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Abstract— Although switching-based stabilization of 1D
parabolic systems was investigated by employing one actuator
moving in spatial domain in our recent paper [18], this method
increases the system cost since actuator and sensor switching
happens at fixed time regardless of whether the switching is nec-
essary or not. To further reduce operating and production cost,
in the present paper, switching-based dynamic event-triggered
control law is studied to stabilize the parabolic PDE systems
via output-dependent switching law. Constructive exponential
stability conditions are established by using Lyapunov method.
A numerical example shows the effectiveness of the proposed
methods.

I. INTRODUCTION

In recent years, event-triggered control is becoming a hot
research area since it can reduce the amount of transmitted
information and save the computation resources. Owing to
the superior performance, some fruitful results on the event-
triggered control of ODEs (see e.g. [1]-[3]) and PDEs (see
e.g. [4]-[9]) have been reported. In general, the investigation
on event-triggering mechanism (ETM) can be classified into
two categories: dynamic ETM (see e.g. [1], [4]) and static
ETM (see e.g. [2], [3], [6]). In [4], a dynamic event-triggered
control law was proposed for a class of reaction-diffusion
systems with Robin actuation. In [5], a static event-triggered
controller was suggested for nonlinear Korteweg-de Vries
equation.

A switching approach to ETM was introduced in [10]
to reduce the amount of measurements to be sent. This new
method has been applied for ODE systems, such as uncertain
nonlinear systems in [11] and discrete-time switched systems
in [12]. As for PDEs, the switching-based dynamic event-
triggered control has been proposed in [13] for stabilizing a
reaction-diffusion equation. Taking switching rule and ETM
into account is of great importance for PDEs, which can
further improve system performance.

The construction of switching rules for control of systems
is an active research area. Due to its superior capability to
reduce the energy, switching control law has been widely
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adopted for PDEs (see e.g. [14], [15], [16], [17]). In [14],
[15], the implementation of optimal and switching policies
of spatially scheduled actuators was created for a class
of PDEs. In [16], [17], the integrated design of switching
control and mobile actuator/sensor guidance was proposed
to exponentially stabilize the reaction-diffusion equation.
In our recent paper [18], a sampled-data switching-based
controller was developed for 1D parabolic systems by em-
ploying one actuator moving in spatial domain. Although the
sampled-data (time-triggered) switching control improves the
performance with reduced operating and production costs,
this method also increases the system cost since actuator
switching happens at fixed time regardless of whether the
switching is necessary or not. Therefore, the ETM was added
into the switching rule to reduce the unnecessary switching
cost and wear (see e.g. [19]-[22]), which has the advantage
of reducing the frequency of transmissions and improving the
utilization rate of system resources. Though some researchers
have applied this novel scheme for PDEs to increase the
utilization efficiency of the devices (see e.g. [21]) and save
the computation resources (see e.g. [22]), it is worth to
mention that the switching-based event-triggered control may
be inefficient for the case of unstabilizable open-loop system,
which motivates our study.

To further reduce the number of switches, in this paper,
we focus on a switching-based event-triggered control strat-
egy design for parabolic PDEs for the first time. The main
contributions and challenges are summarized as follows:

• Compared with our previous result on switching con-
trol in [18], an improved scheme is considered by
adding ETM to reduce the number of switches. A novel
switching-based event-triggered controller is proposed
for reaction-diffusion equation. The key idea of con-
trol strategy is to stabilize the system by using only
one actuator that moves in the spatial domain and a
dynamic ETM is designed to reduce the frequency of
actuator switching (moving to another domain), thereby
improving system performance.

• Different from the existing works on mobile actuators
(see e.g. [14]-[17]), appropriate switching rule and ETM
are proposed to stabilize the nonlinear reaction-diffusion
equation by moving actuators. The guidance of active
actuators is provided by the output-dependent switching.

The rest of paper is organized as follows. The problem
statement and switching-based event-triggered control design
are discussed in Section II. Section III is devoted to well-
posedness and stability analysis. A numerical simulation is
presented in Section IV. Finally, concluding remarks are
given in Section V.
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Notation. The symbol ∗ represents symmetric elements.
The support of a function g is denoted by suppg, and
conv(suppg) represents the convex hull of suppg. L2(0,L)
stands for the Hilbert space of square integrable scalar func-
tions f (x) on (0,L) with the corresponding norm ∥ f∥L2(0,L) =

[
∫ L

0 f 2(x)dx]
1
2 . L∞(0,L) denotes the space of essentially

bounded function f (x) on (0,L) with he corresponding norm
∥ f∥L∞(0,L) = esssup

x∈[0,L]
| f (x)|. The Sobolev space Hk(0,L) with

k ∈ Z is defined as Hk(0,L) = { f : f (α) ∈ L2(0,L), ∀ 0 ≤
|α| ≤ k} with norm ∥ f∥Hk(0,L) = { ∑

0≤|α|≤k
∥ f (α)∥2

L2(0,L)}
1
2 .

Hk
0(0,L) = { f ∈ Hk(0,L)| f (0) = f ′(0) = ... = f (k−1)(0) =

0, f (L) = f ′(L) = ...= f (k−1)(L) = 0}.

II. PROBLEM FORMULATION

Let 0 = t0 < t1 < .. .< tk < tk+1 < .. . , lim
k→∞

tk = ∞ be
a sequence of sampling instants that will be determined
by dynamic ETM later. Consider the following nonlinear
reaction-diffusion PDE: zt(x, t)= ∂

∂x [a(x)zx(x, t)]+ϕ(z(x, t))+bσk(x)uσk(t),
x ∈ Ω, t ∈ [tk, tk+1),

z(x,0) = z0(x),
(2.1)

where k ∈ Z0
+, under the Dirichlet

z(0, t) = z(l, t) = 0, t > 0, (2.2)

or Neumann boundary conditions

zx(0, t) = zx(l, t) = 0, t > 0, (2.3)

where Ω = [0, l] stands for spatial domain, z(x, t) is the state
of reaction-diffusion equation, z0(x) is the initial state, uσk(t)
is the control input of the plant. The switching function σk :
k ∈ Z+ →{1, . . . ,N} selects at each sampling time tk one of
the N available actuators corresponding to the shape function
bσk(x) that will be shortly defined. The unknown function
a(x) is of class C1 such that 0 < a0 < a(x) for x ∈ Ω, where
a0 is known bound. We make the following assumptions:

• Nonlinearity: It is supposed that the nonlinear function
ϕ is of class C1 and satisfies the following inequality

ϕ
2(z(x, t))≤ φz2(x, t), (2.4)

where φ is some positive constant. The open-loop
system (2.1) may become unstable if φ is large enough.

• Spatial sampling: Following [23], [24], we divide Ω

into N equal-length subintervals Ω j = [x j−1,x j)( j =
1, . . . ,N) with the points 0 = x0 < x1 < · · · < xN =
l. Therefore, the length of each interval is given by
|Ω j| = l

N . The shape functions b j(x) are chosen to be
characteristic functions b j(x) of Ω j as follows:{

b j(x) = 0, x /∈ Ω j,
b j(x) = 1, otherwise, j = 1, . . . ,N. (2.5)

• Measurements: Assume that N sensors provide the
averaged state measurements:

y j(t) =

∫
Ω j

z(x, t)dx

|Ω j|
=

N
l

∫
Ω j

z(x, t)dx (2.6)

• Switching rule: Define the following switching law [18]:

σk = argmax
j

[∫
Ω j

z(x, tk)dx
]2

, (2.7)

which means that the σk-th mode is active if[∫
Ω j

z(x, tk)dx
]2

≤

[∫
Ωσk

z(x, tk)dx

]2

, ∀ j = 1, . . . ,N. (2.8)

• Moving time: The moving time δ ∈ (0,h0) for actuators
to the appropriate domain Ωσk is taken into account
similar to [18]. Therefore, the length of sampling subin-
tervals in time satisfies 0 < h0 ≤ tk+1 − tk.

• Time sampling: Inspired by [13], the sampling instants
0 = t0 < t1 < .. .< tk < tk+1 < .. . , lim

k→∞
tk = ∞ is deter-

mined by the following dynamic ETM:

tk+1 = min{t > tk +h0
∣∣|eσk(t)|2 − ε|yσk(t)|2 > θm(t)}

(2.9)
where ε > 0, θ > 0 and e j(t) = y j(t)− y j(tk), j =
1,2, . . . ,N are continuous in time. The dynamic variable
m(t) satisfies the following differential equation:

ṁ(t)=

{
−2ε1m(t), t ∈ [tk, tk +h0),

−ε0m(t)+ε|yσk(t)|2−|eσk(t)|2, t∈[tk +h0, tk+1),

for scalar parameters ε0 > 0 and ε1 > 0. Assume that
the initial condition m(0) = m0 ≥ 0, which implies that
m(t) ≥ 0 for t ∈ [0,∞). This dynamic ETM can deter-
mine the sampling instants at which the measurements
and the switching control law need to be updated,
whereas the actuator starts moving to the resulting zone.

In order to take into account the moving time of actuators,
we follow [18] and consider additional switching between
the open-loop system (when the actuator is moving) during
the part of the sampling interval and the closed-loop switched
system during the remaining part of the interval. Then
the switching-based dynamic event-triggered control law is
presented as follows:

uσk(t) =
{

0, t ∈ [tk, tk +δ ),
−Kyσk(tk), t ∈ [tk +δ , tk+1)

(2.10)

with some K > 0. The switching signal σk is calculated at
time tk, whereas it takes δ seconds for actuators to move to
the domain Ωσk . Define a characteristic function:

χ[a,b](t) =

{
1, if t ∈ [a,b],
0, otherwise.

(2.11)

Then the closed-loop system can be presented as two
switches between three systems. The first one (for t ∈ [tk, tk+
δ )) is governed by

zt(x, t)= ∂

∂x [a(x)zx(x, t)]+ϕ(z(x, t))
−KN

l

[
1−χ[tk,tk+δ ](t)

]
bσk(x)

∫
Ωσk

z(x, tk)dx.(2.12)

The second one (for t ∈ [tk+δ , tk+h0)) is governed by (2.12)
where the ETM is not activated. The third one (for t ∈ [tk +
h0, tk+1)) is governed by (2.12) subject to the continuous
ETM (2.9).
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III. MAIN RESULTS

In this section, the well-posedness of the controlled
system will be analyzed. Furthermore, we will give the
stability analysis of the system under the switching-based
event-triggered controller.

A. Well-posedness of the controlled system

Now we employ the step method (see Section 1.2 in [26])
to analyze the well-posedness of the system.
For t ∈ [t0, t1], we assume that the σk-th mode is active.
The system (2.1) via the switching-based event-triggered
controller under the Dirichlet boundary conditions (2.2) can
be rewritten to the following equation:{ d

dt
z(·, t) = A z(·, t)+F (z(·, t)),

z(·,0) = z0(·),
(3.1)

where dissipative operator A = ∂

∂x [a(x)
∂

∂x ] has the dense
domain

D((−A )
1
2 ) = H1

0 (0, l) = { f ∈ H1(0,1)| f (0) = f (l) = 0}

with the norm ∥ f∥H1
0 (0,l)

= ∥ f
′∥L2(0,l). The nonlinear term

F is defined as follows:

F (z(·, t))=

{
ϕ(z(·, t)), t ∈ [t0, t0 +δ ]
ϕ(z(·, t))− KN

l bσk(x)
∫

Ωσk
z0(x)dx, t ∈ [t0 +δ , t1].

Note that F is locally Lipschitz continuous, Therefore, for
z1,z2 ∈H1

0 (0, l) with ∥z1∥H1
0 (0,l)

≤C, ∥z2∥H1
0 (0,l)

≤C, we have

∥F (z1)−F (z2)∥L2(0,l) ≤ κ(C,φ)∥z1 − z2∥H1
0 (0,l)

,

where κ(C,φ) is a positive constant. From Theorem 3.3.3 of
[27], we have that there exists a unique strong solution on
[t0, t1] for any initial condition z0 ∈ H1

0 (0, l).
Then we continue the same procedure for t ∈ [t1, t2], t ∈
[t2, t3], . . . . Finally, step by step we conclude that the strong
solution exists for all t ≥ 0 in the sense that

z ∈C([0,∞);H1
0 (0, l))∩L2([0,∞);D(A )),

ż ∈ L2([0,∞);L2(0, l)).

B. Stability analysis of the controlled system

Denote f j(x, t) ≜ z(x, t) −
∫

Ω j
z(ξ ,t)dξ

|Ω j | . The switching-
based event-triggered control (2.10) can be rewritten as

uσk(t)=
{

0, t∈ [tk, tk+δ ),
−K[z(x, t)−eσk(t)− fσk(x, t)], t∈ [tk+δ , tk+1).

(3.2)

whereas the switching law chooses σk that satisfies:∫
Ω j

[z(x, t)− e j(t)− f j(x, t)]
2 dx

≤
∫

Ωσk

[
z(x, t)− eσk(t)− fσk(t)

]2dx, j = 1,2, . . . ,N.
(3.3)

Therefore, the closed-loop system (2.12) has the form of

zt(x, t)= ∂

∂x [a(x)zx(x, t)]+ϕ(z(x, t))
−K(1−χ[tk,tk+δ ])bσk(x)[z(x, t)−eσk(t)− fσk(x, t)]

(3.4)

on t ∈ [tk, tk + δ ). For t ∈ [tk + δ , tk + h0), the closed-loop
system is (3.4) where the ETM is not activated. For t ∈

[tk + h0, tk+1) the closed-loop system is (3.4) subject to the
continuous ETM (2.9).

To study the stability of (3.4), we suggest the following
switching Lyapunov functional:

V (t) =VP1(t)+VP2(t)+χ[tk+δ ,tk+h0](t)VR(t)+m(t) (3.5)

where t ∈ [tk, tk+1) and

VP1(t) = P1
∫ l

0 z2(x, t)dx,
VP2(t) = P2

∫ l
0 a(x)z2

x(x, t)dx,
VR(t) = R(h0 + tk − t)

∫ l
0
∫ t

tk+δ
e−2α(t−s)z2

s (x,s)dsdx.
(3.6)

Note that m(t) ≥ 0 implies that V (t) is positive definite.
To choose h0 suitably, inspired by [24] and [26], we use a
functional VR(t) to calculate the maximal value of h0. From
(3.6), it follows that VR(tk + δ ) = VR(tk + h0) = 0, which
implies that V (t) is a continuous function for t ∈ [0,∞).

Theorem 3.1: Consider the closed-loop system (3.4) sub-
ject to Dirichlet boundary conditions (2.2). Given positive
parameters K, h0, θ , ε0, ε , α , δ , ε1 > α , h0 > δ and tuning
parameter α0 such that αh0 > (α0 + α)δ , let there exist
scalars Pn ≥ 0 (n = 1,2,3,4), λi ≥ 0 (i = 0,1,2,3,4) and
R ≥ 0 that satisfy the LMIs:

2αa0P2 −2a0P4 +
λ2l2

N2π2 +
λ3l2

π2 < 0 (3.7)

2α +
l
N

λ4θ − ε0 < 0, (3.8)

Ψm < 0, m = 0,1,2, (3.9)

where

Ψ0 =

 −2α0(P1 +P2a0
π2

l2 )+λ0φ P1 −P3 P3

∗ −2P2 P2
∗ ∗ −λ0

 ,

(3.10)

Ψ1 =



Ψ1
11 Ψ1

12 P4
λ1

N −1
λ1

N −1
∗ Ψ1

22 P2 0 0
∗ ∗ −λ0 0 0

∗ ∗ ∗ Ψ1
44 − λ1

N −1
∗ ∗ ∗ ∗ Ψ1

55


, (3.11)

Ψ2 =


Ψ2

11 Ψ2
12 P4 P4K −λ1 P4K −λ1

∗ Ψ2
22 P2 P2K P2K

∗ ∗ −λ0 0 0
∗ ∗ ∗ Ψ2

44 λ1
∗ ∗ ∗ ∗ Ψ2

55

 ,

(3.12)

Ψ3 =



Ψ3
11 Ψ3

12 P4
λ1

N −1
λ1

N −1
∗ −2P2 P2 0 0
∗ ∗ −λ0 0 0

∗ ∗ ∗ Ψ3
44 − λ1

N −1
∗ ∗ ∗ ∗ Ψ3

55


, (3.13)
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Ψ4 =


Ψ4

11 Ψ4
12 P4 P4K −λ1 P4K −λ1

∗ −2P2 P2 P2K P2K
∗ ∗ −λ0 0 0
∗ ∗ ∗ Ψ4

44 λ1
∗ ∗ ∗ ∗ Ψ4

55

 ,

(3.14)
Ψ1

11 = Ψ3
11 = 2αP1+λ0φ−λ3− λ1

N−1 , Ψ1
12=Ψ3

12=P1−P4,

Ψ1
22 = Ψ2

22 = R(h0 −δ )−2P2, Ψ1
44 = Ψ3

44 =− λ1
N−1 −λ2,

Ψ1
55 =− λ1

N−1 −
Re−2α(h0−δ )

h0−δ
,

Ψ2
11 = 2αP1+λ0φ−λ3+λ1−2KP4,Ψ

2
12=Ψ4

12=P1−P4−KP2,

Ψ2
44 = Ψ4

44 = λ1−λ2, Ψ2
55=λ1 − Re−2α(h0−δ )

h0−δ
, Ψ3

55=− λ1
N−1 ,

Ψ4
11 = 2αP1 +λ0φ −λ3 +λ1 −2KP4 +λ4ε + Nε

l ,
Ψ4

55 = λ1 −λ4 − N
l .

Let α1 be subject to

0 < α1h0 < αh0 − (α0 +α)δ . (3.15)

Then the closed-loop system (2.12) subject to (2.2) and (2.7)
is asymptotically stable for any initial function z0 ∈ H1

0 (0, l).
Proof: Step 1: For t ∈ [tk, tk +δ ), the ETM is not acti-

vated. Therefore, we derive sufficient LMI-based conditions
to guarantee that V̇ (t)−2α0V (t)≤ 0.
Differentiating Lyapunov functional (3.5) along (3.4), we
have

V̇P1(t)−2α0VP1(t) = 2P1
∫ l

0 zt(x, t)z(x, t)dx
−2α0P1

∫ l
0 z2(x, t)dx,

(3.16)

V̇P2(t)−2α0VP2(t) = 2P2
∫ l

0 a(x)zxt(x, t)zx(x, t)dx
−2α0P2

∫ l
0 a(x)z2

x(x, t)dx,
(3.17)

ṁ(t)−2α0m(t) =−2(ε1 +α0)m(t)≤ 0. (3.18)

From (2.4) we have

λ0

∫ l

0
[φz2(x, t)−ϕ

2(z(x, t))]dx ≥ 0. (3.19)

Wirtinger’s inequality yields

−2α0P2

∫ l

0
a(x)z2

x(x, t)dx ≤−2α0P2a0
π2

l2

∫ l

0
z2(x, t)dx,

We apply further the descriptor method [26] to (3.4), where
the left-hand side of the following equation

2
∫ l

0 [P3z(x, t)+P2zt(x, t)]
[
− zt(x, t)+ ∂

∂x [a(x)zx(x, t)]

+ϕ(z(x, t))
]

dx = 0

with some P3 > 0 is added to V̇ .
Set η0 = col{z(x, t),zt(x, t),ϕ(z(x, t))}. Therefore, we have

V̇ (t)−2α0V (t)≤
∫ l

0 ηT
0 Ψ0η0dx ≤ 0, t ∈ [tk, tk +δ ),

if Ψ0 ≤ 0 holds.
Step 2: For t ∈ [tk+δ , tk+h0), the ETM is not activated.

To obtain the maximal value of the waiting time, we derive
sufficient conditions to guarantee that V̇ (t)+2αV (t)≤ 0.
Differentiating (3.5) along (3.4), we have

V̇P1(t)+2αVP1(t) = 2P
∫ l

0 zt(x, t)z(x, t)dx
+2αP1

∫ l
0 z2(x, t)dx,

(3.20)

V̇P2(t)+2αVP2(t) = 2P2
∫ l

0 a(x)zxt(x, t)zx(x, t)dx
+2αP2

∫ l
0 a(x)z2

x(x, t)dx,
(3.21)

V̇R(t)+2αVR(t) = R(h0 + tk − t)
∫ l

0 z2
t (x, t)dx

−R
∫ l

0
∫ t

tk+δ
e−2α(t−s)z2

s (x,s)dsdx,
(3.22)

ṁ(t)+2αm(t) = 2(α − ε1)m(t). (3.23)

Jensen’s inequality leads to

−R
∫ l

0
∫ t

tk+δ
e−2α(t−s)z2

s (x,s)dsdx

≤ −Re−2α(h0−δ )

h0−δ

∫ l
0 [z(x, t)− z(x, tk)]2dx

= −Re−2α(h0−δ )

h0−δ
∑

N
j=1

∫
Ω j

e2
j(t)dx.

(3.24)

Note that |Ω j|= l
N . Therefore, (3.3) implies

− λ1
N−1

N
∑

j ̸=σk

∫
Ω j
[z(x, t)− e j(t)− f j(x, t)]2dx

+λ1
∫

Ωσk
[z(x, t)− eσk(t)− fσk(x, t)]

2dx ≥ 0,
(3.25)

where λ1 ≥ 0.
Since

∫
Ω j

f j(x, t)dx = 0, Poincaré’s inequality leads to

λ2l2

N2π2

∫ l

0
z2

x(x, t)dx−λ2

N

∑
j=1

∫
Ω j

f 2
j (x, t)dx ≥ 0, (3.26)

where λ2 ≥ 0. Furthermore, Wirtinger’s inequality yields

λ3l2

π2

∫ l

0
z2

x(x, t)dx−λ3

∫ l

0
z2(x, t)dx ≥ 0, (3.27)

where λ3 ≥ 0.
We apply further the descriptor method [26] to (3.4), where
the left-hand side of the following equation

2
∫ l

0 [P4z(x, t)+P2zt(x, t)]
[
− zt(x, t)+ ∂

∂x [a(x)zx(x, t)]

+ϕ(z(x, t),x, t)−Kbσk(x)[z(x, t)−eσk(t)− fσk(x, t)]
]

dx = 0

(3.28)
with some P4 > 0 is added to V̇ .
Set η1 = col{z(x, t),zt(x, t),ϕ(z(x, t)), f j(x, t),e j(t)}, j ̸= σk,
and η2 = col{z(x, t),zt(x, t),ϕ(z(x, t)), fσk(x, t),eσk(t)}. Then
we have

V̇ (t)+2αV (t)≤
N
∑

j ̸=σk

∫
Ω j

ηT
1 Ψ1η1dx+

∫
Ωσk

ηT
2 Ψ2η2dx

+(2αa0P2 −2a0P4 +
λ2l2

N2π2 +
λ3l2

π2 )
∫ l

0
z2

x(x, t)dx

+2(α − ε1)m(t), t ∈ [tk +δ , tk +h0),

where Ψm (m = 1,2) are given by (3.11), (3.12) respectively.
Step 3: For t ∈ [tk + h0, tk+1), the ETM is activated.

We derive sufficient LMI-based conditions to guarantee that
V̇ (t)+2αV (t)≤ 0.
From event-triggering condition (2.9), we have∫

Ωσk

[εy2
σk
(t)− e2

σk
(t)]dx+

l
N

θm(t)> 0. (3.29)

Then, Jensen’s inequality implies

λ4

{∫
Ωσk

[εz2(x, t)− e2
σk
(t)]dx+

l
N

θm(t)
}
> 0. (3.30)
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Differentiating (3.5) along (3.4), we have (3.20), (3.21) and

ṁ(t)+2αm(t)=(2α − ε0)m(t)+εy2
σk
(t)−e2

σk
(t). (3.31)

Taking (3.19), (3.20)-(3.21), (3.25)-(3.28) and (3.30)-(3.31)
into account, we have

V̇ (t)+2αV (t)≤
N
∑

j ̸=σk

∫
Ω j

ηT
1 Ψ3η1dx+

∫
Ωσk

ηT
2 Ψ4η2dx

+(2αa0P2 −2a0P4 +
λ2l2

N2π2 +
λ3l2

π2 )
∫ l

0
z2

x(x, t)dx

+(2α + l
N λ4θ − ε0)m(t), t ∈ [tk +h0, tk+1),

where Ψm (m = 3,4) are given by (3.13), (3.14) respectively.
Step 4: From Step 1-Step 2, we obtain the feasibility of

LMIs (3.7)-(3.9) implies that any strong solution of (2.12),
(2.3) initialized with z0 admits a priori estimate

• V (t)≤ e2α0(t−tk)V (tk), ∀t ∈ [tk, tk +δ ),
• V (t)≤ e−2α(t−tk−δ )V (tk +δ ), ∀t ∈ [tk +δ , tk+1).

Since α1 < α and tk+1 − tk ≥ h0, (3.15) implies

(α1 −α)(tk+1 − tk)≤ (α1 −α)h0 ≤−(α0 +α)δ . (3.32)

If 0 < α1h0≤αh0 − (α0 +α)δ , one has

V (tk+1) ≤e2α0δ−2α(tk+1−tk−δ )V (tk)≤e−2α1(tk+1−tk)V (tk), .

For t ∈ [tk, tk + δ ), V (t) ≤ e2α0δV (tk). For t ∈ [tk + δ , tk+1),
V (t)≤V (tk +δ )≤ e2α0δV (tk). Therefore, we have

V (t)≤ e2α0δV (tk)≤ e2α0δ−2α1(tk−tk−1)V (tk−1)

≤ ·· · ≤ e2α0δ−2α1tkV (0), t ∈ [tk, tk+1).

The latter bound for tk = 0 guarantees the existence of the
strong solutions for all t ∈ [0, t1]. Then using step method
[26], we conclude that the strong solution exists for all t ≥ 0.
Moreover, the closed-loop system is asmyptotically stable.

Under the Neumann boundary conditions, the result is
similar:

Theorem 3.2: Consider the closed-loop system (3.4) sub-
ject to Neumann boundary conditions (2.3). Given positive
parameters K, h0, θ , ε0, ε , α , δ , ε1 > α , h0 > δ and tuning
parameter α0 such that αh0 > (α0 + α)δ , let there exist
scalars Pn ≥ 0 (n = 1,2,3,4), λi ≥ 0 (i = 0,1,2,4) and R ≥ 0
that satisfy the LMIs (3.7)-(3.9) with λ3 = 0. Let α1 be
subject to (3.15). Then the closed-loop system (2.12) subject
to (2.3) and (2.7) is asymptotically stable for any initial
function z0 ∈ H1

0 (0, l).
Remark 3.1: Note that the Wirtinger’s inequality be-

comes invalid for the case of the Neumann boundary con-
dition. Therefore, Inequality (3.27) cannot be applied. The
system (2.1) under the Neumann boundary conditions is
exponentially stable if the LMI conditions of Theorem 3.1
hold with λ3 = 0.

Remark 3.2: Inspired by the switching (time-triggered)
controllers (see our previous works [18], [25]), according to
the Lyapunov function (3.5), the maximal value of h0 can
be calculated by LMIs Ψl < 0,(l = 0,1,2). In this paper,
our switching-based event-triggered controller leads to larger
inter-execution times in average than the switching (time-
triggered) controller in the example below.

IV. NUMERICAL ILLUSTRATION

In the following, a numerical example is provided to
verify the effectiveness of the proposed method. Consider
nonlinear reaction-diffusion equation (2.1) under the Dirich-
let boundary conditions (2.3) with l = 1 and a(x) = a0 = 1.
The initial condition and the nonlinear function are chosen
as z(x,0) = z0(x) = 2sin(πx)(1− cos(πx)) and ϕ(z(x, t)) =
(1− exp(−5z2(x, t))) respectively. As clearly visible in Fig.
1(a), the open-loop system is unstable.

(a) (b)
Fig. 1. (a) State of unforced system; (b) State of closed-loop system

To verify the LMI conditions of Theorem 3.1, some
parameters of the controlled system (3.4) and dynamic ETM
(2.9) are chosen as follows:

θ = 1, ε = 0.4, ε0 = 2.5, N = 10, K = 3,
α = 0.07, α0 = 1.1, α1 = 0.01, h0 = 0.1,δ = 0.005.

Then by Yalmip, the following feasible solutions of LMIs
are obtained:

P1 = 4.2625, P2 = 1.8358, P3 = 7.3898, P4 = 1.6756,
R = 2.9907, λ0 = 13.1494, λ1 = 1.7048, λ2 = 25.0164,
λ3 = 24.4262, λ4 = 9.0144.

Set the steps in time and space as dx = 0.01 and dt =
10−4, respectively. A finite difference method is utilized to
compute the numerical solution of the closed-loop system
(2.12) subject to (2.3) under the switching-based event-
triggered control law

uσk(t) =

{
0, t ∈ [tk, tk +0.005),
−3

∫
Ωσk

z(x, tk)dx, t ∈ [tk +0.005, tk+1)

via the switching rule (2.7) and ETM (2.9). The behavior of
the closed-loop system is presented in Fig. 1(b). As expected,
the resulting closed-loop system is exponentially stable.

Furthermore, the trajectories of eσk(t) are visualized in
Fig. 2(a). Fig. 2(b) shows that the release time and release
interval under dynamic ETM for t ∈ [0,15]. The switching-
based event-triggered controllers are depicted in Fig. 2(c).
The locations of actuator are given in Fig. 2(d). These
simulation results confirm the theoretical results.

Table I shows the amount of sent measurements and the
maximal values of h0 with different values of ε , θ and m0
in dynamic ETM (2.9). From the simulation results, we find
that the sent measurements are reduced by choosing larger
ε , θ and m0. The maximal value of h0 is decreased with a
larger ε . The last line in Table I (with ε = ε0 = ε1 = θ = 0)
corresponds to time-triggered switching control (considered
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Fig. 2. (a) Trajectories involved in the dynamic ETM (2.9); (b) Release
instants and release interval by dynamic ETM (2.9); (c) Switching-based
event-triggered controller; (d) Actuator locations for N = 10

TABLE I
COMPARISON WITH DIFFERENT VALUES OF ε , θ AND m0

ε θ m0 Sent measurements Maximal value of h0
0.4 0.2 0 27 0.3244
0.4 0.5 0 25 0.3244
0.4 1 0 23 0.3244
0.4 1 5 21 0.3244
0.4 1 10 20 0.3244
0.8 1 10 18 0.3227
1.4 1 10 17 0.3177
0 0 0 45 0.3306

in our previous works [18], [25]). It is seen that the sug-
gested ETM reduces the number of sent measurements (17
compared with 45) at least by 2.5 times.

V. CONCLUSIONS

The present paper discusses a dynamic switching-
based event-triggered control design to stabilize a reaction-
diffusion equation by output-dependent switching. The well-
posedness and exponential stability analysis of the system
has been estabilished. One of the directions for the fu-
ture research is extension of the obtained results to high-
dimensional PDE systems.
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[7] Davó, M., Bresch-Pietri, D., Prieur, C., and Di Meglio, F. (2019).
Stability analysis of a 2×2 linear hyperbolic system with a sampled-
data controller via backstepping method and looped-functionals. IEEE
Transactions on Automatic Control, 64(4), pp.1718-1725.

[8] Espitia, N., Yu, H., Krstic, M. (2020). Event-triggered varying speed
limit control of stop-and-go traffic. IFAC-PapersOnLine, 53(2), pp.
7509-7514.

[9] Espitia, N., Karafyllis, I., Krstic, M. (2021). Event-triggered boundary
control of constant-parameter reaction-diffusion PDEs: A small-gain
approach. Automatica, 128, pp. 109562.

[10] Selivanov, A., Fridman, E. (2016). Event-triggered H∞ control: a
switching approach. IEEE Transactions on Automatic Control, 61 (10),
pp. 3221-3226.

[11] Huang Y, Liu Y. (2019). Switching event-triggered control for a class
of uncertain nonlinear systems. Automatica, 108, pp.108471.

[12] Su, X., Liu, X., Shi, P., Song, YD. (2018). Sliding mode control of hy-
brid switched systems via an event-triggered mechanism. Automatica,
90, pp. 294-303.

[13] Katz, R., Fridman, E., Selivanov, A. (2021). Boundary delayed
observer-controller design for reaction-diffusion systems, IEEE Trans-
actions on Automatic Control, 66(1), pp. 275-282.

[14] Iftime, O.V., Demetriou, M.A. (2009). Optimal control of switched
distributed parameter systems with spatially scheduled actuators. Au-
tomatica, 45, pp. 312-323.

[15] Zuazua, E. (2010). Switching control. Journal of the European Math-
ematical Society, 13, pp. 85-117.

[16] Wu, H.N., Zhang, X.W. (2019). Integrated design of switching control
and mobile actuator/sensor guidance for a linear diffusion process.
Journal of the Franklin Institute, 356, pp. 7246-7262.

[17] Wu, H.N., Zhang, X.W. (2020). Static output feedback stabilization
for a linear parabolic PDE system with time-varying delay via mobile
collocated actuator/sensor pairs. Automatica, 117, pp. 108993.

[18] Kang, W., Fridman, E., Liu, C.X. (2023). Stabilization by switching
of parabolic PDEs with spatially scheduled actuators and sensors,
Automatica, 147, pp. 110668.

[19] Mu, W., Qiu, F., Zhuang, B., Chen, L. (2021). Optimal actuator
switching synthesis of observer-based event-triggered state feedback
control for distributed parameter systems, Journal of the Franklin
Institute, 358(1), pp. 384-399.

[20] Jiang, Z., Cui, B., Wu, W., Zhuang, B. (2016). Event-driven observer-
based control for distributed parameter systems using mobile sensor
and actuator, Computers & Mathematics with Applications, 72(12),
pp. 2854-2864.

[21] Wen, Y., Lou, X., Chen, J., Chen, Y. (2022). Mobile Actuator-Plus-
Sensor Strategy for Event-Driven Observer-Based Control of Delayed
Distributed Parameter Systems, IEEE Control Systems Letters, 6, pp.
2162-2167.

[22] Jiang, Z., Zhuang, B., Lou, X., Wu, W. (2022). Integrated Design
of Event-triggered Control and Mobile Non-collocated SANs for a
Diffusion Process. International Journal of Control, Automation and
Systems, 20(9), pp. 2915-2926.

[23] Fridman, E., Bar Am, N. (2013). Sampled-Data Distributed H∞ Con-
trol of Transport Reaction Systems. SIAM J. Control & Optimization,
51(2), pp. 1500-1527.

[24] Fridman, E., Blighovsky, A. (2012). Robust Sampled-Data Control of
a Class of Semilinear Parabolic Systems. Automatica, 48, pp. 826-836.

[25] Kang, W., Fridman, E., Liu, C.X. (2021). Stabilization for a semilinear
heat equation with switching control, 2021 60th IEEE Conference on
Decision and Control (CDC), pp. 448-453.

[26] Fridman, E. (2014). Introduction to Time-Delay Systems: Analysis and
Control. Basel: Birkhäuser.
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