factorization property of the controller’s steady-state
behavior (Sections IV and V). This reformulation of the in-
ternal model principle is shown to extend with no difficulty to
time-varying open linear systems (Section VI). Subsequently,
it enables an extension of the internal model principle to
nonlinear systems provided that the closed-loop system is
required to be contractive (Section VII). This makes our
approach akin to the methodology of the monograph [9],
which also employs contraction for a nonlinear theory of
regulation. While [9] only considers autonomous exosystems,
the present paper aims at generalizing the approach to non-
autonomous exosystems.

II. MOTIVATING EXAMPLE

Motivated by questions in neurophysiology [18], we con-
sider a classical FitzHugh-Nagumo nonlinear circuit per-
turbed by a parallel port interconnection to a synaptic current
source. The perturbed circuit has the state-space representa-
tion

ẋ1 = − 1
3x

3
1 + x1 − x2 + u+ d

τẋ2 = −ax2 + x1
(1)

where x1 denotes the output voltage, u the controlled current
source, and d the synaptic current with state-space model

d = gx3(x1 − Esyn)
ẋ3 = −x3 + h(v).

(2)

The nonlinear conductance of the synaptic current depends
on a measured presynaptic voltage v via the nonlinear
function h. The constants τ , a, g, Esyn are the parameters
of the circuit.

An elementary control problem is to design the current
source u such that the synaptic current is asymptotically
rejected from the FitzHugh-Nagumo circuit. We assume that
the voltages x1 and v are measured, but that the synaptic
current d is not. The obvious solution to this problem is to
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model the synaptic current as

d̂ = gxc(x1 − Esyn)
ẋc = −xc + h(v)

(3)

and to choose the control u = −d̂.
We wish to interpret this design question in the classical

framework of regulation theory: the model (2) is an ex-
osystem that generates the unmeasured current d perturbing
the nominal plant modeled by a FitzHugh-Nagumo circuit.
System (3) is an observer of the disturbance model (2).
Equivalently, it can be regarded as an internal model of
the exosystem. In spite of the simplicity of the previous
example, there are difficulties to conceive its solution as a
straightforward application of the classical theory of nonlin-
ear regulation. Most importantly, the exosystem (2) is non-
autonomous, i.e., it is an open system with input v, whereas
the exosystem of regulation theory is always an autonomous
system. Also, the physical (i.e. port interconnection) coupling
between the exosystem and the plant is bidirectional, that is,
the exosystem depends on the variable x1 of the plant.

In the rest of the paper, we concentrate on the first
difficulty only, that is, considering an open exosystem. For
the considered example, the nonlinear coupling between the
exosystem and the plant is immaterial to the solution (3)
since x1 is a measured variable of the plant and it only
affects the output map of (3). A more general dependence
of the exosystem on measured variables of the plant is not
considered in the rest of the paper, and is instead deferred
to future research.

The internal model principe of linear regulation theory
says that the feedback controller must contain an internal
model of the exosystem if there are parametric uncertainties
in the plant model. In the nonlinear example above, those
correspond to small variations of the parameters τ and a.
The main result of the present paper is to show under what
conditions this principle remains valid for nonlinear open
systems whenever the closed-loop system is required to be
contractive. Contraction of the closed-loop system means that
the effect of initial conditions decays exponentially along any
solution [19].

III. NOTATIONS AND PRELIMINARY NOTIONS

Ck(Rn) denotes the set of k-times continuously differen-
tiable functions R → Rn, Ck

b(Rn) that of bounded functions
in Ck(Rn), and C := C0. With U , V linear spaces, L(U ,V)
denotes the space of linear operators U → V . Given P ∈
L(U ,V), we let P−1, domP , kerP and ImP denote the
preimage, domain, kernel and image of P , respectively.
Let U ,V,W,Z be linear spaces, M a topological space,
P ∈ L(U ,V), and µ⋆ ∈ M. We say that an operator
E ∈ L(W,Z) is a robust factor of P at µ⋆ if there exist a
family R = {Rµ}µ∈M in L(Z,V) and an M-neighborhood
M of µ⋆ such that

∀µ ∈ M, ImP ⊇ Im(RµE) (4a)

and, for all M-neighborhoods M ′ of µ⋆ included in M , ⋂
µ∈M ′

kerRµ

 ∩ ImE = {0}. (4b)

An important role in the paper is played by differential
operators, defined as follows. With M a topological space,
we let P(M) be the set of continuous functions p : M ×
R2 → R of the form p(µ, t, x) =

∑n
k=0 αk(µ, t)x

k for some
n ∈ N independent on µ, t or x. We write pµ,t(x) in place
of p(µ, t, x) and omit µ and/or t when clear, unimportant,
or when the coefficients αk(µ, t) are constant in µ and/or
t. Given k ∈ N, we denote by sk := dk

dtk
the k-fold differ-

entiation operator and we let s := s1. Given a p ∈ P(M),
we denote by pµ(s) the operator f 7→

∑n
k=0 αk(µ, ·)skf(·),

and by p(s) the map (µ, f) 7→ pµ(s)f .

IV. A DEFINITION OF INTERNAL MODEL

This section formalizes the concept of internal model
used throughout the paper. The proposed definition confers
a formal meaning on statements of the kind “the controller
must embed an internal model of the exosystem” stated in
the various presented results.

Let Z and W be linear spaces and M a topological space.
Fix µ⋆ ∈ M, and consider two sets B1 ⊂ Z × C(R) and
B2 ⊂ W × C(R) representing (subsets of) the behavior of
two systems called Σ1 and Σ2, respectively. Suppose that all
(z, d) ∈ B1 and (w, u) ∈ B2 satisfy equations of the form

d = A1z, u = A2w (5)

in which A1 ∈ L(Z, C(R)) and A2 ∈ L(W, C(R)). The
notion of “internal model” is formalized as follows.

Definition 1. Σ2 is said to embed an internal model of Σ1

if A1 is a robust factor of A2 at µ⋆.

The meaning of Definition 1 is the following. If A1 is a
robust factor of A2 at µ⋆ then, by (4a), there exists a family
{Rµ}µ∈M in L(C(R), C(R)) and an M-neighborhood M of
µ⋆, such that

∀µ ∈ M, ∀z ∈ domA1, ∃w ∈ domA2, RµA1z = A2w.

In turn, this implies that Σ2 can generate all the outputs u
produced by the behavior

B21 := {(z, u) ∈ domA1 × C(R) | u = RµA1z, µ ∈ M}.

Throughout the paper, Σ1 will represent the exosystem
whereas Σ2 will represent the steady-state behavior of the
controller. Instead, the family {Rµ}µ∈M will model the
effect of the plant’s residual dynamics. Such dynamics is
uncertain, and the uncertainty is lumped in the parameter µ,
of which µ⋆ is a nominal value. In these terms, the previous
output-reproducing property can be read as the ability of
the controller to generate all outputs of A1 (representing the
exosystem) filtered by Rµ (representing the uncertain plant).
In particular, the operators Rµ generalize in our setting
the blocking property of the zeros of the plant’s residual
dynamics (in particular, d ∈ kerRµ means that d is blocked
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by the plant). In turn, the second condition (4b) of robust
factorization can be interpreted as a nonresonance property
requiring that, for every output d of Σ1 (the exosystem)
and every neighborhood M ′ ⊆ M of the nominal µ⋆,
there exists at least a perturbation µ ∈ M ′ such that d
is not blocked by the plant. This implies that it takes the
full behavior B1 of Σ1 (the exosystem) to describe B21.
Therefore, Definition 1 ultimately asks that system Σ2 (the
controller) is able to generate all the outputs of the behavior
B21, and such behavior needs the full model A1 of Σ1 (the
exosystem) to be defined.

V. INTERNAL MODEL PRINCIPLE FOR LINEAR SYSTEMS

A. The Output Regulation Framework

This section introduces the basic output regulation frame-
work used throughout the paper to deal with linear systems.
For the sake of illustration, we restrict our attention to the
SISO case. We consider a “plant” described by the state-
space model

ẋG(t) = Aµ
G(t)xG(t) +Bµ

G(t)u(t) + Pµ
G(t)d(t) (6a)

e(t) = Cµ
G(t)xG(t) +Qµ

G(t)d(t), (6b)

where µ ∈ M is an uncertain parameter belonging to a finite-
dimensional topological vector space M, xG(t) ∈ Rn is the
state variable, u(t) ∈ R is a control input, e(t) ∈ R is the
regulation error to be controlled to zero, and d : R → R
is a bounded exogenous input generated by a steady-state
solution of the open exosystem

ẋE(t) = AE(t)xE(t) + FE(t)v(t) (7a)
d(t) = CE(t)xE(t) + LE(t)v(t), (7b)

in which v ∈ V ⊆ Cb(R) is a measured open input available
for feedback. In particular, Pµ

G(t)d(t) represents a distur-
bance term acting on the plant’s dynamics, and −Qµ

G(t)d(t)
a reference signal to be tracked by the plant’s output
Cµ

G(t)xG(t). The regulation error e(t) is indeed the differ-
ence between Cµ

G(t)xG(t) and the reference −Qµ
G(t)d(t).

In the following, we shall only consider the steady-state
behavior of (7), i.e., the set of all input-output pairs of (7) that
are bounded backward and forward in time. Nonemptyness of
such set can be seen as a “non-resonance” condition between
v and the dynamics of xE , and poses an additional implicit
constraint on the class V .

The controller is a state-space model described by

ẋC(t) = AC(t)xC(t) +BC(t)e(t) + FC(t)v(t) (8a)
u(t) = CC(t)xC(t) +DC(t)e(t) + LC(t)v(t). (8b)

The output regulation problem consists in designing the
controller (8) to achieve robust asymptotic regulation of the
error e for every reference and every disturbance generated
by the exosystem. Robustness is meant with respect to small
perturbations of the uncertain parameter µ. Formally, let µ⋆

denote the nominal value used to tune the controller (8). In
general, we say that a property P of the closed-loop system
(6), (7), (8) holds robustly if P holds for every choice of the
uncertain parameter µ in an M-neighborhood of µ⋆ with the

same controller and exosystem [20]. Asymptotic regulation,
for instance, corresponds to the property P defined by
limt→∞ e(t) = 0.

B. Francis and Wonham’s Internal Model Principle

We briefly recall the internal model principle of [1] within
the framework presented in the previous section. In the
setting of [1], v = 0 in (7) and (8). Namely, the exosystem
is autonomous and the controller is only driven by the
regulation error. Moreover, all matrices are time-independent,
and M := Rn×n × Rn×1 × Rn×1 × R1×n × R denotes the
space of the plant’s matrices with the Euclidean topology;
namely, the uncertain parameter µ = (AG, BG, PG, CG, QG)
contains all the entries defining the plant’s matrices. Finally,
we assume AE marginally stable. All these conditions will
be assumed throughout this section with no further mention.

In this autonomous case, Francis and Wonham’s internal
model principle can be stated as follows.

Theorem 1 (adapted from [1, Thm. 2]). Suppose that:

R1. The closed-loop system (6), (8) with d = 0 is asymptot-
ically stable.

R2. The property limt→0 e(t) = 0 is robust for the closed-
loop system (6), (7), (8).

Then, the minimal polynomial of AE divides at least one
invariant factor of AC .

The statement of the theorem, that the minimal polynomial
of AE divides at least one invariant factor of AC , is the
formal meaning that [1] gives to the statement “the controller
embeds an internal model of the exosystem”. Indeed, it
implies that every eigenvalue of AE is also an eigenvalue
of AC . We shall see in next Section V-C, that it is not clear
how this notion can be extended to time-varying and open
systems, whereas the notion proposed in previous Section IV
can (showing this will be the aim of Sections VI and VII).

Moreover, in view of a generalization to nonlinear sys-
tems, we notice that the closed-loop stability requirement R1
is equivalent to

P1. The system (6), (8) is contractive.

In the following, we call a trajectory that is defined and
bounded on R a steady-state trajectory. Contraction of the
closed-loop system implies that each steady-state trajectory
of the exosystem defines a unique steady-state trajectory
(xss

G, x
ss
C) of the system (6), (8) and, hence, a unique steady-

state trajectory ess for the closed-loop regulation error. Under
the assumption of contraction, the requirement R2 is then
equivalently reformulated as follows:

P2. The property ess = 0 is robust for the closed-loop
system (6), (7), (8).

The equivalent formulation P1 and P2 decouples the ob-
jective of closed-loop stability from the regulation objective
of steady-state performance. The reader will note that for a
marginally stable exosystem, any initial condition uniquely
determines one steady-state trajectory.
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C. Francis and Wonham’s Internal Model Principle and
Robust Factorization: A Behavioral Perspective

In the same closed and time-invariant setting of previ-
ous Section V-B, alternatively to the state-space representa-
tion (6), (7), (8), we can adopt an “input-output” represen-
tation of the exosystem, plant, and controller (recall that s
denotes the differential operator, see Section III):

pE(s)d = 0 (9a)
pµG(s)e = qµG(s)u+ nµ

G(s)d (9b)
pC(s)u = qC(s)e (9c)

In the behavioral language of Willems [17], these polynomial
representations are kernel representations [17, Ch. 6] of the
exosystem behavior BE , the plant behavior BG, and the
controller behavior BC , respectively. Each behavior is a set
of trajectories. The steady-state behavior is the subset of the
behavior containing all and only steady-state trajectories.

We can obtain from (9) an equivalent result to Theorem 1
as follows. First, owing to P2, for all µ in a suitable M-
neighborhood M of µ⋆, we can set e = 0 in (9), obtaining
the existence of u such that

0 = qµG(s)u+ nµ
G(s)d (10a)

0 = pC(s)u. (10b)

Multiplying (10a) by pC(s), and using the fact that pC(s),
qµG(s), and nµ

G(s) commute, from (10b) we obtain

∀µ ∈ M, nµ
G(s)pC(s)d = 0.

As M is open, we then obtain

pC(s)d = 0. (11)

Namely, every steady-state disturbance is a solution of the
controller’s equation when e = 0. This, in turn, is the behav-
ioral equivalent of the statement “the minimal polynomial of
AE divides at least one invariant factor of AC” of Theorem 1.

However, we notice that, to pass from (10) to (11), we need
pC(s), q

µ
G(s), and nµ

G(s) to commute, which is only true,
in general, under the assumption of time invariance. Hence,
for time-varying linear systems (11) cannot be obtained any
more. In addition, in the open case where the steady-state
exosystem’s and controller’s equations read

pE(s)d = rE(s)v, pC(s)u = rC(s)v,

for some polynomial operators rE(s) and rC(s), proving
that every exosystem pair (v, d) is also a solution pair to the
steady-state controller’s with e = 0 means to prove

pC(s)d = rC(s)v. (12)

However, it is unclear how (12) could be proved from
(10) outside the simple case where d and u are matched
in the plant’s equation. Ultimately, this discussion reveals
that Francis and Wonham’s internal model principle, if it is
meant as (11), admits no trivial extension to time-varying
and open cases. Nevertheless, we may proceed differently.

C

E Hµ
G(s)

η0

w0
d

u

steady-state control behavior

Fig. 1. The internal model principle as a robust factorization of the
controller. The controller must include the mapping from w0 to d, which
is an image representation of the exosystem’s steady-state behavior.

Instead of (9a), we can model the exosystem by means of
the equivalent image representation [17, Ch. 6]

d = Ew0 (13)

in which w0 ∈ RnE (nE ∈ N) represents the exosystem’s
initial conditions and E ∈ L(RnE , C∞

b (R)). Then, for every
µ ∈ M , by letting e = 0 in (9), we obtain

u = Hµ
G(s)Ew0, (14a)

0 = pC(s)u, (14b)

in which Hµ
G(s) := −qµG(s)

−1nµ
G(s) depends on the plant’s

data. Equation (14b) is a kernel representation of the con-
troller’s steady-state behavior, admitting the equivalent image
representation

u = Cη0, (15)

in which η0 ∈ RnC (nC ∈ N) represents the controller’s
initial conditions and C ∈ L(RnC , C∞

b (R)). From (14a) and
(15), we then obtain that, for every µ ∈ M , and every
regulating control signal u ∈ Im(Hµ

G(s)E), there exists a
reproducible control u′ ∈ Im(C) such that u = u′ (see
Figure 1). In other terms, we obtain

∀µ ∈ M, ImC ⊇ Im(Hµ
G(s)E). (16)

Moreover, by construction, for every open M ′ ⊆ M , we
have  ⋂

µ∈M ′

kerHµ
G(s)

 ∩ ImE = {0}. (17)

From (16) and (17) we thus obtain that, in the terminology
of Section III, E is a robust factor of C at µ⋆. Therefore,
we have proved the following version of the internal model
principle, in which “embedding an internal model” is now
formally expressed in terms of robust factorization as detailed
in Section IV (see, in particular, Definition 1).

Theorem 2 (Internal Model Principle). Suppose that P1 and
P2 hold. Then, the controller embeds an internal model of
the exosystem, that is, E is a robust factor of C at µ⋆.

In the next sections, we show that this notion of internal
model along with the internal model principle of Theorem 2
extends to open time-varying systems.
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VI. INTERNAL MODEL PRINCIPLE
FOR TIME-VARYING OPEN SYSTEMS

This section extends the internal model principle of The-
orem 2 to time-varying open linear systems described by
the equations (6), (7), (8) introduced in Section V-A. We
refer to [21] for a behavioral theory of time-varying linear
systems. We suppose that all matrices are bounded and con-
tinuously depend on the time t, and that the plant’s matrices
AG, BG, PG, CG, QG also continuously depend on µ.

In the Francis and Wonham’s setting of Section V-B,
the exosystem’s behavior BE was autonomous. Since AE

was assumed marginally stable, the exosystem’s steady-state
behavior Bss

E was the behavior itself, i.e., BE = Bss
E . In

this open case, instead, the exosystem’s behavior is a set
of input-output pairs (v, d) solving (7), and AE needs not
be marginally stable. In general, however, the exosystem’s
steady-state behavior will be a subset of the full behavior.

In this context, P1 and P2 can be restated as
O1. System (6), (8) is contractive.
O2. The property ess = 0 is robust for the closed-loop

system (6), (7), (8).
Let us fix arbitrarily an initial time t0. In view of O2,

there exists an M-neighborhood M of µ⋆ on which ess = 0
holds. Along the lines of Section V-C, for each µ ∈ M , we
represent the steady-state closed-loop behavior, obtained by
setting e = 0, through the image representation

d = E(w0, v) (18a)
0 = Gµ

1u+Gµ
2d, (18b)

u = C(η0, v) (18c)

where now E ∈ L(RnE × Cb(R), Cb(R)), C ∈ L(RnC ×
Cb(R), Cb(R)), and Gµ

1 , G
µ
2 ∈ L(Cb(R), Cb(R)). In (18), w0

and η0 represent initial conditions at time t0. We observe
that, while before the steady-state disturbances d and con-
trol inputs u were only parameterized by the exosystem’s
initial conditions, they are now parameterized by both initial
conditions and the external signal v. We also observe that
w0, which represents the “past”, is not measured, and that
v, which is measured, needs only to be known from t0 on.

From (18), we thus obtain the following two equations
paralleling (14a) and (15) and describing the steady-state
control behavior

u = Hµ
GE(w0, v), u = C(η0, v),

where Hµ
G := −(Gµ

1 )
−1Gµ

2 .
We assume that, as in the previous time-invariant case, the

topology on M is such that ⋂
µ∈M ′

kerHµ
G

 ∩ ImE = {0} (19)

for every M-neighborhood M ′ ⊆ M of µ⋆. Then, by
means of the same arguments of Section V-C, we obtain
the following extension of the internal model principle of
Theorem 2.

Theorem 3. Suppose that O1 and O2 hold. Then, the
controller embeds an internal model of the exosystem, that
is, E is a robust factor of C at µ⋆.

VII. AN INTERNAL MODEL PRINCIPLE FOR NONLINEAR
CONTRACTIVE SYSTEMS

In this section, we extend Theorem 3 to a class of SISO
nonlinear systems described by the following equations

ẋE = fE(xE , v), d = hE(xE , v), (20)
ẋG = fµ

G(xG, u, d), e = hµ
G(xG, d), (21)

in which v ∈ V ⊆ Cb(R), µ ∈ M, fE : RnE×R → RnE and
hE : RnE×R are smooth functions, and fµ

G : RnG×R×R →
RnG and hµ

G : RnG × R → R are smooth for each µ ∈ M
and continuous in µ. We assume that to each steady-state
input-output pair (v, d) of the exosystem there corresponds
a steady-state trajectory xss

E satisfying (20).
We suppose that a controller of the form

ẋC = fC(xC , e, v), u = hC(xC , e, v) (22)

has been designed for a nominal value µ⋆ to ensure the
following two properties:
N1. The system (21), (22) is contractive for every steady-

state input-output pair (v, d) of the exosystem (20).
N2. The property ess = 0 is robust for the closed-loop

system (20), (21), (22).
Conditions N1 and N2 are the nonlinear counterparts of

O1 and O2. Let M be a neighborhood of µ⋆ for which
N1 and ess = 0 hold at each µ ∈ M , and pick µ ∈ M . For
each steady-state input-output pair (v, d) of (20), contraction
of (21), (22) implies convergence of its solutions to a
unique steady-state trajectory (xss

G, x
ss
C). N2 further implies

regulation of the steady-state trajectory, that is ess = 0.
Given steady-state input-output pair (v, d) of (20), let xss

E

be the corresponding steady-state trajectory of the exosys-
tem’s state, and let

˙δxE(t) = AE(t)δxE(t) + FE(t)δv(t)

δd(t) = CE(t)δxE(t) + LE(t)δv(t)
(23a)

˙δxG(t) = Aµ
G(t)δxG(t) +Bµ

G(t)δu(t) + Pµ
G(t)δd(t)

δe(t) = Cµ
G(t)δxG(t) +Qµ

G(t)δd(t)
(23b)

˙δxC(t) = AC(t)δxC(t) +BC(t)δe(t) + FC(t)δv(t)

δu(t) = CC(t)δxC(t) +DC(t)δe(t) + LC(t)δv(t)
(23c)

be the variational system obtained by linearizing (20), (21),
(22) around the motion (v, xss

E , x
ss
G, x

ss
C). We call δBµ(v, d)

the behavior of (23), and we notice that requirement N1
implies that (23b), (23c) is contractive for each steady-state
input-output pair (δv, δd) of (23a) [22].

We consider a subset δ̂B
ss

µ (v, d) ⊆ δBµ(v, d) of the
steady-state behavior of the linearized system (23) defined
by the constraint δe = 0, and we let Iµ(v, d) denote the set
of all steady-state input-output pairs (δv, δd) associated with
δ̂B

ss

µ (v, d) (namely, leading to δe = 0 in (23)). Finally, we
let I(v, d) := ∩µ∈MIµ(v, d) and, for each µ ∈ M , we let
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δ̃B
ss

µ (v, d) ⊆ δ̂B
ss

µ (v, d) denote the steady-state behavior of
the linearized system (23) restricted to I(v, d) (namely, we
obtain δ̃B

ss

µ (v, d) from δ̂B
ss

µ (v, d) by excluding all trajecto-
ries for which (δv, δd) /∈ I(v, d)). By construction, δe = 0

is then a robust property for the behavior δ̃B
ss

µ (v, d) in the
sense that it holds for all µ in a neighborhood of µ⋆. Then,
from N1 and N2, we obtain:
δN1. The system (23b), (23c) is contractive.
δN2. The property δe = 0 is robust for the behavior

δ̃B
ss

µ (v, d).
As in Section VI, we fix an initial time t0. Then, for every
µ ∈ M , we can describe the steady-state behavior δ̃B

ss

µ (v, d)
through the image representation (cf. (18))

δd = E(δw0, δv), (24a)
δu = Hµ

Gδd, (24b)
δu = C(δη0, δv), (24c)

in which E, Hµ
G, and C are linear operators defined as

in Section VI but whose domain is suitably restricted so
as (24) only describes δ̃B

ss

µ (v, d). As before, let us consider
a topology on M such that ⋂

µ∈M ′

kerHµ
G

 ∩ ImE = {0} (25)

for every M-neighborhood M ′ ⊆ M of µ⋆. Then, by means
of the same arguments of Section VI, we can use Theorem 3
to establish the following nonlinear version of the internal
model principle.

Theorem 4. Suppose that N1 and N2 hold. Then, the
controller (22) embeds an internal model of the exosystem,
that is, E is a robust factor of C at µ⋆.

Theorem 4 states that the linearization of the controller
around each steady-state trajectory of the regulated system
must include a copy of the linearized exosystem. This differ-
ential constraint on the controller along regulated trajectories
provides a nonlinear version of the internal model principle
including cases where the exosystem is open.

VIII. DISCUSSION AND CONCLUSIONS

Since Francis and Wonham’s landmark paper, the internal
model principle of control theory has always assumed an
autonomous exosystem. This paper examined the extension
to the case in which the exosystem is an open system with
measured input. The reformulation of the internal model
principle in the form of robust factorization was chosen
because it extends without difficulties to open time-varying
systems, and thereby also to contractive nonlinear systems.

We emphasize that robustness plays a crucial role in the
necessity of the internal model principle. This is in line with
the original formulation of Francis and Wonham’s result, but
departs from the subsequent nonlinear literature (e.g., [8],
[10], [11]) that focuses on a weaker steady-state reproducing
property, that is, the ability of the controller to generate the
steady-state solution of the closed-loop system.

This paper is only a first step in the direction of a
regulation theory for open systems. Future research will
investigate the extension of Theorem 4 to the MIMO case
and, starting from the above observations, constructive design
techniques based on open internal models. A regulation
theory for open systems should facilitate the interpretation
of the internal model principle as a general design principle
for feedback regulation, synchronization, and estimation.
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