
Safe Exit Controllers Synthesis for Continuous-time Stochastic Systems

Bai Xue, IEEE Member

Abstract— This paper tackles the problem of generating
safe exit controllers for continuous-time systems described by
stochastic differential equations (SDEs). The primary aim is
to develop controllers that maximize the lower bounds of
the exit probability that the system escapes from a safe but
uncomfortable set within a specified time frame and guide it
towards a comfortable set. The paper considers two distinct
cases: one in which the boundary of the safe set is a subset of
the boundary of the uncomfortable set, and the other where
the boundaries of the two sets do not intersect. To begin, we
present a sufficient condition for establishing lower bounds on
the exit probability in the first case. This condition serves as
a guideline for constructing a point-wise optimization using
linear programs. The linear programming problem is designed
to implicitly synthesize an optimal exit controller online that
maximizes the lower bounds of the exit probability. The method
employed in the first case is then extended to the second
one. Finally, we demonstrate the effectiveness of the proposed
approaches on one example.

I. INTRODUCTION

Stochastic systems are highly significant in various fields
such as robotics, finance, and biology due to their ability
to model uncertain factors that can greatly influence system
behavior. Stochastic differential equations (SDEs) provide a
powerful modeling approach for such systems as they allow
for the incorporation of inherent uncertainties in system
dynamics [1]. This enables the analysis of system behavior,
as well as the verification of properties related to safety,
reliability, and performance.

In recent years, there has witnessed an increased fo-
cus on safety properties [2], [3], [4], particularly in the
context of safety-critical systems. Safety verification via
barrier certificates for stochastic systems with infinite time
horizons was introduced in [5] alongside the determinis-
tic counterpart. This framework builds upon the known
Doob’s nonnegative supermartingale inequality (or, Ville’s
inequality [6]) and enables bounding the exit probability
from above, indicating the likelihood of a system leaving
a safe region. However, this approach has a limitation as
it requires the infinitesimal generator, responsible for the
expected value evolution of a stochastic process, to be non-
positive. Consequently, the barrier function is restricted to be
a supermartingale. To overcome this restriction, [7] relaxed
the condition by introducing barrier certificates based on c-
martingales. A c-martingale allows the expected value of the
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barrier function to increase over time while providing an
upper bound on the infinitesimal generator. This approach
provides upper bounds of the exit probability for systems
with finite time horizons. Afterwards, inspired by studies in
[8], [9] enhanced the c-martingales and proposed a barrier
certificate constraint that imposes a state-dependent bound
on the infinitesimal generator for upper-bounding the exit
probability with finite time horizons. Moreover, a sum-of-
squares optimization based method was proposed in [9] to
synthesizing polynomial state feedback controllers. Further
contributions to the computation of upper bounds of the
exit probability include [10], which presented a comparison
theorem for one-dimensional SDEs and applied it to upper-
bound exit probabilities for multi-dimensional SDEs in terms
of an exit probability of a one-dimensional process. Recently,
based on online convex quadratic programs that synthesize
controllers implicitly [11], [12], [13] introduced stochastic
control barrier functions as a framework for synthesizing
controllers that enforce upper bounds on exit probabilities
over both infinite and finite time horizons. The conditions
for upper-bounding exit probabilities in the aforementioned
works, except [10], are constructed or derived from the
Doob’s nonnegative supermartingale inequality.

On the other hand, in [14], a novel approach was pro-
posed for characterizing the exact reachability probability of
discrete-time stochastic systems. This probability measures
the likelihood of a system starting from an initial set and
eventually entering target sets, while staying within safe sets
before the first target hitting time. Unlike previous methods
that rely on Doob’s nonnegative supermartingale inequality,
this approach derives an equation that provides an exact
estimation of the reachability probability [15]. By relaxing
this equation, barrier-like conditions can be obtained to both
lower-bound and upper-bound the reachability probability.
Additionally, the method has been extended in [16] to
compute lower and upper bounds of the exit probability over
an infinite time horizon for discrete-time stochastic systems.
Furthermore, the equation and its relaxations have been
further extended in [17] to perform reach-avoid analysis over
infinite-time horizons for systems modeled by SDEs. The use
of sum-of-squares optimization techniques has enabled the
application of these barrier-like conditions in the synthesis
of controllers for safety-critical systems, as in [18].

In safety-focused applications, it is common to prioritize
the computation of upper bounds for the exit probability from
a safe set. However, there is a significant lack of methods
specifically focused on computing lower bounds, despite
their significance in certain practical scenarios. Consider
a situation where a system operates within a safe set but
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experiences discomfort, such as a robotic system navigating
around the boundary of the safe set. Although the system
is safe, it may encounter discomfort due to the fragility of
safety violations. In this situation, the system would prefer
to leave this typical safe set to alleviate the discomfort. By
maximizing lower bounds of the exit probability, we can
ensure that the system has a higher probability of safely
leaving this uncomfortable set and reaching a safe set that
provides more comfort. It not only ensures safety but also
considers comfort, resulting in a more holistic solution for
safety-focused applications. This aspect becomes increas-
ingly important for systems like autonomous vehicles, where
comfort plays a substantial role once safety requirements are
met. Additionally, considering lower bounds can complement
existing methods that focus on computing upper bounds
of the exit probability, and thus can provide us a more
comprehensive analysis of the system’s behavior.

In this paper, we investigate the problem of generating
safe controllers that optimize the lower bounds of exit
probabilities for continuous-time systems represented by
SDEs over both bounded and unbounded time horizons.
The exit probability refers to the likelihood of a system,
starting from an open, safe but uncomfortable set (which
is a subset of the safe set), exiting that set within a specified
bounded/unbounded time frame and entering a comfortable
set. We analyze two different cases in this study. In the
first case, the boundary of the safe set is a subset of the
boundary of the uncomfortable set. We begin by establishing
a sufficient condition for lower-bounding the exit probability
in this case, extending the condition presented in [18].
Based on the proposed sufficient condition, we formulate an
online linear programming problem to synthesize an optimal
controller implicitly that maximizes lower bounds of the
exit probability. Then we extend the sufficient condition
and linear programming method in the first case to the
second one, in which the boundary of the safe set does not
intersect with the boundary of the uncomfortable set. Finally,
to illustrate the effectiveness of our proposed methods, we
provide an example and demonstrate their applicability.

The main contribution of our work is summarized as
follows: unlike previous studies that primarily focused on
synthesizing controllers to enforce upper bounds on the
exit probability for systems modeled by SDEs, the present
work introduces novel conditions for controller synthesis
that specifically provide lower bounds of the exit proba-
bility. These conditions are applicable to both finite and
infinite time horizons in exit analysis. One key aspect of
our contribution is that our proposed conditions not only
extend the existing condition presented in [18] to the finite-
time scenario but also encompass it as a special case within
our framework. This demonstrates the versatility of our
conditions in handling a wider range of scenarios compared
to the one in [18].

This paper is structured as follows. In Section II, we
introduce SDEs and the problems of synthesizing safe exit
controllers. In Section III, we present our sufficient condi-
tions for characterizing lower bounds of the exit probabilities

and our linear programming methods for synthesizing con-
trollers that maximize these lower bounds. In Section IV, we
demonstrate the effectiveness of our approach through one
example. Finally, in Section V, we conclude the paper and
discuss avenues for future research.

Some basic notions are used in this paper: R and R≥0

stand for the set of real numbers and non-negative real
numbers, respectively; Rn and Rn×m denote the space of all
n-dimensional vectors and n×m real matrices, respectively;
for a set A, A and ∂A denotes the closure and boundary of
the set A, respectively; ∧ denotes the logical operation of
conjunction.

II. PRELIMINARIES

This section introduces SDEs and the exit controllers
synthesis problem of interest.

Consider an affine stochastic control system,

dx(t,w) = (f1(x(t,w))+f2(x(t,w))u(x(t)))dt

+ σ(x(t,w))dW (t,w),
(1)

where f1(·) : Rn → Rn, f2(·) : Rn → Rn×m, and σ(·) :
Rn → Rn×k are locally Lipschitz continuous function; the
admissible input is defined by the function u(·) : Rn → U
with U being the admissible input set; W (t,w) : R× Ω →
Rk is an k-dimensional Wiener process (standard Brownian
motion), and Ω, equipped with the probability measure P, is
the sample space w belongs to. The expectation with respect
to P is denoted by E[·].

Given a locally Lipschitz controller u(x), for an initial
state x0, the SDE (1) has a unique (maximal local) strong
solution over a time interval [0, Tx0(w)), where Tx0(w) is
a positive real value or infinity. This solution is denoted as
ϕw

x0
(·) : [0, 0) → Rn, which satisfies the stochastic integral

equation,

ϕw
x0
(t) =

∫ t

0

(f1(ϕ
w
x0
(τ)) + f2(ϕ

w
x0
(τ))u(ϕw

x0
(τ)))dτ

+

∫ t

0

σ(ϕw
x0
(τ))dW (τ,w) + x0.

Also, given a function v(x) that is twice continuously
differentiable over x, the infinitesimal generator underlying
system (1) with this controller u(x), which represents the
limit of the expected value of v(ϕw

x0
(t)) as t approaches 0,

is

Lv,u(x0) = lim
t→0

E[v(ϕw
x0
(t))]− v(x0)

t
=

[
∂v

∂x
(f1(x) + f2(x)u(x)) +

1

2
tr(σ(x)⊤

∂2v

∂x2
σ(x))] |x=x0

,

where ∂v
∂x represents the gradient of the function v(x) with

respect to x, and tr(·) denotes the trace of a matrix.
Given a safe set S ⊆ Rn and an uncomfortable set

C ⊆ S, a safe exit controller is a controller that maximizes
the exit probability of system (1), starting from C, entering
the comfortable set S \ C within a specified time horizon.
Additionally, it is required that the system remains inside C
before leaving it.
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Definition 1 (Safe Exit Controllers): Given a time hori-
zon T, an initial state x0 ∈ C and a probability threshold
px0 ∈ [0, 1], an exit controller is a locally Lipschitz controller
u(·) : C → Rm satisfying the following condition:

P

({
w ∈ Ω |

∃t ∈ T.ϕw
x0
(t) ∈ S \ C

∧
∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C

})
≥ px0

, (2)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.
In Definition 1, the exit controller is related to a lower

bound of the exact exit probability. The safe exit controllers
synthesis problem of interest in this work is to synthesize an
exit controller maximizing the threshold px0

. The synthesis
problem in this paper is considered in the following two
distinct cases.

The first case we consider is that the boundary of the safe
set S is a subset of the one of the uncomfortable set C, i.e.,
∂S ⊆ ∂C. Specifically, we assume S = {x ∈ Rn | h(x) >
0} with ∂S = {x ∈ Rn | h(x) = 0} and C = {x ∈
Rn | 0 < h(x) < 1} with ∂C = {x ∈ Rn | h(x) = 0 ∨
h(x) = 1}. This assumption is made based on the practical
consideration that a system operating close to the boundary
of a safe set is at a higher risk of safety hazards, thereby
making the system operation in this set uncomfortable. In
this case, system (1) should be enforced to exit the set C
through states satisfying h(x) = 1 rather than h(x) = 0.
Thus, that ∃t ∈ T.ϕw

x0
(t) ∈ S\C∧∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C is

equivalent to ∃t ∈ T.h(ϕw
x0
(t)) = 1 ∧ ∀τ ∈ [0, t).ϕw

x0
(τ) ∈

C. The corresponding exit controllers synthesis problem is
formulated in Definition 2.

Definition 2 (Safe Exit Controllers Synthesis Problem I):
Assume the safe set is S = {x ∈ Rn | h(x) > 0}
with ∂S = {x ∈ Rn | h(x) = 0} and the
uncomfortable set C = {x ∈ Rn | 0 < h(x) < 1}
with ∂C = {x ∈ Rn | h(x) = 0 ∨ h(x) = 1}, where
h(·) : Rn → R is a twice continuously differentiable
function. Given a time horizon T, the safe exit controllers
synthesis problem is to synthesize a locally Lipschitz
controller u(·) : C → Rm of maximizing lower bounds of
the exit probability for system (1) leaving the set C through
states in {x ∈ Rn | h(x) = 1}, i.e., solving the following
optimization problem:

max
u

px0

s.t. P

({
w ∈ Ω |

∃t ∈ T.h(ϕw
x0
(t)) = 1

∧
∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C

})
≥ px0

,
(3)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.
The second case we consider is that the boundary of the

uncomfortable set C does not intersect the boundary of the
safe set S, i.e., ∂S ∩ ∂C = ∅. In this case, we assume S =
{x ∈ Rn | h(x) > 0} with ∂S = {x ∈ Rn | h(x) = 0} and
C = {x ∈ Rn | g(x) < 1} with ∂C = {x ∈ Rn | g(x) =
1}. In this case, that ∃t ∈ [0, T ].ϕw

x0
(t) ∈ S \ C ∧ ∀τ ∈

[0, t).ϕw
x0
(τ) ∈ C is equivalent to ∃t ∈ [0, T ].ϕw

x0
(t) ∈ ∂C ∧

∀τ ∈ [0, t).ϕw
x0
(τ) ∈ C. Thus, the corresponding safe exit

controllers synthesis problem is formulated in Definition 3.

Definition 3 (Safe Exit Controllers Synthesis Problem II):
Assume the uncomfortable set is C = {x ∈ Rn | g(x) < 1}
with ∂C = {x ∈ Rn | g(x) = 1} and ∂S ∩ ∂C = ∅,
where g(·) : Rn → R is a twice continuously differentiable
function. Given a time horizon T, the safe exit controllers
synthesis problem is to synthesize a locally Lipschitz
controller u(·) : C → Rm of maximizing lower bounds of
the exit probability, i.e., solving the following optimization:

max
u

px0

s.t. P

({
w ∈ Ω |

∃t ∈ T.g(ϕw
x0
(t)) = 1∧

∀τ ∈ [0, t).ϕw
x0
(τ) ∈ C

})
≥ px0

,
(4)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.

III. EXIT CONTROLLERS SYNTHESIS

In this section, we describe our approach to solving the
safe exit controllers synthesis problems I and II. We first
focus on Problem I in Subsection III-A, where we present
a condition that exit controllers satisfy in order to derive
lower bounds on the exit probabilities for both infinite
and finite time horizons. This condition involves two free
parameters (i.e., a and b) that need to be optimized. Then,
we extend this condition to Problem II in Subsection III-B.
Finally, in Subsection III-C, we construct linear programs to
online synthesize optimal exit controllers implicitly for both
Problems I and II. By optimizing the two free parameters a
and b from the conditions, we design exit controllers online
that maximize the lower bounds on the exit probabilities.

A. Safe Exit Controllers Synthesis Conditions for Problem I

This subsection introduces a condition that exit controllers
satisfy in order to derive lower bounds on the exit probabil-
ities in Problem I for both infinite and finite time horizons.

The construction of the condition lies on an auxiliary
stochastic process {ϕ̃w

x0
(t), t ∈ R≥0} for x0 ∈ C that is a

stopped process corresponding to {ϕw
x0
(t), t ∈ [0, Tx0(w))}

and the set C, i.e.,

ϕ̃w
x0
(t) =

{
ϕw

x0
(t) if t < τx0(w)

ϕw
x0
(τx0(w)) if t ≥ τx0(w)

, (5)

where
τx0(w) = inf{t | ϕw

x0
(t) ∈ ∂C}

is the first time of exit of ϕw
x0
(t) from the open set C. It

is worth remarking here that if the path ϕw
x0
(t) escapes to

infinity in finite time, it must touch the boundary of the set
C and thus τx0(w) ≤ Tx0(w). The stopped process ϕ̃w

x0
(t)

inherits the right continuity and strong Markovian property of
ϕw

x0
(t). Moreover, the infinitesimal generator corresponding

to ϕ̃w
x0
(t) is identical to the one corresponding to ϕw

x0
(t) over

X , and is equal to zero on the boundary ∂C [19]. That is,
for v(x) being a twice continuously differentiable function,

L̃v,u(x) = Lv,u(x) =
∂v

∂x
(f1(x) + f2(x)u(x))

+
1

2
tr(σ(x)⊤

∂2v

∂x2
σ(x))
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for x ∈ C and L̃v,u(x) = 0 for x ∈ ∂C.
The probability of reaching the set C1 within the time

horizon T = [0, T ] for system (1) while staying inside the set
C before the first time of hitting C1, is equal to the probability
of reaching the set C1 at the time instant T for the auxiliary
stochastic process, where C1 = {x ∈ Rn | h(x) = 1}.

Lemma 1: Given a time instant T > 0 and x0 ∈ C,

P(∃t ∈ [0, T ].ϕw
x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C)

= P(ϕ̃w
x0
(T ) ∈ C1) = E[1C1(ϕ̃

w
x0
(T ))].

Moreover, for any 0 < T1 ≤ T2,

P(ϕ̃w
x0
(T1) ∈ C1) ≤ P(ϕ̃w

x0
(T2) ∈ C1),

where C1 = {x ∈ Rn | h(x) = 1}.
Proof: It is easy to observe that {w ∈ Ω | ∃t ∈

[0, T ].ϕw
x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C} = {w ∈

Ω | ϕ̃w
x0
(T ) ∈ C1}. Therefore, the conclusion holds.

In addition, we observe that for T1 ≤ T2,

{w ∈ Ω | ϕ̃w
x0
(T1) ∈ C1} ⊆ {w ∈ Ω | ϕ̃w

x0
(T2) ∈ C1}.

Consequently, P(ϕ̃w
x0
(T1) ∈ C1) ≤ P(ϕ̃w

x0
(T2) ∈ C1) holds

for T1 ≤ T2.
Remark 1: The conclusion that
P(∃t ∈ [0,∞).ϕw

x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C)

= lim
t→∞

P(ϕ̃w
x0
(t) ∈ C1)

is shown in [17], where x0 ∈ C.
Based on the auxiliary stochastic process defined above, a

condition can be straightforwardly obtained from Proposition
3 in [18] to lower-bound the exit probability over the infinite
time horizon.

Lemma 2: If there exists a locally Lipschitz controller
u(·) : C → U satisfying the following condition:

Lh,u(x) ≥ ah(x),∀x ∈ C, (6)

where a > 0, then

P(∃t ≥ 0.h(ϕw
x0
(t)) = 1∧∀τ ∈ [0, t).ϕw

x0
(τ) ∈ C) ≥ h(x0).

Lemma 2 introduces a useful condition that includes a free
parameter a. This condition is designed to establish a lower
bound on the exit probability for Problem I over an infinite
time horizon. However, the lower bound provided by Lemma
2 is solely determined by the initial state of the system
described in Equation (1), and it does not rely on the value
of a. Therefore, optimizing the value of a does not impact
the lower bound on the exit probability for Problem I over
the infinite time horizon. Moreover, condition (6) may be
overly stringent, significantly constraining the feasible space
for the controller u(·) : C → U . Below, we will introduce an
additional parameter b into condition (6) to establish a more
general and less restrictive condition that can provide lower
bounds on exit probabilities for both finite and infinite time
horizons in Problem I.

Theorem 1: If there exists a locally Lipschitz controller
u(·) : C → U satisfying the following condition:{

Lh,u(x) ≥ ah(x)− b ∀x ∈ C
a > b ≥ 0

, (7)

then

PT ≥ max{0,
eaT (h(x0)− b

a ) +
b
a − 1

(1− b
a )(e

aT − 1)
}

and

P∞ ≥ max{0,
h(x0)− b

a

1− b
a

},

where PT = P(∃t ∈ [0, T ].h(ϕw
x0
(t)) = 1 ∧ ∀τ ∈

[0, t).ϕw
x0
(τ) ∈ C) and P∞ = P(∃t ≥ 0.h(ϕw

x0
(t)) =

1 ∧ ∀τ ∈ [0, t).ϕw
x0
(τ) ∈ C).

Proof: According to (7), we have{
L̃h,u(x) + (a− b)1C1

(x) ≥ ah(x)− b ∀x ∈ C
a > b ≥ 0

, (8)

where C1 = {x ∈ Rn | h(x) = 1} and

L̃h,u(x) =

{
Lv,u(x) if x ∈ C
0 if x ∈ ∂C

.

Consequently,

E[h(ϕ̃w
x0
(T ))] ≥

∫ T

0

aE[h(ϕ̃w
x0
(t))]dt+ h(x0)

−
∫ T

0

bdt−
∫ T

0

(a− b)E[1C1
(ϕ̃w

x0
(t))]dt,∀x0 ∈ C.

Taking h(x) = −h(x) over x ∈ C, we have

E[h(ϕ̃w
x0
(T ))] ≤

∫ T

0

aE[h(ϕ̃w
x0
(t))]dt+ h(x0)

+

∫ T

0

bdt+

∫ T

0

(a− b)E[1C1
(ϕ̃w

x0
(t))]dt.

According to Grönwall inequality in the integral form, we
further have

E[h(ϕ̃w
x0
(T ))] ≤ α(T ) +

∫ T

0

α(s)aea(T−s)ds

= h(x0) +

∫ T

0

h(x0)ae
a(T−s)ds+ bT +

∫ T

0

bsaea(T−s)ds

+ (a− b)

∫ T

0

E[1C1
(ϕ̃w

x0
(s))]ds

+ a(a− b)

∫ T

0

∫ s

0

E[1C1(ϕ̃
w
x0
(t))]dtea(T−s)ds

≤ h(x0)e
aT − b

a
+

b

a
eaT

+ (a− b)eaTP(ϕ̃w
x0
(T ) ∈ C1)(−

1

a
e−aT +

1

a
)

where α(s) = h(x0) +
∫ s

0
(a− b)E[1C1

(ϕ̃w
x0
(t))]dt+

∫ s

0
bdt.

The last inequality is obtained according to Lemma 1.
Thus,

− 1 ≤ E[h(ϕ̃w
x0
(T ))] ≤ h(x0)e

aT − b

a
+

b

a
eaT

+ (a− b)eaTP(ϕ̃w
x0
(T ) ∈ C1)(−

1

a
e−aT +

1

a
)

After rearrangement, we have the conclusion that
P(ϕ̃w

x0
(T ) ∈ C1) ≥ max{0, eaT (h(x0)− b

a )+ b
a−1

(1− b
a )(eaT−1)

}.
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Furthermore, according to Lemma 1, PT ≥
max{0, eaT (h(x0)− b

a )+ b
a−1

(1− b
a )(eaT−1)

}.

That P∞ ≥ max{0, h(x0)− b
a

1− b
a

} can be obtained via letting

T approach infinity in eaT (h(x0)− b
a )+ b

a−1

(1− b
a )(eaT−1)

.
The reason that b is not allowed to be less than zero in

Theorem 1 lies in (8), since the contradiction that 0 ≥ −b
will be obtained over {x ∈ Rn | h(x) = 0} if b ≤ 0.

B. Safe Exit Controllers Synthesis Conditions for Problem II

This subsection introduces a condition to derive lower
bounds on the exit probabilities in Problem II for both infinite
and finite time horizons.

The condition introduced is an extension of the one (7)
in Theorem 1. Furthermore, in Problem I, leaving the set C
for system (1) is guaranteed when it hits certain part of its
boundary, i.e., C1. However, in the extended condition, hitting
any state in the boundary of the set C implies that system
(1) will leave the set C. To accommodate this situation, the
free parameter b in the extended condition is allowed to be
smaller than zero. This flexibility allows for a wider range
of scenarios to be considered, expanding the feasibility of
the condition and providing more general lower bounds on
exit probabilities.

Theorem 2: Given a safe but uncomfortable set C defined
in Section II, if there exists a locally Lipschitz controller
u(·) : C → U satisfying the following condition:{

Lg,u(x) ≥ ag(x)− b ∀x ∈ C
a > b

, (9)

then for x0 ∈ C,
1) when a > 0,

P(∃t ∈ [0, T ].ϕw
x0
(t) ∈ ∂C)

≥ max{0,
eaT (g(x0)− b

a ) +
b
a − 1

(1− b
a )(e

aT − 1)
}

and

P(∃t ∈ [0,∞).ϕw
x0
(t) ∈ ∂C) ≥ max{0,

g(x0)− b
a

1− b
a

}.

2) when a ≤ 0,

P(∃t ∈ [0, T ].ϕw
x0
(t) ∈ ∂C) ≥ max{0, 1− g(x0)− 1

(b− a)T
}

and P(∃t ∈ [0,∞).ϕw
x0
(t) ∈ ∂C) = 1.

Proof: 1). The conclusion for a > 0 can be obtained
by following the proof in Theorem 1, with C1 being replaced
by ∂C.

2). Since g(x) satisfies g(x) ≤ 1 over C, we have ag(x)−
b ≥ (a− b) > 0. Therefore,

L̃g,u(x) + (a− b)1∂C(x) ≥ a− b ≥ 0,∀x ∈ C.

Further, we conclude that

E[g(ϕ̃w
x0
(t))] ≥ g(x0),∀t ∈ [0, T ]

and

E[g(ϕ̃w
x0
(T ))]− g(x0)

+ (a− b)

∫ T

0

E[1∂C(ϕ̃w
x0
(t))]dt ≥ (a− b)T.

According to Lemma 1, we further have

(a−b)TP(∃t ∈ [0, T ].ϕ̃w
x0
(t) ∈ ∂C) ≥ (a−b)T +g(x0)−1,

which implies P(∃t ∈ [0, T ].ϕw
x0
(t) ∈ ∂C) ≥ 1 − g(x0)−1

(b−a)T .
Thus, we have

P(∃t ∈ [0, T ].ϕw
x0
(t) ∈ ∂C) ≥ max{0, 1− g(x0)− 1

(b− a)T
}.

Via letting T approach infinity, we further have P(∃t ∈
[0,∞).ϕw

x0
(t) ∈ ∂C) = 1.

C. Linear-Program-Based Controllers

In this subsection, we introduce our online linear program-
ming based method for implicitly synthesizing optimal exit
controllers that maximize lower bounds of exit probabilities
for both Problems I and II.

Except for the controller u, both conditions (7) and (9)
involve two additional free parameters, a and b, that need
to be determined in order to optimize the lower bounds
stated in Theorem 1 and 2. These conditions have a linear
dependency on these parameters. However, the lower bounds
exhibit nonlinearity with respect to a and b, except when
a ≤ 0 and T → ∞ in Theorem 2. Hence, it is not advisable
to solve a maximization problem with condition (7) (or (9))
and the lower bounds from Theorem 1 (or 2) as the objective
function, especially for online optimization which demands
high efficiency.

On the other hand, it is observed that both the lower
bounds eaT (h(x0)− b

a )+ b
a−1

(1− b
a )(eaT−1)

and h(x0)− b
a

1− b
a

in Theorem 1
are monotonically increasing with a and decreasing with
b. Similar to Theorem 1, all the lower bounds, i.e.,
eaT (g(x0)− b

a )+ b
a−1

(1− b
a )(eaT−1)

, g(x0)− b
a

1− b
a

, 1 − g(x0)−1
(b−a)T , and 1, in The-

orem 1 are monotonically increasing with respect to a and
decreasing with respect to b. Moreover, it is observed that as
the value of a tends towards zero from the right, the lower
bound eaT (g(x0)− b

a )+ b
a−1

(1− b
a )(eaT−1)

in Theorem 2 tends to approach

1− g(x0)−1
bT , i.e., lima→0+

eaT (g(x0)− b
a )+ b

a−1

(1− b
a )(eaT−1)

= 1− g(x0)−1
bT ,

which is equal to the lower bound in the case of a ≤ 0
with a = 0. Thus, the objective function max(a − wb) is
a suitable candidate, where w denotes a specified weighting
factor. This factor allows for the adjustment of the relative
importance of b compared to a according to the specific
requirements of the problem. Additionally, in order to ensure
boundedness of a − wb, we impose a bound constraint on
a and b. Consequently, we can synthesize exit controllers
of maximizing lower bounds of the exit probabilities for
Problem I online in the form of point-wise optimization as
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Fig. 1: Illustration of trajectories and lower bounds of exit probabilities computed via solving optimization (10) online.(
a-1 and b-1: red line – C1 = {(x1, x3)

⊤ | x3−1.8x1
4

= 1}, blue line – {(x1, x3)
⊤ | x3−1.8x1

4
= 0}, magenta curve – trajectory driven

by the controller computed via solving (10); a-2 and b-2: red curve – lower bound of the exit probability when T = [0, 2] with respect

to time, i.e., ea(T−t)(h(x(t))− b
a
)+ b

a
−1

(1− b
a
)(ea(T−t)−1)

, blue curve – lower bound of the exit probability when T = [0,∞) with respect to time (blue and

red curves collide in b-2), i.e., h(x(t))− b
a

1− b
a

; a-3 and b-3: x1(t); a-4 and b-4: x3(t).
)

in [12] using linear programs below.

max
u(x)∈U,a,b

a− wb

s.t. Lh,u(x) ≥ ah(x)− b

a > b ≥ 0

a ≤ δ

, (10)

where Lh,u(x) = ∂h
∂x (f1(x) + f2(x)u(x)) +

1
2 tr(σ(x)⊤ ∂2h

∂x2σ(x)) and δ > 0 is a specified bound.
Correspondingly, we can synthesize exit controllers of

maximizing lower bounds of the exit probabilities for Prob-
lem II online in the form of point-wise optimization using
linear programs below.

max
u(x)∈U,a,b

a− wb

s.t. Lg,u(x) ≥ ag(x)− b

a > b

a, b ∈ [−δ, δ]

, (11)

where Lg,u(x) = ∂g
∂x (f1(x) + f2(x)u(x)) +

1
2 tr(σ(x)⊤ ∂2g

∂x2σ(x)) and δ > 0 is a specified bound.
It is worth noting that due to the imposed constraint on the

control input, specifically u ∈ U , the existence of a solution
for either of the optimization problems (10) and (11) is not
guaranteed, even if the boundedness requirements on a and
b are disregarded. However, as in [12], this issue can be
resolved by incorporating slack variables into Lh,u(x) ≥
ah(x)− b in (10) and Lg,u(x) ≥ ag(x)− b in (11).

IV. EXAMPLES

In this section we demonstrate our linear-programming
based exit controllers synthesis method on one example
involving three scenarios.

Consider a system with three states (x1, x2, x3)
⊤[13],

[20], where x1 denotes the velocity of the following vehicle,
x2 denotes the velocity of the leading vehicle, and x3 denotes
the distance between the vehicles. The velocity of the leading
vehicle was chosen as a constant. The input is the force
applied to the following vehicle, leading to dynamics

d


x1

x2

x3

 =


−Fr(x)/M

0

x2 − x1

+


1/M

0

0

u+
∑

dW,

where Fr = f0 + f1x1 + f2x
2
1 is the aerodynamic drag with

constants f0 = 0.1, f1 = 5, and f2 = 0.25. The mass M =

1650,
∑

=


1 0 0

0 0 0

0 0 1

, and u ∈ [−1, 1]. The initial state

for x2 was chosen as x2(0) = 0.5. Since the velocity of
the leading vehicle was chosen as a constant, the system is
equivalently reduced to

d

(
x1

x3

)
=

(
−Fr(x)/M

0.5− x1

)
+

(
1/M

0

)
u+

(
1 0

0 1

)
dW.

We consider three scenarios with both the finite time
horizon of T = [0, 2] and the infinite time horizon of T =
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Fig. 2: Illustration of trajectories and lower bounds of exit probabilities computed via solving optimization (10) online.(
a-1 and b-1: red line – C1 = {(x1, x3)

⊤ | x2
1+x2

3−1

8
= 1}, blue line – {(x1, x3)

⊤ | x2
1+x2

3−1

8
= 0}, magenta curve – trajectory driven

by the controller computed via solving (10); a-2 and b-2: red curve – lower bound of the exit probability when T = [0, 2] with respect

to time, i.e., ea(T−t)(h(x(t))− b
a
)+ b

a
−1

(1− b
a
)(ea(T−t)−1)

, blue curve – lower bound of the exit probability when T = [0,∞) with respect to time (blue and

red curves collide in b-2), i.e., h(x(t))− b
a

1− b
a

; a-3 and b-3: x1(t); a-4 and b-4: x3(t).
)

[0,∞). Moreover, the weighting factor w in the optimization
problems (10) and (11) is chosen to be 1012 and 1. The first
two scenarios correspond to Problem I. The first scenario
features an unbounded safe set S and uncomfortable set C,
while the second one features an unbounded safe set S but a
bounded uncomfortable set C. The third scenario corresponds
to Problem II, which includes a bounded uncomfortable set
C. Detailed configuration information and some computation
results are presented below.

1) The safe set is S = {(x1, x3)
⊤ | x3 − 1.8x1 > 0},

the safe but uncomfortable set is defined as C =
{(x1, x3)

⊤ | 0 < x3−1.8x1

4 < 1}, and the initial
state is set to (−0.5, 1.5)⊤. The simulation trajectories
and lower bounds of exit probabilities, computed by
solving the linear optimization (10) with δ = 10, are
presented in Fig. 1.

2) The safe set is S = {(x1, x3)
⊤ | x2

1+x2
3−1 > 0}, the

safe but uncomfortable set is C = {(x1, x3)
⊤ | 0 <

x2
1+x2

3−1
8 < 1}, and the initial state is (−0.5, 1.5)⊤.

The simulation trajectories and lower bounds of exit
probabilities, computed by solving the linear optimiza-
tion (10) with δ = 10, are presented in Fig. 2.

3) The safe set is S = {(x1, x3)
⊤ | x2

1 + x2
3 >

1}, the uncomfortable set is C = {(x1, x3)
⊤ |

(x1−10)2+(x3−10)2

64 < 1}, and the initial state is
(10, 10)⊤. The simulation trajectories and lower
bounds of exit probabilities, computed by solving
optimization (11) with δ = 10, are presented in Fig. 3.

The results presented in Figures 1, 2, and 3 demonstrate

the significant impact of the weighting factor w on the
performance of the synthesized controllers. Notably, in the
first two scenarios, the controllers computed with w = 1012

show superior performance in safely guiding the system out
of the uncomfortable set C with high probabilities, compared
to those obtained with w = 1, especially during the initial
phase. In the third scenario, where ∂C ∩ ∂S = ∅, the
controller synthesized with w = 1012 exhibits superior
performance in terms of achieving high probabilities for
safely driving the system out of the uncomfortable set C,
when an infinite time horizon T = [0,∞) is considered.
However, the performance during the initial phase is inferior
when the time horizon is limited to T = [0, 2], compared to
that obtained with w = 1.

V. CONCLUSION

This paper focused on the synthesis of safe exit controllers
for continuous-time systems described by SDEs. The main
objective is to design controllers that maximize the lower
bounds of the exit probability that the system escapes from
a safe but uncomfortable set within a specific time horizon
and enters a comfortable set. The paper discussed two cases:
the first case involves the scenario where the boundary of
the safe set is a subset of the boundary of the safe but
uncomfortable set, and the second case deals with situations
where the boundaries do not intersect. In the first case, the
paper presented a sufficient condition for lower-bounding
the exit probability. This condition provides a guideline for
constructing online linear programming problems, which in
turn facilitate synthesizing optimal exit controllers implicitly.
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Fig. 3: Illustration of trajectories and lower bounds of exit probabilities computed via solving optimization (11) online.(
a-1 and b-1: blue curve – {(x1, x3)

⊤ | (x1−1)2+(x3−10)2

64
= 1}, magenta curve – trajectory driven by the controller computed via

solving (11); a-2 and b-2: red curve – lower bound of the exit probability when T = [0, 2] with respect to time, i.e.,
ea(T−t)(g(x(t))− b

a
)+ b

a
−1

(1− b
a
)(ea(T−t)−1)

if a > 0 and 1− g(x(t))−1
(b−a)(T−t)

if a ≤ 0, blue curve – lower bound of the exit probability when T = [0,∞) with

respect to time (blue and red curves collide in b-2), i.e., h(x(t))− b
a

1− b
a

if a > 0 and 1 if a ≤ 0; a-3 and b-3: x1(t); a-4 and b-4: x3(t).
)

These controllers are designed to maximize the lower bounds
of the exit probabilities. Then, this sufficient condition was
extended to the second case, where the boundaries of the
safe set and the uncomfortable set do not intersect. Finally,
an example was presented to validate the proposed method.

The first case discussed in this paper involves a scenario
where the boundary of the safe set intersects with that of
the uncomfortable set. However, it is limited to the typical
case where the boundary of the safe set is a subset of the
boundary of the uncomfortable set. In future studies, we will
explore more general cases where only a subset of the safe
set’s boundary intersects that of the uncomfortable set.

REFERENCES

[1] Peter E Kloeden, Eckhard Platen, Peter E Kloeden, and Eckhard
Platen. Stochastic differential equations. Springer, 1992.

[2] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás
Wolovick, and Lijun Zhang. Measurability and safety verification for
stochastic hybrid systems. In Proceedings of the 14th international
conference on Hybrid systems: computation and control, pages 43–52,
2011.

[3] Claire J Tomlin, Ian Mitchell, Alexandre M Bayen, and Meeko
Oishi. Computational techniques for the verification of hybrid systems.
Proceedings of the IEEE, 91(7):986–1001, 2003.

[4] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria
Prandini. Approximate model checking of stochastic hybrid systems.
European Journal of Control, 16(6):624–641, 2010.

[5] Stephen Prajna, Ali Jadbabaie, and George J Pappas. A framework for
worst-case and stochastic safety verification using barrier certificates.
IEEE Transactions on Automatic Control, 52(8):1415–1428, 2007.

[6] Jean Ville. Etude critique de la notion de collectif. 1939.
[7] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification of

stochastic non-linear systems. The International Journal of Robotics
Research, 31(7):901–923, 2012.

[8] Harold Joseph Kushner and Kushner. Stochastic stability and control,
volume 33. Academic press New York, 1967.

[9] Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. A barrier
function approach to finite-time stochastic system verification and
control. Automatica, 125:109439, 2021.

[10] Petter Nilsson and Aaron D Ames. Lyapunov-like conditions for tight
exit probability bounds through comparison theorems for sdes. In
2020 American Control Conference (ACC), pages 5175–5181. IEEE,
2020.

[11] Randy A Freeman and Petar V Kokotovic. Inverse optimality in robust
stabilization. SIAM journal on control and optimization, 34(4):1365–
1391, 1996.

[12] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada.
Control barrier function based quadratic programs for safety critical
systems. IEEE Transactions on Automatic Control, 62(8):3861–3876,
2016.

[13] Chuanzheng Wang, Yiming Meng, Stephen L Smith, and Jun Liu.
Safety-critical control of stochastic systems using stochastic control
barrier functions. In 2021 60th IEEE Conference on Decision and
Control (CDC), pages 5924–5931. IEEE, 2021.

[14] Bai Xue, Renjue Li, Naijun Zhan, and Martin Fränzle. Reach-
avoid analysis for stochastic discrete-time systems. In 2021 American
Control Conference (ACC), pages 4879–4885. IEEE, 2021.

[15] Bai Xue. Reachability verification for stochastic discrete-time dynam-
ical systems. arXiv preprint arXiv:2302.09843, 2023.

[16] Yiqing Yu, Taoran Wu, Bican Xia, Ji Wang, and Bai. Xue. Safe prob-
abilistic invariance verification for stochastic discrete-time dynamical
systems. In 2023 62nd IEEE Conference on Decision and Control
(CDC), pages 5175–5181. IEEE, 2023.

[17] Bai Xue, Naijun Zhan, and Martin Fränzle. Reach-avoid analysis for
polynomial stochastic differential equations. IEEE Transactions on
Automatic Control, 69(3):1882–1889, 2024.

[18] Bai Xue. Reach-avoid controllers synthesis for safety critical systems.
To appear in IEEE Transactions on Automatic Control, 2024.

[19] Harold J Kushner. Stochastic stability and control. New York:
Academic, 1967.

[20] Andrew Clark. Control barrier functions for complete and incomplete
information stochastic systems. In 2019 American Control Conference
(ACC), pages 2928–2935. IEEE, 2019.

5157


